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In order to understand how olfactory stimuli are encoded and processed in
the brain, it is important to build a computational model for olfactory recep-
tor neurons (ORNs). Here, we present a simple and reliable mathematical
model of a moth ORN generating spikes. The model incorporates a simpli-
fied description of the chemical kinetics leading to olfactory receptor
activation and action potential generation. We show that an adaptive spike
threshold regulated by prior spike history is an effective mechanism for
reproducing the typical phasic–tonic time course of ORN responses. Our
model reproduces the response dynamics of individual neurons to a fluctu-
ating stimulus that approximates odorant fluctuations in nature. The
parameters of the spike threshold are essential for reproducing the response
heterogeneity in ORNs. The model provides a valuable tool for efficient
simulations of olfactory circuits.
1. Introduction
Many animals rely on olfaction for detecting food, natural predators and
mating partners. The odorant is initially recognized by olfactory receptor
neurons (ORNs). The information is then transferred to a secondary region,
either the antennal lobe in insects or olfactory bulb in vertebrates. Projections
from the secondary region extend to higher order brain regions, the mushroom
body and lateral horn in insects and the orbitofrontal cortex, amygdala,
entorhinal cortex and ventral striatum in vertebrates. The architecture of the
olfactory circuit differs from that of other sensory modalities (for a review,
see [1,2]); for example, the olfactory circuit consists of fewer layers. Therefore
concepts derived from experimental and theoretical studies on other systems
may not be applicable to olfaction. Computational models that can replicate
the behaviour of real ORNs during odorant stimulation may generate testable
hypotheses on mechanisms underlying olfactory transduction and encoding.

Indeed, computational models have enhanced our understanding of the
mechanisms underlying odorant detection in both invertebrates and vertebrates
[3–8] and facilitated investigations of olfactory pathway functions [9–12]. Such
models have also been used to clarify the coding properties of ORNs such as the
stimulus–response relationship of the ORNs [13,14] and the implications of
the efficient coding hypothesis [15].
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Pheromone detection in moth ORNs occurs in two stages:
receptor activation by the odorant and action potential (spike)
generation. Odorant molecules are first absorbed by the sen-
sillum lymph, where they initiate a cascade of complex
biochemical interactions. Receptor activation and related
downstream signalling cascades leading to membrane
depolarization have been described by various mathematical
models [3,14,16], including detailed biophysical models
[4–7,17,18]. To understand the mechanisms of pheromone
detection, it is essential to develop a computational model
that replicates odorant-evoked ORN responses.

Reduced neuronal models, such as the leaky integrate-
and-fire (LIF) neuron [19–21], can be good approximations
of real neurons [22,23] and therefore useful tools for simulat-
ing and investigating prominent features of network
dynamics [24,25]. A few models incorporating receptor acti-
vation into a simple spike generation mechanism based on
the LIF model have been developed [13,26] in order to
study steady-state ORN behaviour. However, the LIF model
cannot accurately replicate the response dynamics.

Here, we develop a computational model for individual
ORNs that generates spikes in response to dynamic odorant
stimulation. We demonstrate that an adaptation mechanism
in spike threshold is necessary to reproduce the response
dynamics of ORNs. The mathematical tractability and simpli-
city of the proposed model allows for efficient simulations
and analysis of ORN spiking activity.
2. Results
2.1. Typical response of olfactory receptor neurons

to pheromone
Experimental data were obtained from ORNs by applying
different pheromone doses to antennae of the moth Agrotis
ipsilon (see Methods for details). To simulate the fluctuating
odorant concentration in a natural environment [27], the
pheromone was applied in short intermittent pulses ( puffs)
separated by stimulus-free periods (blanks) of random
duration (figure 1a).

