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equations in this material are labeled as Eq. (S1), Eq. (S2), etc.

A. Information capacity

The cutting-plane algorithm [1] is applicable under general circumstances, e.g., continuously
varying input and/or output, constrained optimization, and also allows to control the numerical
precision of the result. The principle of the cutting-plane algorithm is the representation of a
non-linear optimization problem as a sequence of converging linear programming problems. Here
we follow the implementation by Huang and Meyn [2]. In the following we use indices: n as the
coding dimension, r is number of support points for the numerical method (discretization), m is
the number of stimulus patterns (kK =1,...,m) and j is the iteration of the numerical procedure
(for both the capacity and lower bound optimization), in compatibility with the main text.

Let F be a set of all input stimulus distributions defined over finite stimulus range, [Zmin, Tmax]-
The channel sensitivity function gp(z), given the input p.d.f. p(z), is defined as the Kullback-Leibler
distance

fylz)
T) = z)In dy, S1
)= [ flm gy (51)
thus Eq. (1) can be expressed as

10GY) = [ gp(a)p(a) da. (52)

It follows that for some selected Xy ~ po(x) € F holds
I(Xp;Y) = mi d S3
(X0:¥) = min_ [ g (@)po(a) dr, (53)

since

[ so(apo(a) do =
= //po(x) z)In [f;?(ﬂf) z ]d dr =

— I(Xe:Y +/1 foly / o(x) f (y]e) de dy. (S4)
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where fo(y) = [ f(y|z)po(x) dz. The last term in Eq. (S4) is > 0, since it can be written in the
form of a Kullback-Leibler distance, which is known to be non-negative, and equal to zero only if
p(x) = po(z). The minimum is unique, and therefore it holds for p(z): [ gp(z)po(z)dx > I(X,Y).
Eq. (S3) can be written by using the inner (scalar) product (-,-) as

I(Xp;Y) = p(rn@igf(gp(w),po(sc)). (SH)

The general problem of finding capacity in Eq. (2) is solved as follows. The algorithm is initialized
with an arbitrary distribution po(z) € F. In the j-th iteration of the algorithm we have a set of j
input distributions, {po(x),p1(x),...,pj—1(x)} C F, and by employing Eq. (S5) we have

I;(X;Y) = min (p(z),9(x)), (S6)

0<i<j—1

where g;(z) is the sensitivity function given p;(x), g; = gp,. The next input distribution, p;(z), is
obtained as a solution to the problem

pj(x) = arg Il]gl(%c{Ij(X; Y):p(z) e F}. (S7)

The optimization in Eq. (S7) can be expressed as a linear programming problem

maximize c¢

subject to  (p(x),gi(x)) > ¢ fori=0,...5—1, (S8)
p(x) € F.
To proceed we select r points of support of the input distribution, {z1, z2,...,z,} within the

allowed interval. We optimize with respect to the probabilities of these points, Pr(z;), so that the
allowed input distributions can be expressed as

p(x) = ZT: Pr(xz;)0(x — x;), (S9)
i=1

where () is the Dirac delta function. We set r = 300 for the actual calculations, which is
sufficient from the perspective of numerical precision in the analyzed neuronal models. In fact,
as a consequence of Dubin’s theorem [3], the optimal distributions are guaranteed to be discrete
with finite points of support (even though the exact values of z; are not known). Furthermore
the number of the support points is at most the number of output states, which is limited by the
maximum number of output action potentials in a time window. In addition, we alternatively also
optimized r and the grid positions by an iterative algorithm, Starting with a 2-point grid and adding
new point to the maximum of the channel sensitivity function after each iteration. In this way, it
is possible to “build” an optimized input grid. As the number of cycles increases, some already
placed grid points are no longer assigned non-zero probabilities and can be removed. In summary,
however, the grid-optimization method did not yield any improvement in terms of convergence or
numerical precision. Also note that while maximization of mutual information is concave in the
input probabilities, it is generally neither convex nor concave in the positions of grid points.
We rewrite the problem in Eq. (S8) into standard form as

maximize d'x
subject to Ax <b (S10)
x > 0,



where xT = (z1,x2,...,2,) and the construction of matrix A is described below. Let the probability
of x; in the j-th distribution, p;(x), be denoted as p; j, thus
T
pj(z) =) _pijdla — ;). (511)
i=1
The probabilities of the points of support of the variable distribution p(z) will be simply denoted
as pi,...,pr. We form (r 4+ 1)-dimensional vectors x and d as
XT: (cvpl’p2a"'7p7“)7 (812)
d" = (1,0,0,...,0), (S13)

so that d"x = c. The required condition x > 0 is thus not in contradiction with Eq. (S12).
Next, we express the matrix A. We write the normalization condition > ;_; p; ; = 1 by employing
the 1 x (r + 1) matrix A; as

Ay =(0,1,1,...,1), (S14)
Aix =1, (S15)
or equivalently by respecting the inequality condition in Eq. (S10) as
Aix <1, (S16)
—Ajx < —1. (S17)
Next, we re-formulate the j conditions in the j-th iteration of the algorithm, (p(x), g¢(z)) > ¢

for ¢=0,1,...,7 — 1. Rewriting the condition as ¢ — (p(x), ge(z)) < 0 yields

G = (1, —ge(z1), —ge(22), - - ., —ge(zr)), (S18)
Gx <0, (S19)
where

. oy W)
o) = [ ke o g TR

The complete algorithm at j-th iteration can be summarized as follows.

