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Abstract

In this paper we investigate the rate coding capabilities of neurons whose input signal are

alterations of the base state of balanced inhibitory and excitatory synaptic currents. We con-

sider different regimes of excitation-inhibition relationship and an established conductance-

based leaky integrator model with adaptive threshold and parameter sets recreating biologi-

cally relevant spiking regimes. We find that given mean post-synaptic firing rate, counter-

intuitively, increased ratio of inhibition to excitation generally leads to higher signal to noise

ratio (SNR). On the other hand, the inhibitory input significantly reduces the dynamic coding

range of the neuron. We quantify the joint effect of SNR and dynamic coding range by com-

puting the metabolic efficiency—the maximal amount of information per one ATP molecule

expended (in bits/ATP). Moreover, by calculating the metabolic efficiency we are able to pre-

dict the shapes of the post-synaptic firing rate histograms that may be tested on experimen-

tal data. Likewise, optimal stimulus input distributions are predicted, however, we show that

the optimum can essentially be reached with a broad range of input distributions. Finally, we

examine which parameters of the used neuronal model are the most important for the meta-

bolically efficient information transfer.

Author summary

Neurons communicate by firing action potentials, which can be considered as all-or-none

events. The classical rate coding hypothesis states that neurons communicate the informa-

tion about stimulus intensity by altering their firing frequency. Cortical neurons typically

receive a signal from many different neurons, which, depending on the synapse type,

either depolarize (excitatory input) or hyperpolarize (inhibitory input) the neural mem-

brane. We use a neural model with excitatory and inhibitory synaptic conductances to

reproduce in-vivo like activity and investigate how the intensity of presynaptic inhibitory

activity affects the neuron’s ability to transmit information through rate code. We reach a

counter-intuitive result that increase in inhibition improves the signal-to-noise ratio of

the neural response, despite introducing additional noise to the input signal. On the other

hand, inhibition also limits the neuronal output range. However, in the end, the actual

amount of information transmitted (in bits per energy expended) is remarkably robust to
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the inhibition level present in the system. Our approach also yields predictions in the

form of post-synaptic firing rate histograms, which can be compared with in-vivo

recordings.

Introduction

Cortical neurons receive input in the form of bombardment by action potentials (spikes) from

other neurons and process and communicate the received information further by transmitting

their own action potentials to other neurons. Individual action potentials do not differ in their

time course and therefore, from the information processing point of view, they can be seen as

all-or-none events. The response to a particular stimulus is therefore represented by a spike

train—a sequence of times when an action potential was produced [1].

According to the efficient-coding hypothesis [2], neurons are adapted to process the infor-

mation from their natural surrounding efficiently. This inspired a number of studies based on

optimality arguments (e.g., [3–9]), with the information efficiency usually being interpreted by

the means of Shannon’s information theory [10].

Given that the cortex has only a limited energy budget and information transfer is costly

[11–13], we expect that neurons balance information rates and energetic expenses. The idea of

energy efficient neural coding was popularized by Levy and Baxter [14]. In their work they

focus on the representational capacity of a noiseless population of neurons and show that opti-

mizing the representational capacity per spike leads to low firing rates, typically observed in

vivo. The introduction of realistic noise [15] and further biophysical details limits the analyti-

cal tractability and studies of noisy neurons are generally limited to numerical analyses of sin-

gle cells and simplified populations.

Typical approaches to information-theoretical analyses of single cells are either the use of

the direct method [16, 17] to evaluate the reproducibility of a response to a given stimulus or

the computation of the mutual information between the stimulus and the response [18] and

eventually evaluating the information capacity of the neuron as an information channel [19–

21]. The attractiveness of information capacity stems from Shannon’s channel coding theorem

which guarantees the existence of a code that is asymptotically able to transmit information at

the rate given by the capacity [22]. See [23–26] for reviews of the use of information theory in

computational neurosciences.

Both the direct method and capacity analysis can be extended to account for the metabolic

expenses. One of the earliest efforts to relate the information capacity to the metabolic

expenses is that of Laughlin et at. [27], where the Gaussian distribution of response variability

is assumed for a cell encoding the stimulus in the graded potential. Balasubramanian [28] dis-

cussed the possibilities of applying the formalism of capacity of constrained channels [29] to

neural systems and Polavieja [30, 31] showed that rate coding neurons [32] with additive

response noise that the predicted shapes of post-synaptic firing rate (PSFR) distributions

obtained from such formalism qualitatively match the experimentally measured distributions

[33]. These inspiring results provided ground for investigating the information-energy balance

for more realistic neuronal models, such as the Hodgkin-Huxley model [34] or a formal model

based on an empirical stimulus-response relationship [35]. Studies concerning the efficiency

of neurons employing different methods of information encoding have also been conducted

(e.g., Leaky integrate and Fire with descending threshold [36], generalized inverse Gaussian

neuron model [37–39]).
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In the presented work we utilize the MAT (Multi-timescale Adaptive Threshold) model

[40] which has been shown to be very good at predicting in-vivo recorded spike trains [40–

47], while maintaining only a modest number of free parameters. Therefore information-theo-

retical analysis of this model allows us to make predictions for a wide variety of neurons

(Fig 1).

The main contributions and the structure of this work can be summarized as follows:

1. By applying the results of Witsenhausen [48] in the context of neural systems, we conclude

that the maximal mutual information between input and output of a neuron using rate

code must be generally reachable with only a finite number of inputs.