Responses of different ORNs to the same pheromone
pulse exhibited marked cell-to-cell variability (figure 1b) as
reported in previous studies [28,29]. This response heterogen-
eity of ORNs might be caused, for example, by differences in
the density of olfactory receptors (ORs), odorant-binding pro-
teins and odorant-degrading enzymes among ORNs.
Nonetheless, averaged responses across cells demonstrated
a typical phasic–tonic time course regardless of pheromone
dose (figure 1c–f ). From a baseline rate near 0 Hz, the
firing rates increased rapidly (phasic period), reaching a
peak around 100 ms after stimulus onset, and then slowly
decaying toward a steady-state firing rate that was higher
than the spontaneous firing rate (tonic period). The peak
firing rate increased with pheromone dose, but the delay of
the peak firing rate (latency) and the phasic–tonic response
time course did not change.

2.2. Model of an olfactory receptor neuron
The proposed ORN model (figure 2) consists of two main
parts: (i) receptor activation due to pheromone stimulation
and (ii) spike generation according to an integrate-and-fire
mechanism.
Receptor activation. We describe the process of receptor
activation by the following chemical reactions, derived by
Kaissling and coworkers [15,30,31]

Lair !ki L (2:1)

nLþ RO
k1

k�1

RL O
k2

k�2

R� (2:2)

and LþNO
k3

k�3

NL !k4 PþN: (2:3)

Equation (2.1) describes an absorption of odorant molecules
in the air Lair by the sensillum lymph at a rate ki, which
yields odorant molecules at the receptor site L. Equation
(2.2) describes the binding of n molecules of odorant L to a
receptor. Odorant molecules L reversibly bind to free recep-
tors R at rates k1 and k−1, which yields the receptor–ligand
complex RL. Then, the complexes RL are reversibly activated
(R*) at a rate k2 and k−2. Finally, equation (2.3) describes the
kinetics of odorant degradation at the receptor site by an
odorant degrading enzyme N. The odorant and enzyme
reversibly form a complex NL according to rate constants k3
and k−3, and the complex is degraded into an inactive pro-
duct P at a rate k4. The chemical kinetics (2.1)–(2.3) can be
described by a system of differential equations (see Methods,
equations (4.1)–(4.6)).

Spike generation. We describe the ORN by a single-
compartment model. The membrane potential V(t) evolves
according to [32]

Cm
dV
dt

¼ �gL(V � EL)þ IR(t), (2:4)

where Cm is the cell capacitance, gL is the leak conductance
and EL is the reversal potential of the leak current. The cur-
rent from the odorant receptors IR(t) is determined by the
quantity of activated receptors according to [13]

IR(t) ¼ �gR�(t)(V � ER), (2:5)

where R*(t) is the concentration of activated receptors R* at
time t, ER is the reversal potential of the receptor current and
γ represents the conductance induced by a single activated
receptor R*. A spike is generated when the membrane poten-
tial V(t) reaches a threshold θ(t). After each spike, the
membrane potential is reset to a value Vreset. In the following
sections, we consider two types of spike thresholds, a constant
threshold and an adaptive threshold.

2.3. Model with constant spike threshold cannot
reproduce the response dynamics of an olfactory
receptor neuron

First, we considered the model with a constant spike threshold,
θ(t) = θ0, known as the leaky integrate-and-fire (LIF) model
[32]. We investigated whether the LIF model with receptor
dynamics (2.1)–(2.5) can reproduce the average response of
ORNs to a pheromone pulse stimulus (figure 1c–f). We
observed that the firing rates of the model increase monotoni-
cally, whereas the firing rates of ORNs always exhibited a peak
followed by a slower decline to steady state (phasic–tonic
response) (figure 3a). The model firing rates increase monoto-
nically because the number of activated receptors R*(t)
increases during the stimulation period. Thus, the model
based on (2.1)–(2.5) with a constant spike threshold cannot
reproduce the time course of the average ORN response.
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Figure 1. Experimental data for the responses of olfactory receptor neurons (ORNs) to pheromone stimulation. (a) ORNs were stimulated by intermittent delivery of
the sex pheromone (four pheromone doses ranging from 1 to 1000 pg) to mimic fluctuating odorant concentration in a pheromone plume. (b) Examples of spike
trains generated by two ORNs (cells A and B) in response to 0.5 s of constant pheromone stimulation at 100 pg. Top: The average firing rate of each cell. Bottom:
Raster plots of 10 trials (rows) from each cell. Note the heterogeneity in firing rates between the two ORNs despite stimulation by the same pheromone pulse. (c–f )
The average firing rate across cells in response to the same 0.5 s pulse stimulus of pheromone at different doses (1–1000 pg). The shaded area represents the range
between the lower and upper quartile trajectory. (Online version in colour.)
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Except for non-decreasing firing rate profiles, the model
has another issue of being able to reproduce correctly only
either the peak firing rate or the first-spike latency, but not
both of them simultaneously. This problem could only be
numerically resolved by allowing an unphysiologically long
refractory period after each spike. Figure 3a shows a compro-
mise fit that could be achieved with a realistic 3 ms refractory
period, where both the peak firing rate and the first-spike
latency are much larger than in real ORNs.
2.4. Model with an adaptive spike threshold
reproduces the response dynamics of an
olfactory receptor neuron