1. Initialization (j = 0). Select {z1,...,z} and p;o = Pr(z;), for i = 1...r. (The initial
distribution may be chosen arbitrarily without significant impact on the convergence).

(S20)

2. Iteration (j > 1). Form the (3 + j) X r matrix A and vector b,

A 1
—A ~1

A=| Go |, b=| 0 ]. (S21)
Gj_l 0

Solve the linear programming problem in Eq. (S10). The resulting value of ¢ in Eq. (S12),
denoted as c;, approaches the true capacity C' and the probabilities p; ; approach the discrete
capacity-achieving distribution. The solution, p; ;, is employed as the j-th distribution for
the next iteration. More precisely [2], as j increases, it holds

co>c1>-->¢c;—C upper bound, (S22)
(g9j,pj) = C lower bound, (S23)
Pij = D; P (). (524)

The relative precision of the solution is defined as (¢ — (p(z), gp(x)))/c.



B. Achievable information rate

The value of mutual information (and capacity) scales linearly with n for ergodic memoryless
channels without feedback and i.i.d. inputs, I({X1,..., X, };{Y1,...,Yn}) = nl(X;Y), as follows
from the properties of the functional in Eq. (1) and the product rule in Eq. (4). However, the
actually achievable information rate of the population, R,, = (Inm)/A, subject to the probability
of decoding error P., behaves differently as maximal possible m is generally a complicated and
unknown function of n. The linear scaling, R, x n, is possible only asymptotically in n, as follows
from Gallager’s proof of Shannon’s channel coding theorem [4, Thm. 5.6.2 and 7.3.2]. For example,
one cannot decode the equiprobable input ({L‘(l) =0orz® = 1) into a binary symmetric channel
with crossover probability € so that P. < ¢ from a single input output pair. However, as the

coding dimension n grows and, e.g., x(Y) = {0,...,0} and x® = {1,...,1}, the achievable error
P, decreases (see below). The remarkable result of Shannon’s theory is that it is possible to add
more input vectors x*), k = 1,...,m, and still decrease P.. Asymptotically it is possible to

use m = [e"*C] input vectors and still maintain P, arbitrarily small. The intuitive explanation
of the theorem relies on the observation that for large n the channel noise affects each vector
x(*) in a somewhat restrictive way. Each element in the vector is perturbed independently and
therefore consequent perturbations are unlikely to “conspire” to produce an unexpectedly significant
disturbance [5, Ch. 1].

We present an informal derivation of the bound on the achievable information rate (Eq. 9) by
employing the random coding technique and the error exponent. Details can be found in Gallager [4,
Chapter 5]. For the purpose of simpler notation we use discrete setting, they key arguments are valid,
with few caveats, in terms of probability density functions as well [4, Chapter 7]. The codewords
(input stimulus vectors) are denoted as x;, = (k1,2 2, .., Tkyn), Where k = 1...m. The rate R
of the code is given by Eq. (3). The “coding” is a mapping from {1...m} integers to codewords
X1 ...Xpm. If some message with index k enters the encoder, x is transmitted, and based on the
output sequence y the index &’ is estimated. If k' # k, an error is declared. Non-asymptotically, we
are interested in the probability of such error, and possible values of n and R, as discussed in the
manuscript.

For a discrete memoryless channel the probability of output y given that the k-th codeword was
sent is

n

Pr(y|x) = H r(yjlen,;)- (525)

If the decoder decodes y into message k, the probability (given y) of incorrect decoding is 1—Pr(k|y).
The maximum-likelihood decodes y into k" such that (c¢f. Eq. 6)

Pr(y|xp) > Pr(ylxg), Vk #K. (S26)
The probability of decoding error for message k is

Pep =) Pr(ylxx), (S27)
erkC

where Y)¢ describes the set of all such output sequences, that when decoded they do not yield the
message k. The average error probability is

P.=> Pr(k)Pe. (S28)
k=1



Assume first only two codewords x1,Xs. The error probabilities for each codeword can be bounded
as

Pey= > Pr(ylx)' *Pr(y[x1)* < ZPT (y[x1)'~* Pr(ylx2)®, (529)
yeyYy
Pe,2 S ZPI’ y|X2)1_T Pr(Y‘Xl)Ta (SSO)
Y

for any 0 < s <1 and 0 < r < 1. By setting r = 1 — s obtain the same bound, independent of
k = 1,2, in particular, for memoryless channel we have due to Eq. (S25)

n
Pey <Y [] Pr(yjley)'=* Pr(yjleo)° =
y j=1
n

=1 >_ Prlyjlar )"~ Pr(y;lzz)° H (S31)

j:l Yj :

where g;(s) =3, Pr(yjlz1,;)'~* Pr(yjlze,;)* < 1. The best error bound is then found by minimizing
Eq. (S31) with respect to s. The importance of Eq. (S31) lies in the fact, that for two codewords
the probability of decoding error goes to zero exponentially with increasing blocklength.