2. We qualitatively discuss the stimulus-response relationships and the capacity-cost functions

and show the stabilizing effect of inhibition on the membrane potential fluctuations and

discuss the implications for the given neuronal model.

3. We analyze the effect of inhibition on information-metabolic efficiency and more intuitive

indicators of information transmission efficiency. We find that for a given mean post-syn-

aptic firing rate, counter-intuitively, increased ratio of inhibition to excitation generally

Fig 1. Graphical abstract. (A) Stimulus consisting of excitatory and inhibitory synaptic conductances, generated as shot noise with an exponential

envelope, is delivered to the neuronal model, a passive leaky membrane with a dynamic threshold. The measured response is the number of spikes in a

specified time window (e.g., 250 ms). (B) For each stimulus intensity the full response distribution is obtained. The mean response (solid) and its standard

deviation (shaded) are shown for illustration. (C) We find the probability distribution of inputs that maximizes the mutual information between the

stimulus and the response per single spike. The predicted histogram of post-synaptic firing rates (PSFR) can be compared with experimental data.

https://doi.org/10.1371/journal.pcbi.1007545.g001
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leads to higher signal to noise ratio (SNR). On the other hand, the inhibitory input signifi-

cantly reduces the dynamic coding range of the neuron.

4. We present the predicted PSFR histograms and discuss the comparability with experimen-

tal data. In combination with the relative simplicity of fitting the parameters of the MAT

model to real neurons, the presented framework allows us to predict the PSFR histograms

for a wide variety of neurons. Furthermore, we observe that the shapes of the histograms

depend only marginally the rate coding time scale.

5. We show the predicted optimal input distributions and point out to the robustness of meta-

bolic efficiency and the PSFR histogram towards changes in the input distribution.

6. We explain the effect of model parameters on the obtained results and the significance of

the spontaneous firing rate. We use parameter values fitted by Kobayashi et. al. [40] on

experimental data for further biological relevance and to provide insight into what influ-

ences the information-metabolic efficiency on a large scale.

Materials and methods

Neuronal model

The membrane potential of the MAT model is governed by the equation:

tm
dV
dt
¼ � ðV � ELÞ þ RIsyn; ð1Þ

where τm is the membrane time constant, V is the membrane potential, EL = −80 mV the leak-

age potential, Isyn is the synaptic current. Spikes are fired when the membrane potential

reaches (or is above) the value of a dynamic threshold θ(t). The dynamics of θ is described by

yðtÞ ¼
X

k

Dðt � tkÞ þ o; ð2Þ

DðtÞ ¼
XL

j¼1

HðtÞaj exp ð� t=tjÞ ð3Þ

where k iterates through all the previous spikes, tk is the k-th spike’s time and H is the Heavi-

side function. Therefore the threshold is composed of L exponentially decaying components

and an asymptotic threshold value ω. The j-th component increases by αj every time a spike

occurs and then decays with the time constant τj. Absolute refractory period of 2 ms is intro-

duced, during which the dynamics of the membrane potential and the threshold remain

unchanged, but a spike cannot be fired. The parameters used to replicate the behavior of neu-

rons from different classes (regular spiking—RS, intrisic bursting—IB, fast spiking—FS, chat-

tering—CH) were identified by Kobayashi et al. [40]. All relevant model parameters are

specified in S1 Appendix.

The synaptic current is given by

IsynðtÞ ¼ gexcðtÞðV � EexcÞ þ ginhðtÞðV � EinhÞ; ð4Þ

where gexc, ginh are the total conductances of the excitatory and inhibitory synapses and Eexc =

0 mv, Einh = −75 mv are the respective synaptic reversal potentials. We consider the excitatory
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and inhibitory conductances to be

gexcðtÞ ¼
X

tj<t

�g excHðtj � tÞ exp ððtj � tÞ=texcÞ; ð5Þ

ginhðtÞ ¼
X

tk<t

�g inhHðtk � tÞ exp ððtk � tÞ=tinhÞ; ð6Þ

where the times {tj}, {tk} are generated by independent Poisson point processes with intensities

λexc, λinh (to mimic the arrival of excitatory and inhibitory synapses), �g exc and �g inh correspond

to peak conducatances of individual synapses and τexc, τinh are time constants of those synap-

ses, which were chosen as 3 ms for the excitatory and 10 ms for the inhibitory synapses [49].

We denote the excitatory part λexc as the stimulus intensity [34].

To recreate biologically plausible conditions, we calculate the peak conductances and mini-

mal intensities of Poisson processes l
ðbcgÞ
exc , l

ðbcgÞ
inh (where “bcg” stands for the background net-

work activity), so that the mean and standard deviation of gexc and ginh correspond to values

reported in [49], which were obtained from a detailed biophysical simulation. The values of

the peak conductances are �g exc ¼ 1:50 nS and �g inh ¼ 1:53 nS and the rates of arrival of action

potentials corresponding to the background activity are l
ðbcgÞ
exc ¼ 2:67 kHz, l

ðbcgÞ
inh ¼ 3:73 kHz

(S3 Appendix).

The response of the neuron y is the number of observed spikes in a time window Δ, the cor-

responding firing rate is then y/Δ. Since the differential equation describing the membrane

potential (Eq (1)) is stochastic due to the randomness introduced by the input current, the

response is described by a random variable Y for each input λexc. In our work we compare the

results for five different lengths of coding time windows: 100 ms, 200 ms, 300 ms, 400 ms and

500 ms.