Since the LIF model with constant spike threshold could not
replicate the qualitative characteristics of ORN responses,
it was modified by including an adaptive spike threshold
[33–36], which depends on previous spike times. The threshold
θ(t) increases by Δ/τ after each spike and decreases exponen-
tially to an asymptotic level θ0 with the time constant τ. The
parameter Δ represents the strength of adaptation (seeMethods
for a formal mathematical description).

Unlike the LIF model, the model with the adaptive spike
threshold is able to accurately reproduce the time course of
the average ORN responses under each odorant concentration
(figure 3b). In addition, the model captures the dependence of
the response characteristics of ORNs, i.e. the peak firing rate
(figure 4b) and the first-spike latency (figure 4c), on the odorant
concentration over a wide range of odorant doses (1000-fold).
The model parameters are summarized in tables 1 and 2.
Most of them were adopted from previous studies
[7,15,16,30–32,37], while the two rate constants for receptor
activation (equation (2.3)), k3 and k4, were chosen to achieve
rapid deactivation of L. The remaining four parameters (n,
τ, Δ and γ) were determined by minimizing the integrated
squared error between the average response of ORNs and
the model response (see Methods).
2.5. Model with an adaptive threshold reproduces
responses to a fluctuating stimulus

In the natural environment, odorant concentrations fluctuate
rapidly; therefore, it is crucial to replicate the response
dynamics of an ORN to such stimulation. To mimic the natu-
ral pheromone plume under experimental conditions, we
stimulated the antennae by intermittent delivery of the
pheromone [41,42]. The firing rates of individual ORNs
were then compared with those generated by the model
with the adaptive spike threshold.

Since we wanted to reproduce the activity of individual
ORNs, we had to take into account a cell-to-cell variability
in ORN responses (figure 1b). The heterogeneity among
ORNs can be captured by fitting some of the model par-
ameters to the experimental recording of each individual
ORN (see Methods), while keeping all the other parameters
fixed as in tables 1 and 2. As for the choice of which par-
ameters should be allowed to vary across the cells, we
tested three options. First, we let γ vary (heterogeneity in
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γ); second, we let the pair of threshold parameters Δ and τ be
cell specific (heterogeneity in (Δ, τ)); and third, we fitted all
three parameters γ, Δ and τ to each neuron (heterogeneity in
(γ, Δ, τ)). Finally, we examined the prediction performance
of each heterogeneous model by the coefficient of
determination (see Methods).

The prediction performances of the three heterogeneous
models with cell-specific parameters were compared with
the model where all parameters were fixed for all cells as in
table 2 (homogeneous model); see figure 5a. The median pre-
diction performance of the homogeneous model was 0.13
(inter-quartile range: −0.02 to 0.30). Fitting only γ led to a
mild improvement in the prediction performance (median
0.26, inter-quartile range: 0.18 to 0.35). The prediction per-
formance improved substantially with heterogeneous τ and
Δ (median 0.6, inter-quartile range: 0.46 to 0.67). Having all
three parameters γ, τ, Δ heterogeneous did not bring any
improvement compared with heterogeneity only in (Δ, τ)
and the median prediction error was even slightly lower
(median 0.59, inter-quartile range: 0.47 to 0.66), most likely
because too many free parameters led to overfitting.