The numerical integration procedure is described in S2 Appendix.

Metabolic cost of neuronal activity

The metabolic cost of neuronal activity is determined mainly by the activity of the Na+/K+

ionic pump in the neuronal membrane, pumping the excess Na+ out of the neuron. The main

contributors to the overall cost are then: 1. reversal of Na+ entry at resting potential, 2. reversal

of ion fluxes through post-synaptic receptors, 3. reversal of Na+ entry for action potentials and

4. additional costs associated with the action potential [12, 50, 51].

We follow the estimates from [11], i.e., we set the cost of maintaining the resting potential

at wrest = 0.342 � 109 ATP molecules per second, the cost of reversal of Na+ entry for action

potentials at 0.384 � 109 ATP molecules per single action potential and the costs associated

with vesicle release due to action potential at 0.328 � 109 ATP molecules, adding up to wspike�

0.71 � 109 ATPs/spike.

To calculate the cost needed to reverse the ion fluxes through post-synaptic receptors, we

follow the approach used in [13]. We calculated the conductance of Na+ channels:

gNa ¼
gexc

1 �
ENa
EK

; ð7Þ

where ENa = 90 mV, EK = −105 mV are the reversal potentials of Na+ and K+ channels. The

current due to influx of Na+ ions is then

INaðtÞ ¼ gNaðtÞðVðtÞ � ENaÞ: ð8Þ

Integrating the current over Δ and dividing by the charge of an electron e gives us the total
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number of Na+ that have to be extruded. The ion pump uses one ATP molecule for 3 Na+

extruded.

Substituting gNa(t) and V(t) by their mean values (�gNaðtÞ, �V ðtÞ) for excitation and inhibition

intensities λexc, λinh, we obtain the approximate formula for the cost of reversal of the synaptic

currents:

wsynðlexc; linhÞ ¼
1

3e
�gNaðlexc; linhÞð

�V ðlexc; linhÞ � ENaÞD: ð9Þ

The total cost of the signaling, given the input (λexc, λinh), is then:

wðlexc; linhÞ ¼ ðwrest þ wsynÞDþ wspikenðlexc; linhÞ; ð10Þ

where n(λexc, λinh) is the average number of spikes observed for the given input.

Information capacity and capacity-cost function

In the framework of information theory, the input is a random variable X with probability

density function p(x). In our case, x is the stimulus intensity, λexc, which is a real number from

an interval [a, b]. We can than define the corresponding marginal output probability distribu-

tion qp:

qpðyÞ ¼
Z b

a
pðxÞf ðyjxÞ dx: ð11Þ

The conditional probability distribution f(y|x) describing the probability of observing an out-

put y given an input (stimulus) x has to be obtained first [22]. Due to the non-linear character

of Eqs (1–6) the closed-form solution for f(y|x) is not available, therefore we used extensive

Monte Carlo simulation to obtain the numerical approximation. The amount of information

about the stimulus X = x from observing the response Y = y is defined as [22, p. 16]

iðx; yÞ ¼ log
2

f ðyjxÞ
qpðyÞ

: ð12Þ

By averaging the value of information over all possible outputs, we get the specific informa-

tion (since Y is discrete) [52–54]

iðx;YÞ ¼
Xþ1

y¼0

iðx; yÞqpðyÞ: ð13Þ

By averaging the specific information over all possible inputs, we get the mutual information

IðX;YÞ ¼
Z b

a
iðx;YÞpðxÞ dx: ð14Þ

The information capacity expresses the maximal amount of information that can be reliably

transmitted per single channel use and is defined as

C ¼ sup
pðxÞ

IðX;YÞ; ð15Þ

where the supremum is taken over all possible input probability distributions. Since the dura-

tion of one channel use is Δ, C
D

is the capacity in bits per second.
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Given the input probability distribution p(x) the average metabolic cost Wp is then

Wp ¼

Z b

a
pðxÞwðxÞ dx; ð16Þ

where w(x) is given by Eq (10) We maximize mutual information over all possible input proba-

bility distributions p that satisfy the condition Wp<W for some selected W, and thus obtain

the capacity-cost function [29]:

CðWÞ ¼ sup
pðxÞ:Wp<W

IðX;YÞ:
ð17Þ

It follows from the Lagrangian theorem [55, 56], that C(W) is attained either at the cost cor-

responding to the unrestrained capacity Wmax for W>Wmax or at W. The quantity
CðWÞ
W for W

�Wmax then expresses the amount of information per unit cost, which motivates the defini-

tion of information-metabolic efficiency E [28, 35, 57], i.e. the maximal amount of information

per unit cost

E ¼
CðW�Þ

W�
; ð18Þ

W� ¼ arg max
W2½0;þ1Þ

CðWÞ
W

: ð19Þ

where W� is the optimal average cost.

We will refer to a regime in which the neuron encodes the maximal possible amount of

information per energy as to an information-metabolically efficient regime. In such regime, the

inputs x are assigned probabilities p�(x) and the probability of observing an output Y = y is

PðY ¼ yÞ ¼
Z b

a
p�ðxÞf ðyjxÞ: ð20Þ

Since the response y is the number of spikes in a time window Δ, we can use Eq (20) to cal-

culte the mean PSFR:

PSFR ¼
1

D
y ð21Þ

hPSFRi ¼
1

D

Xþ1

y¼0

yPðY ¼ yÞ: ð22Þ

Properties of information-theoretic optima and numerical optimization

Theoretical results show that the support of the optimal input distribution p�(x) for certain

channels (neuron with gamma distributed inter-spike interval [21], energy constrained Gauss-

ian channel [56], Rayleigh-fading channel [58]) contains only a finite number of points. More-

over, as a consequence of Dubin’s theorem [48], it is guaranteed that for any channel with a

finite number of possible output states the optimal input distribution has to be discrete. The

number of support points is at most equal to the number of possible outputs. Since the number

of action potentials in a finite time window is limited, it generally follows that the optimal

input distribution in the rate-coding scheme must contain only finitely many stimulus values

of non-zero probability.