Therefore, we concluded that the cell-to-cell heterogeneity
among ORNs is best captured by fitting the threshold par-
ameters (Δ and τ) to the experimental recording of each
individual ORN, since this yields a significant improvement
in the prediction performance over the homogeneous model
(Wilcoxon’s rank sum test, p < 0.001, n = 84). Figure 6a illus-
trates an example of the model fit to recordings of two
neurons.While the temporal pattern of the observed responses
is similar, the amplitudes are different. The model with
the adaptive spike threshold reproduces the response time
course of the two neurons accurately. The distribution of
the response time course of the fitted model neurons (n = 84)
to the same stimulus is shown in figure 6b. Owing to the
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heterogeneity in threshold parameters, the amplitudes of the
responses are highly variable among the model neurons, but
the temporal patterns of the responses remain similar.
Figure 5a shows the threshold parameters obtained from all
ORNs. The mean values (+/− the standard deviation) of
the parameters are 1.2 ± 0.38 s for the threshold time constant
τ and 0.5 ± 0.23 mV s for the adaptation level Δ. Values of τ and
Δ are negatively correlated (correlation coefficient −0.48). This
finding can be intuitively explained as that these two par-
ameters can compensate for each other to some extent. A
similar firing rate may be achieved by combining either a
small step increase and a slow relaxation time or a big increase
and fast relaxation. Although the threshold parameters exhibit
high variability among the ORNs, they are comparable to the
parameters fitted to the average response (table 2).
3. Discussion
We present a computational model of a moth ORN that
reproduces the firing rate dynamics of an ORN under inter-
mittent pheromone stimulation over a 1000-fold range of
concentrations. Further, our model captures cell-to-cell
response variability of ORNs by tuning only two model par-
ameters controlling the spike threshold. The model is less
accurate for longer stimulations, where the model firing rate
increases more slowly than the true firing rate. The model
also mildly underestimates maximal spike rates.
3.1. Heterogeneity of olfactory receptor neurons
The response heterogeneity of moth ORNs, manifested by
different dose–response properties among cells, and its
impact on neuronal coding were thoroughly studied by
Rospars et al. [29]. In addition, cell-to-cell response variability
among ORNs has been investigated in other animal species
such as mice [43]. This variability is captured in our model
by setting different threshold parameters, i.e. the strength
and the time constant of the adaptation. Previous works
[36,44] suggested that the biophysical origins of the adaptive
threshold are the slow K+ currents in the neuron, such as the
Ca2+-activated K+ current [39] and M-type K+ current. Thus,
our results imply that differences in the slow K+ current
density might contribute to the response heterogeneity
among ORNs.

3.2. Advantages of the proposed model
The model presented here serves as an efficient tool for simu-
lating moth ORN responses. First, the model captures the
typical response properties observed experimentally, particu-
larly the phasic–tonic response pattern characterized by a
rapid increase and a slow decay to a steady-state firing rate,
as well as the effect of odorant concentration on the peak
firing rate and first-spike latency. Second, our model can
simulate cell-to-cell response variability among ORNs by indi-
vidually setting only two parameters controlling the adaptive
spike threshold. Third, our model provides the spike times,
unlike linear–nonlinear models, which can capture only the



Table 1. Parameters for the model of receptor activation (equations
(2.1)–(2.3)).

value unit fitted/fixed

Rtot 1.64 μM fixed [16,30,31]

Ntot 1 μM fixed [16,30,31]

ki 106 s−1 fixed [37]

k1 0.209 s−1 · μM−1
fixed [16,30,31]

k−1 7.9 s−1 fixed [16,30,31]

k2 16.8 s−1 fixed [16,30,31]

k−2 98 s−1 fixed [16,30,31]

k3 100 s−1 · μM−1
fixed

k−3 98.9 s−1 fixed [16,30,31]

k4 40 000 s−1 fixed

n 0.056 fitted

Table 2. Parameters for the model of spike generation.