The effect of inhibition on rate code efficiency indicators
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The theory presented above holds for memoryless information channels without feedback,

i.e., the response to the stimulus depends only on the current stimulus and not on any past sti-

muli or responses of the channel. However, real neurons exhibit adaptation to the stimulus,

therefore the stimulus-response relationship f(y|x) is also affected by the probability distribu-

tion of stimuli p(x). In order to mitigate the effect of history, we developed a fixed-point based

method to ensure that the distribution of stimuli p(x) used to obtain f(y|x) is the same as the

predicted optimal distribution (S5 Appendix).

Results

The capacity-cost functions

We evaluated the information transmission capabilities for different stimulation scenarios dis-

tinguished by the amount of inhibition associated with the stimulus. In each scenario, the fre-

quency of excitatory synapses ranged from l
ðbcgÞ
exc to approximately 40 � l

ðbcgÞ
exc , therefore the

intensity of the stimulus can be represented by A 2 [1, 40]:

lexc ¼ A � lðbcgÞexc : ð23Þ

The frequency of inhibitory synapses added on top of l
ðbcgÞ
inh generally scales linearly with the

intensity added on top of l
ðbcgÞ
exc , i.e. with A − 1. The frequency of inhibitory synapses can be

than expressed with an inhibition scaling factor B as

linh ¼ l
ðbcgÞ
inh ð1þ BðA � 1ÞÞ: ð24Þ

From the stimulus-response relationships (Fig 2) it is obvious that the fast spiking (FS) and

chattering (CH) neurons have an advantage of a wide range of possible outputs. Also the exci-

tation-only stimulation scenario (B = 0) allows for higher firing rates (i.e., offers wider coding

range). However, when the metabolic expenses are taken into account the range of possible

outputs becomes less important (because of the high associated expenses). This can be seen in

Fig 3 where the capacity cost function for four different parameter sets of the MAT model

(Table A in S1 Appendix) is shown and it is illustrated how the capacity cost function trans-

lates to bits per spike. The RS neuron is generally the most efficient independently either of the

inhibition scaling factor B or the coding time window. Moreover, since at any allowed cost

either the RS of the FS neuron offer the highest amount of transmitted information, we

conclude that the bursting behavior is not beneficial for rate coding. This was also observed

experimentally for temporal code [59].

Inhibition stabilizes the membrane potential

We observed that higher inhibition to excitation ratios leads to lower membrane potential fluc-

tuations. This arises as an effect of synaptic filtering and reversal potentials, which are both

biologically important parts of neural communication and essential for observation of this

phenomenon (see S4 Appendix for details). In [60], similar effect was reported for a membrane

potential model without synaptic filtering, however, only for a strongly hyperpolarized mem-

brane. The suppression of membrane potential fluctuations has also been observed in vivo

[61].

The decrease in the membrane potential’s standard deviation leads to a more reliable firing

rate (response) and subsequently higher signat-to-noise ratio (SNR) in regimes with stronger
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inhibition (Fig 4). For given time window Δ and inhibition scaling factor B, SNR is defined as

SNRðx;D;BÞ ¼
rðx;D;BÞ
sðx;D;BÞ

� �2

; ð25Þ

where r(x; Δ, B) is the mean response to the stimulus x, given the time window Δ and the inhi-

bition scaling factor B, s(x; Δ, B) is the standard deviation of the response:

rðxÞ ¼
1

D

Xþ1

y¼0

yf ðyjxÞ; ð26Þ

sðxÞ ¼
1

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xþ1

y¼0

y2f ðyjxÞ � rðxÞ2
v
u
u
t : ð27Þ

The effect of inhibition on metabolic efficiency

The higher ratio of inhibition to excitation also has some negative consequences:

1. The inhibition limits the possible depolarization of the membrane and the neuron is unable

to attain high firing rates. We quantify this by defining the coding range:

CRðD;BÞ ¼ max
x1 ;x2

ðrðx2;D;BÞ � rðx1;D;BÞÞ: ð28Þ

We observe that the coding range is generally decreased with increased amount of inhibi-

tion (Figs 2 and 4A).

Fig 2. Stimulus-response relationships. Stimulus-response relationships for the MAT neurons specified by the parameters in Table A in S1 Appendix.

Each row corresponds to a different inhibition regime. The ratio of inhibitory to excitatory conductance as a function of stimulus intensity is displayed

in the leftmost column. The time window Δ was in this case chosen as 500 ms. The x-axis is logarithm of the rate of bombardment by excitatory

synapses (Eq 23). The y-axis shows the post-synaptic firing rate (Eq 21). The rate of inhibitory synapses is specified by B (Eq 24). This Figure is also

available with equally scaled y-axes for all neurons and regimes (S1 Fig).

https://doi.org/10.1371/journal.pcbi.1007545.g002
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2. To attain identical mean firing rate with higher excitation to inhibition ratio, the excitatory

synaptic current has to be larger and therefore such stimulation is associated with higher

metabolic costs (Fig 5).