value unit fitted/fixed

Cm 0.00144 nF fixed [7,38]

gL 1.44 nS fixed [7,38]

γ 99.27 nS · μM−1 fitted

EL −62 mV fixed [7,32,39,40]

ER 0 mV fixed [7]

Vreset −62 mV fixed [7,32]

θ0 −55 mV fixed [32]

Δ 0.77 mV s fitted

τ 0.58 s fitted
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firing rates [41,42,45]. Hence, our model could be useful
for investigating the possibility of latency coding in olfactory
information processing [46,47] and the role of spike-timing-
dependent plasticity in olfaction [12,48,49]. Consequently, the
proposed model can be applied to simulate a network of
heterogeneous ORNs in order to investigate how ORN
populations process olfactory information in the moth.
3.3. Limitations and future works
Experimental evidence suggests that adaptation occurs at the
level of both the receptor potential and action potential gen-
erators [50,51]. This is effectively achieved in our model by
including the chemical kinetics of activated receptors, which
is dependent on the stimulation history, and by the adaptive
threshold dependent on the spiking history. However, the
proposed model does not consider detailed biochemical path-
ways downstream of odorant-receptor binding that also play
a role in adaptive processes, since a comprehensive picture of
the olfactory transduction does not emerge yet and since it is
notoriously difficult to fit parameters of detailed biophysical
models from limited experimental data. In such cases, even
slight differences in initial parameter settings can lead to
highly disparate results [52,53].

Sliding adjustment of odour response threshold and kin-
etics has several molecular actors, such as ion channels,
second messengers and ORs. ORs make non-selective cation
channels, which are permeable also for Ca2+. First, adaptation
in Drosophila OR-expressing ORNs is mediated by the Ca2+

influx during odour responses [54] and Ca2+-dependent
channels may also serve for odour adaptation as in vertebrate
ORNs [55]. Second, G-protein signalling cascades can both
increase or decrease the ORN sensitivity [56,57]. Finally,
ORs also adjust their sensitivity according to previous
odour detections [58,59]. Insect ORs are formed by an
odour-specific OrX protein and an odorant co-receptor,
Orco, which plays a central role in both downregulating
and upregulating the ORN sensitivity. In moth pheromone-
sensitive ORNs, Orco was proposed to function as a pace-
maker channel, controlling the kinetics of the pheromone
responses [60]. One or a combination of mechanisms of
modulation of ORN sensitivity may contribute to expand
the dynamic range of olfactory detection and thus allow the
temporal structure of odour plumes to be encoded independent
of their concentration [14].

In spite of its simplicity, our model effectively captures the
adaptation process, since it can predict the response
dynamics of ORNs recorded in experiments. However, the
feedback mechanism of our model might be fundamentally
different from that induced by the second messenger signal-
ling pathways. For instance, the adaptation process due to the
adaptive spike threshold model depends solely on previous
spike history and is different from the adaptation process in
real ORNs caused by Ca2+ influx and the following transduc-
tion cascade [7]. An investigation of more physiological
feedback mechanisms could allow for further improvements
of the model. One possibility may be to include explicit for-
mulae describing the interaction of OR–Orco complexes
and the adaptation of the rates of switching between the
inactive and the active state, such as in the model by
Gorur-Shandilya et al. [14].
4. Material and methods
4.1. Model of an olfactory receptor neuron
Here, we provide the details of the proposed neuron model.

4.1.1. Receptor activation
Receptor activation by the pheromone (2.1)–(2.3) is described by
the following reaction-rate equations:

dL
dt

¼ kiLair � nk1LnRþ nk�1RL � k3LN þ k�3NL, (4:1)

dR
dt

¼ � k1LnRþ k�1RL, (4:2)

dRL

dt
¼ k1LnR� (k�1 þ k2)RL þ k�2R�, (4:3)

dR�

dt
¼ k2RL � k�2R�, (4:4)

dN
dt

¼ � k3LN þ (k�3 þ k4)NL (4:5)

and
dNL

dt
¼ k3LN � (k�3 þ k4)NL, (4:6)

where ki, k1, k−1, k2, k−2, k3, k−3 and k4 are the rate constants, Lair
and L are the odorant concentrations in the air and in the sensil-
lum lymph, respectively, R, RL and R* are the concentrations of
the receptors in the free, receptor–ligand complexed and acti-
vated states, respectively, N and NL are the deactivating
enzyme concentrations in the free and complexed states,
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respectively. The total amounts of receptors Rtot and the deacti-
vating enzyme Ntot do not change over time. Using