Surprisingly, the information theoretical efficiency is generally unaffected by the level of

inhibition, meaning that the increase in signal to noise ratio and decrease of coding range

effectively even out. This holds up to a certain point, when the coding range becomes too nar-

row and the efficiency of information transfer starts dropping dramatically (Fig 4D).

Fig 3. Capacity-cost function. Capacity-cost function (panel A) and capacity per spike (panel B) for the case of coding

time window Δ = 100 ms and inhibition scaling factor B = 0.4. The dashed vertical line indicates the cost at which the

optimal capacity per spike for the RS neuron is reached.

https://doi.org/10.1371/journal.pcbi.1007545.g003

The effect of inhibition on rate code efficiency indicators

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007545 December 2, 2019 10 / 21

https://doi.org/10.1371/journal.pcbi.1007545.g003
https://doi.org/10.1371/journal.pcbi.1007545


Fig 4. The effect of inhibition on metabolically efficient information transfer. (A) Signal-to-noise ratio (SNR, Eq (25)) of the RS neuron’s

response as a function of the mean post-synaptic firing rate r(x) (Eq 26). Higher inhibition leads to a higher SNR, however, also to a lower

coding range. The coding range for B = 0.2 is visualized in the plot. (B) The SNR at 10 Hz at different inhibition levels for all four neurons. The

effect of the decreased membrane potential fluctuations on the FS and CH neurons is negligible, as opposed to the RS and IB neurons. (C)

Decrease of the coding range with inhibition. (D) The metabolic efficiency in bits per spike (Eq (18)). The initial increase in the efficiency is

almost negligible, however, the drop for B = 1 caused by the narrow coding range is apparent. The time window used for this figure is Δ = 500

ms.

https://doi.org/10.1371/journal.pcbi.1007545.g004

Fig 5. Metabolic cost of neural activity. (A) Cost of response for a given input x = λexc, RS neuron (Tab A in S1

Appendix), Δ = 100 ms, B = 0.4. (B) Cost of maintaining a firing rate of 12 Hz for 100 ms for different values of

inhibition to excitation ratio.

https://doi.org/10.1371/journal.pcbi.1007545.g005
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The optimal PSFR histograms

By evaluating the information-metabolic efficiency we also obtain the optimal input-output

statistics. The resulting optimal post-synaptic firing rate (PSFR) histograms (Eq (11)) provide

a potentially testable prediction (Fig 6). Our predictions need to be tested against long in-vivo

recordings, such as in [33, 62, 63]. Qualitatively, our predictions agree with the observations in

[33], that the probabilities of large firing rates are suppressed, moreover, the tail is approxi-

mately exponential with respect to the metabolic cost (Eq 10), as observed by Polavieja [30,

31]. Polavieja assumes that the overall cost grows linearly with the output rate. For the case of

metabolic cost considered in this paper, the nonlinearity is important mostly for high firing

rates.

Optimal input distributions

As we showed in the Methods section, the optimal input distribution has non-zero probability

only for a finite number of points. However, the optimal conditions can be nearly reached by

many different input distributions (Fig 7). Generally, we see a trend towards more pro-

nounced discreteness if we desire to be closer to the true optimum. However, the increases in

efficiency and effect on the PSFR distribution are only marginal. Therefore, unlike in the case

of PSFR distribution which is robust, the optimal input distribution is difficult to relate to real

data.

Yet we can observe that in the metabolically efficient regime, significant portion of the

probability is given to the weakest input, i.e., purely spontaneous activity. For a population of

independently encoding neurons this would mean that at any moment, most of them would

be exhibiting only spontaneous activity.

Fig 6. Predicted PSFR histograms. Post-synaptic firing rate histograms corresponding to the metabolically efficient regime with the coding time

window Δ = 500 ms and inhibition scaling factor B = 0.4 for the four different neurons. Unlike the statistics of the input, the output statistics can be

measured in vivo and can therefore be used to verify whether a neuron employs metabolically efficient coding. A typical spike train in the efficient

regime is shown for each neuron.

https://doi.org/10.1371/journal.pcbi.1007545.g006
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Rate coding time-scale

Naturally, longer time windows will lead to a higher signal to noise ratio (Eq (25))—we will be

better able to identify a stimulus if we “listen” longer (Fig 8A). For a truly memoryless channel,

however, the use of a shorter time window must always result in higher information capacity

(measured in bits per second). Mutual information from two subsequent uses of a memoryless

channel (with inputs x = {x1, x2} and outputs y = {y1, y2}) is always lower or equal than double

of the mutual information resulting from a single use [64]:

Iðx; yÞ ¼ 2Iðx1; y1Þ � Iðy1; y2Þ; ð29Þ

I(y1; y2) being maximal for extreme correlation between the inputs, i.e. x1 = x2. Moreover, I
({x1, x2}; y1 + y2)< I({x1, x1}; {y1, y2}), since we are losing information about the temporal

structure of the response. Therefore, given any probability distribution of the inputs, the

mutual information for channel with a half-sized coding time window will always be higher

(in bits per second):

Iðfx1; x1g; y1 þ y2Þ < Iðfx1; x1g; fy1; y2gÞ < 2Iðx1; y1Þ: ð30Þ

In our case, the neurons are not truly memoryless channels. They exhibit adaptation, which

we took into consideration in the optimization process by using an algorithm we developed

specifically for this purpose (S5 Appendix). Due to adaptation, the number of spikes is influ-

enced by the previous stimulus, thus additional noise to the stimulus-response relationship is

introduced. We illustrate this by comparing the PSFR histogram for a given stimulus intensity

and a coding time window Δ = 500 ms with the PSFR histogram for a coding time window Δ =

100 ms, five times convoluted with itself, corresponding to and equal mean PSFR (Fig 8B). For

a memoryless channel, the distributions would be identical. However, the distribution

obtained by using a shorter time window is more spread.