RL ¼ Rtot � R� R� (4:7)

and
NL ¼ Ntot �N, (4:8)

the system of equations (4.1)–(4.6) can be reduced to

dL
dt

¼ kiLair � n(k1Ln þ k�1)R� nk�1R� � (k3Lþ k�3)N

þ nk�1Rtot þ k�3Ntot, (4:9)

dR
dt

¼ � (k1Ln þ k�1)R� k�1R� þ k�1Rtot, (4:10)

dR�

dt
¼ � k2R� (k2 þ k�2)R� þ k2Rtot (4:11)

and
dN
dt

¼ � (k3Lþ k�3 þ k4)N þ (k�3 þ k4)Ntot: (4:12)

The model parameters are listed in table 1.

4.1.2. Spike generation
The membrane voltage V(t) of an ORN is described by the fol-
lowing equation:

Cm
dV
dt

¼ �gL(V � EL)� gR�(t)(V � ER), (4:13)

where Cm is the cell capacitance, gL is the leak conductance, γ is
the unit receptor conductance, R*(t) is the concentration of acti-
vated receptor, and EL and ER are the reversal potentials of the
leak and the receptor currents, respectively (parameter values
shown in table 2).

The model neuron generates a spike when the voltage V(t)
reaches the spike threshold θ(t), and, then, the voltage is instan-
taneously reset to a value Vreset. We consider two descriptions
for the threshold. In the first description, the threshold is constant,
θ(t) = θ0. This description is equivalent to the standard LIF model
[13,32]. In the second description, the spike threshold ismodulated
by previous spikes and is formally described as follows [33,35,36].

(1) When the neuron does not generate spikes, the threshold θ(t)
decays exponentially to its asymptotic level θ0,

t
du
dt

¼ �(u� u0): (4:14)

This implies that

u(t) ¼ u0 þ
h
u(tþf )� u0

i
exp � t� t f

t

� �
, for t f � t, (4:15)

where tf is the time of the last spike and t+ represents the
limit from above.
(2) If the voltage reaches the threshold at time tsp, V(tsp)≥ θ(tsp),
the threshold increases by a step Δ/τ, therefore

u(tþsp) ¼ u(t�sp)þ D=t, (4:16)

where Δ represents the strength of adaptation due to a single
spike.
Equations (4.9)–(4.12), (4.13), (4.14) and (4.16) were solved

numerically using the forward Euler integration method with a
time step of 0.01ms. The initial conditions were R(0) =Rtot,
N(0) =Ntot, V(0) = EL and θ(0) = θ0, that is, all of the receptors
and the degrading enzymes were in the free state, the voltage
was at the resting value and the threshold was at the asymptotic
level. The simulation code was written in R [61].

4.2. Experiments
Insects. Experiments were performed with laboratory-reared 4–5-
day-old (sexually mature) adult male Agrotis ipsilon fed 20%
sucrose solution ad libitum [62]. Pupae were sexed, and males
and females were kept separately at 22°C under an inversed
light–dark cycle (16–18 h light–dark photoperiod).

Electrophysiology. Insects were immobilized with the head
protruding. One antenna was fixed with adhesive tape on a
small support and a tungsten electrode (TW5-6; Science Pro-
ducts, Hofheim, Germany) was inserted at the base of a long
pheromone-responding sensillum trichodeum located on an
antennal branch. The reference electrode was inserted in the
antennal stem. The electrical signal was amplified (×1000) and
band-pass filtered (10 Hz to 5 kHz) with an ELC-03X (NPI elec-
tronic, Tamm, Germany), and sampled at 10 kHz by a 16-bit
acquisition board (NI-9215; National Inst., Nanterre, France)
under Labview (National Inst.). One sensillum was recorded
per insect.