We observe that while the length of time window doesn’t significantly influence the mean

PSFR, the information capacity with the optimal mean PSFR drops and so does the associated

efficiency in bits per spike (Fig 8C–8E). Therefore we can conclude the adaptation effects

aren’t significant enough to make coding on longer time scales more beneficial. Interestingly,

however, not only the mean PSFR do not seem to be much affected by the length of the coding

time window (Fig 8C), but also the shape of the PSFR histogram (computed from the optimal

input distribution by Eq (11)) seems to be rather unaffected by the length of the coding time

window (Fig 8F–8I).

Fig 7. Approximately optimal input probability distributions. The plots show different input probability

distributions obtained from different steps of the Jimbo-Kunisawa algorithm. For each input distribution the estimated

efficiency E (in bits / 109 ATP) is given in the plot together with the relative error eps (to the true value of the

efficiency). The true value of the efficiency (Eq (18)) can be nearly reached with very different input probability

distributions.

https://doi.org/10.1371/journal.pcbi.1007545.g007
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The effect of model parameters and spontaneous firing rate

In order to provide a meaningful comparison of different firing patterns, we have so far con-

sidered such parameters of the MAT model that lead to an approximately equal spontaneous

firing rate (by spontaneous firing rate we mean the average response to the background noise,

specified in S3 Appendix). However, it is known that neurons across different layers of the cor-

tex exhibit different spontaneous firing rates (e.g., [65–67]).

To calculate the spontaneous activity we take advantage of the approximate formula

describing the stationary firing rate f of MAT model if stimulated with a constant current I
[68]:

f ¼:
1

t2 log
a2

IR� oþ 1
� � : ð31Þ

In order to gain a general insight into the dependence of the predictions on the model

parameters, we calculated the predicted mean PSFR (Eq (22)) and efficiency (Eq (18)) for 34

parameter sets corresponding to 34 neurons from the layers 2/3 and 5 of the rat motor cortex

(used in [40]), kindly provided by Prof. Kobayashi. As expected, both efficiency and the opti-

mal mean PSFR are strongly related to the spontaneous firing rate (Fig 9).

Fig 8. The effect of coding time window on metabolically efficient information transmission. (A) Signal to noise ratio for different coding time

windows as a function of the mean response r(x) (Eq 26). (B) Comparison of response to a given stimulus (producing a response rate of approx 20 Hz)

for different coding time windows. In order to get comparable results, the distribution on number of spikes in 100 was five times convoluted with itself.

The distribution for 100 ms is more spread due to the adaptation effects. (C) Optimal mean PSFR (Eq 22). (D) Information capacity with the optimal

metabolic expenses. (E) Metabolic efficiency in bits per spikes. The decrease with the length of the coding time window shows us, that the adaptation

effects visible in B don’t play a significant role in this case. (F-I): Quantile-quantile plots comparing the PSFR distributions for different coding time

windows. The red dashed line is a linear fit, acting as a visual guide. In the case of metabolically-efficient coding invariant on time scale, the q-q plots

shouldn’t deviate significantly from the line. This holds for the RS and FS neurons, for the most part also for the IB neuron. For all plots in the figure the

inhibition scaling factor B = 0.4 was used.

https://doi.org/10.1371/journal.pcbi.1007545.g008
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We confirmed that Eq (31) can be utilized to predict the spontaneous firing rate (see S6

Appendix for details) and therefore we conclude that the spontaneous firing rate and conse-

quently also the information-metabolic efficiency are governed predominantly by α2 and ω.

Moreover, increase in any of the two parameters leads to an increase in the spontaneous firing

rate and therefore increase in the mean optimal PSFR and decrease in the information-meta-

bolic efficiency.

Discussion

The information capacity tells us what is the maximal amount of information a neuron could

potentially reliably transfer. It is, however, beyond the scope of this work to investigate

whether neurons utilize their full capacity and if so, how [34, 69]. The efficient coding hypoth-

esis [2] leads us to believe that neurons are in some sense optimal. They need to transfer infor-

mation fast and reliably and minimize the metabolic costs at the same time. This paper uses

the value of information capacity per spike to take into account both information transmission

and metabolic costs. Maximization of the information capacity per metabolic expenses leads to

suppression of high post-synaptic firing rates observed in in-vivo recordings [33].

Analyses of this type generally have to rely on number of assumptions, including the nature

of the input and the coding time scale. To mimic the nature of real neuronal synapses, we con-

sider excitatory and inhibitory input with reversal potentials. The typical approach is to model

the excitatory and inhibitory conductances as an Ornstein-Uhlenbeck process [34, 40, 49, 70],

however, it has been shown that for consistency reasons, modeling the input as a shot noise

with an exponential envelope is more appropriate [71]. We recreate the effect of the back-

ground network activity, during which the excitatory and inhibitory synaptic currents seem to

be approximately balanced [72–77]. We then systematically explore several different input

regimes differing in the amount of inhibition accompanying excitation during stimulation.

This allows us to compare the different regimes by their information-energetic efficiency. Such

systematic exploration also allows us to make less assumptions about the actual nature of the

neuronal input and the results can also provide insight into what kind of dependency between

excitation and inhibition is optimal.

The MAT model is remotely related to the model analyzed by Suksompong et. al. [36],

where the threshold function can be generalized to behave similarly to MAT model. However,

the key differences are in the assumptions on encoding (in [36] the information is assumed to

Fig 9. Cortical neurons. The x-axis in both graphs is the spontaneous firing rate of the 34 neuronal models

corresponding to the cortical neurons, i.e., their response to the simulated background noise. The information-

metabolic efficiency (Eq (18)) and optimal mean PSFR (Eq (22)) was calculated for the case of constant inhibition

(B = 0, Δ = 100 ms).

https://doi.org/10.1371/journal.pcbi.1007545.g009
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be encoded in a sequence of inter-spike intervals, whereas we consider the rate coding) and in

the input.

If the investigated neuronal model exhibits adaptation to the stimulus (as e.g. the MAT

model does), the coding time scale is typically significantly limited from below, so that the

influence of previous stimuli on the current response is negligible. We try to overcome this

issue by proposing an algorithm which partially takes into account the effect of the previous

stimulus. This is an important part of the optimization process, because otherwise we could

overestimate the benefits of inhibition on the information-metabolic efficiency (Fig A in S5

Appendix).

The comparison of different noise levels was inspired by the work [70], where it was sug-

gested that balanced excitatory and inhibitory currents lead to more efficient information

transfer. Our results can’t be compared straightforwardly with [70] for several reasons. In our

work, the state with balanced excitatory and inhibitory currents was considered to be the base

state and we were investigating different regimes of stimulation of such neuron, whereas the

work of Sengupta et. al. [70] focuses on the benefits of the balanced state. Moreover, in [70] the

direct method [17] was used for evaluating information, which measures the entropy of spike

trains without any reference to the stimuli, whereas we were investigating the information-

transmission properties with the assumption that the neurons use rate code and computed the

information capacity [10, 22] to evaluate the limits of information transmission. We observed

a positive effect of higher inhibition, however, in the investigated stimulation scenarios the

overall information efficiencies in bits per spike were largely unaffected by the inhibitory pre-

synaptic activity. Robustness of the information-metabolically optimal properties with respect

to the change of amount of inhibition in the system has also been recently reported by Harris

et al. [78].

Numerically, our results are consistent with, e.g., [34], with the information efficiency

being in the order of 0.1 bits per 109 ATP molecules expended. Despite the differences in spik-

ing patterns among the neuronal classes (RS, IB, FS, CH), as quantified by local variability

[79], we find that the information metabolic efficiency of the rate code is mainly governed by

neuronal spontaneous activity.

We considered both the excitatory and inhibitory rates (added on top of the modulatory

background network activity) to scale linearly with the stimulus intensity, since this is the sim-

plest scenario that can be considered. For most of the stimulation scenarios, we did not observe

a significant change in the information-metabolic efficiency, however, if the inhibitory rates

scaled slower than linearly, we could achieve both high signal to noise ratio and a wide coding

range. Such regime is likely to employ very high rates of synaptic bombardment, therefore in

such case one should also consider the cost of the pre-synaptic activity.

Our results deal with a single neuron, in accord with most of the previously published work

[25]. Nevertheless, Eqs (15) or (17) are easily extendable to the case of a simple homogeneous

population [80]. One may also investigate the multidimensional stimulus-response relation-

ship in a group of coupled neurons, however, the corresponding optimization is performed

over joint probability distributions which becomes quickly untractable as the population size

grows. It is also worth noting that the problem of optimal information transmission through

nodes in general networks is still open and Eq (15) might not be directly useful [81].

To summarize the results of our work as follows:

• By employing a novel method for calculating the information transmission capabilities of

channels displaying adaptation to the stimulus (S5 Appendix) we calculated numerically

the information transmission capabilities of the MAT model [40] for biologically relevant
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parameters under metabolic constraints on different time scales and with different levels of

inhibition.

• We used the results of Richardson [71] to show that inhibition can stabilize the membrane

potential, leading to a more reliable response of the MAT model. To the best of our knowl-

edge, this counter-intuitive effect of inhibition, for which we provide a theoretical justifica-

tion, has not yet been reported.

• We found that the regular spiking (RS) neuron offers best information transmission per sin-

gle spike, but when more energy is available, more information can be transmitted by the

behavior common to fast spiking (FS) neurons. Neurons exhibiting the bursting behavior

(IB, CH) were shown not to be very effective for rate coding in the investigated regimes.

• Due to adaptation effects shorter rate coding time windows led to lower signal to noise

ratios. Despite the increase in noise, information can be transferred more efficiently with

shorter time windows. However, we observed that the length of the time window does not

significantly affect the shape of the PSFR histograms, which have the potential to be com-

pared to experimental data.

• We found that the metabolic efficiency is surprisingly robust towards the changes in the

amount of inhibition accompanying the excitation. Moreover, we observed that increased

inhibition leads to higher signal to noise ratio, but also to a drop in the coding range. This

does not affect the metabolic efficiency significantly until a certain point, when the coding

range is so narrow that information cannot be transferred efficiently by rate code.