Stimulation. ORNswere stimulatedwith themajorA. ipsilon sex
pheromone, (Z)-7-dodecenyl acetate (Z7-12:Ac). Pheromone was
diluted in decadic steps in hexane and applied to a filter paper
introduced in a Pasteur pipette. The antennawas constantly super-
fused by a humidified and charcoal-filtered air stream (70 l · h−1).
Air puffs (10 l · h−1) were delivered through a calibrated capillary
(ref. 11762313; Fisher Scientific, France) positioned 1mm from the
antenna and containing the odorant-loaded filter paper (10 ×
2 mm). An electrovalve (LHDA-1233215-H; Lee Company,
France) was controlled by custom-made Labview programs read-
ing sequences generated by Matlab scripts. The time resolution
of the sequence was 1ms. The characteristic response time of the
valves, i.e. the time to switch from open to closed or closed to
open, was less than 5 ms. The durations of the pheromone puffs
and pauses were randomized. Time was divided into bins of a
fixed duration (50 or 100ms). In each bin, the probability of the
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valve being open was 0.5. Unique sequences of puffs and pauses
were generated for each ORN. The dose of pheromone was
constant throughout one recording session.

In total, recordings of 84 moth ORNs were obtained: 41
recordings with a 50ms minimum puff/pause duration, 43
recordings with a 100ms minimum puff/pause duration. Each
combination of pheromone dose and minimum puff duration
was tested on six or more ORNs. The first 100 s of each recording
was discarded because the ORN activity was not stationary.
4.3. Parameter fitting
We first fitted the four parameters n, γ, τ and Δ to the average
response time courses of ORNs under a pulse stimulation. For
each odorant concentration, we extracted all recording segments
where a neuron was stimulated with a puff longer than 0.5 s after
a no-stimulation period longer than 0.1 s. Then we estimated the
firing rate f (t) by convolving the spike train at the extracted seg-
ment with a Gaussian kernel function (standard deviation 0.03 s)
[63,64]. The mean firing rate was calculated by aligning the indi-
vidual firing rates with the stimulus onset and averaging across
the cells stimulated by the same pheromone dose. The firing rate
of the model neuron was obtained similarly by assuming a 0.5 s
stimulation with the odorant concentration Lair equal to 0.1, 1, 10
and 100 pM that corresponds to the pheromone doses 1 pg,
10 pg, 100 pg, 1000 pg, respectively. The firing rate of the
model was also calculated by convolving the spike train with a
Gaussian kernel function (standard deviation 0.03 s).

The parameters n, γ, τ, Δ were tuned by minimizing the
integrated square error

e2ave ¼
X
Lair

ð
(fd(tjLair)� fm(tjLair))2 dt, (4:17)
where fd(t|Lair) is the average firing rate for the experimental
data, fm(t|Lair) is the firing rate of the model and the summation
was conducted across all concentrations of Lair. The minimization
was performed using the Nelder–Mead algorithm [65].

Subsequently, we fitted threshold parameters (Δ and τ) to the
recording from each neuron. These parameters were tuned by
minimizing the integrated square error in the 10 s training period

e2ind ¼
ð
(fd(t)� fm(t))

2 dt, (4:18)

where fd(t) is the firing rate of the recorded neuron and fm(t) is the
firing rate of the model neuron. The model simulation was initiated
1 s before the start of the training period to reduce the influence of
the initial conditions. Finally, the model performance was evalu-
ated by the coefficient of determination in the subsequent 10 s
prediction period. The coefficient of determination was defined as

R2 ¼ 1�
Ð
(fd(t)� fm(t))

2 dtÐ
(fd(t)� hfdi)2 dt

, (4:19)

where 〈fd〉 is the average firing rate of the experimental data.

Data accessibility. Data and R code are available from GitHub at: https://
github.com/MarieLevakova/Adaptive-integrate-and-fire-model.git.
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