• We pointed out that the optimal input for a neuron using rate code has non-zero probability

only for a finite number of inputs. However, by showing different input distribution, which

nearly achieve the information-metabolic efficiency, we illustrated that the discreteness of

the input is not a necessary condition for an effective communication.

The core of the simulation code was written in C++ and packaged as a Python module

using Cython. This module is available on GitHub (https://github.com/Tom83B/matsim). The

analysis of the data was done in Python using the NumPy and SciPy libraries. All necessary

code was also uploaded to a GitHub repository (https://github.com/Tom83B/rate-code-eff-

2019).
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S1 Fig. Stimulus-response relationships with identical scales. Same as Fig 2, but the scales

are same for all the neurons and inhibition scaling factors B. Each row corresponds to a differ-

ent inhibition regime. The ratio of inhibitory to excitatory conductance as a function of stimu-

lus intensity is displayed in the leftmost column. The time window Δ was in this case chosen as

500 ms. The x-axis is logarithm of the rate of bombardment by excitatory synapses (Eq 23).

The y-axis shows the post-synaptic firing rate (Eq 21).

(PDF)
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75. Mittmann W, Koch U, Häusser M. Feed-forward inhibition shapes the spike output of cerebellar Purkinje

cells. J Physiol (Lond). 2005; 563(2):369–378. https://doi.org/10.1113/jphysiol.2004.075028

76. Wolfart J, Debay D, Masson GL, Destexhe A, Bal T. Synaptic background activity controls spike transfer

from thalamus to cortex. Nat Neurosci. 2005; 8(12):1760–1767. https://doi.org/10.1038/nn1591 PMID:

16261132

77. Rudolph M, Pospischil M, Timofeev I, Destexhe A. Inhibition Determines Membrane Potential Dynamics

and Controls Action Potential Generation in Awake and Sleeping Cat Cortex. J Neurosci. 2007; 27

(20):5280–5290. https://doi.org/10.1523/JNEUROSCI.4652-06.2007 PMID: 17507551

78. Harris JJ, Engl E, Attwell D, Jolivet RB. Energy-efficient information transfer at thalamocortical synap-

ses. PLoS Comput Biol. 2019; 15(8):e1007226. https://doi.org/10.1371/journal.pcbi.1007226 PMID:

31381555

79. Kobayashi R, Kurita S, Kurth A, Kitano K, Mizuseki K, Diesmann M, et al. Reconstructing neuronal cir-

cuitry from parallel spike trains. Nat Commun. 2019; 10(1). https://doi.org/10.1038/s41467-019-12225-2

80. Kostal L, Lansky P. Information capacity and its approximations under metabolic cost in a simple homo-

geneous population of neurons. Biosystems. 2013; 112(3):265–275. https://doi.org/10.1016/j.

biosystems.2013.03.019 PMID: 23562831

81. El Gamal A, Kim YH. Network Information Theory. New York: Cambridge University Press; 2011.

The effect of inhibition on rate code efficiency indicators

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007545 December 2, 2019 21 / 21

https://doi.org/10.1371/journal.pcbi.1002461
https://doi.org/10.1371/journal.pcbi.1002461
http://www.ncbi.nlm.nih.gov/pubmed/22511856
https://doi.org/10.1103/PhysRevE.82.026115
https://doi.org/10.1103/PhysRevE.82.026115
https://doi.org/10.1016/j.neuroscience.2006.12.072
https://doi.org/10.1016/j.neuroscience.2006.12.072
http://www.ncbi.nlm.nih.gov/pubmed/17418956
https://doi.org/10.1016/j.neuron.2010.08.026
https://doi.org/10.1016/j.neuron.2010.08.026
http://www.ncbi.nlm.nih.gov/pubmed/20869600
https://doi.org/10.1038/nrn3687
https://doi.org/10.3389/fncom.2011.00042
https://doi.org/10.3389/fncom.2011.00042
http://www.ncbi.nlm.nih.gov/pubmed/22203798
https://doi.org/10.1103/PhysRevE.100.050401
https://doi.org/10.1371/journal.pcbi.1003263
https://doi.org/10.1371/journal.pcbi.1003263
http://www.ncbi.nlm.nih.gov/pubmed/24098105
https://doi.org/10.1162/0899766053429444
https://doi.org/10.1162/0899766053429444
http://www.ncbi.nlm.nih.gov/pubmed/15829095
https://doi.org/10.1073/pnas.88.24.11569
https://doi.org/10.1073/pnas.88.24.11569
http://www.ncbi.nlm.nih.gov/pubmed/1763072
https://doi.org/10.1152/jn.1998.79.3.1450
http://www.ncbi.nlm.nih.gov/pubmed/9497424
https://doi.org/10.1038/nrn1198
http://www.ncbi.nlm.nih.gov/pubmed/12951566
https://doi.org/10.1113/jphysiol.2004.075028
https://doi.org/10.1038/nn1591
http://www.ncbi.nlm.nih.gov/pubmed/16261132
https://doi.org/10.1523/JNEUROSCI.4652-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17507551
https://doi.org/10.1371/journal.pcbi.1007226
http://www.ncbi.nlm.nih.gov/pubmed/31381555
https://doi.org/10.1038/s41467-019-12225-2
https://doi.org/10.1016/j.biosystems.2013.03.019
https://doi.org/10.1016/j.biosystems.2013.03.019
http://www.ncbi.nlm.nih.gov/pubmed/23562831
https://doi.org/10.1371/journal.pcbi.1007545