The random ensemble of codes (codebooks) is defined by the probability of some particular
(n,m)-code x1,...,X,, is (Eq. 8),

Pr(”(n, m)-code”) H D (Xk)- (S32)

Each code in the ensemble has its own probability of decoding error and in the following an upper
bound on the expectation (over the ensemble) of this error probability is derived. At least one
code in the ensemble must satisfy the bound. As follows from Eqns. (S29) and (S30), the error
probability for either codeword, P, j, = P, 1 = P2, is a function of x; and x5. Thus, the average
error probability over the 2-codeword ensemble from Eq. (S32) is given by

Pe,k = Z an(xl)pn(XZ)Pe,k~ (833)

X1 X2

Substituting the bound on P, j from Eq. (529) gives for any 0 < s <1 and k = 1,2,

Por < Y pa(x1)pn(x2) Pr(ylx1) '~ Pr(y|x2)® =

X1,X2,¥Y

_Z [an (x1) Pr(y|x1)'™ } {an (x2) Pr(y|x2)® ] (S34)

The minimum of the RHS of Eq. (S34) occurs at s = 1/2, and thus

By < z[zpn )y/Pr( y\x>]2. (835)

For the memoryless channel holds Eq. (525), and furthermore we choose p,(x) = []j—; p(x;), so
that Eq. (S35) can be manipulated into

{Z[Zp \/Priylx)r}n- (S36)

yey ~reX



For m > 2 the average error of the k-th codeword can be expressed as

Pep =Y pn(xk) Pr(ylxy) Pr(error|k, xi, ), (S37)

Xk Y

where Pr(error|k, Xy, y) is the probability of decoding error, conditioned on the message k entering
the encoder, codeword x; being formed and sequence y being received. For each decoding error,
k # K (for given k, xi,y), define the event Ay that the codeword xj/ is decoded wrongly, Pr(y|xz/) >
Pr(y|xx). The probability can be bounded as

> Pr(Ak/)] , (S38)

k' £k

Pr(error|k, xx,y) < Pr( U Ak/) <

K £k

where 0 < ¢ < 1 and the first inequality follows from the fact that if for some &’ holds Pr(y|xx) =
Pr(y|xx), the decoder may not make an error. From the definition of Ay follows

X1’
Pr(Ap) =Y pu(xw) < pn(xp) (vl )S (S39)
Xy Xy y’ k)

for any s > 0, where the first summation is over x; : Pr(y|xy/) > Pr(y|xx), the second summation
is over the dummy variable x;/. Substitution of Eq. (S39) into Eq. (S38) gives

Pr(error|k, xx,y) <

m—1) an Y|X1€/) ‘|Q. (S40)

Xk)s

Substituting Eq. (S40) into Eq. (S37), and setting s = 1/(1 + o), finally gives
+o
Pei < ( Z [an ) Pr(ylx)"/! M] : (841)

The (n, R) code is defined as a code of length n with [¢"f!] codewords. Considering the ensemble
of codes to be the ensemble of (n, R) block codes with (m — 1) < ™ < m, we rewrite Eq. (S41)
for the discrete memoryless channel as

P < el S5 iy Priglay /0] ) ($12)
yeY frex
which can be furthermore rearranged into
P. 1, < exp{-n[Eo(e,p) — oR]}, (543)
Eo(e,p)=—ny [Z (&) Pryla) /050 (S44)

yeY xeX

Since Eq. (S43) is valid for all messages in the codebook, the average error probability over the
messages P, = Y it Pr(k)P.

P. < exp{—n[Eo(0,p) — oR]}, (S45)

Furthermore, tighter bound is obtained by choosing ¢ and p(z) to maximize [Ey(o,p) — oR)].
By inverting Eq. (S45) and by generally using probability density functions p(x), f(y|x) instead of
discrete probabilities p(x), Pr(y|z) we obtain Egs. (9-11) in the manuscript.



In order to evaluate Eq. (10) we follow the cutting-plane method as described in [6]. Let F be
the set of all possible input distributions p(z). We define the functional G¢(p), convex U in p(z), in
accordance with Gallager [4, p.144] and Huang et al. [6] as

G(p) = exp[—Eo(o,p)], (S46)

so that Ey(g,p) = —In G?(p). The maximization problem yielding E,(R) in Eq. (10) is then resolved
as follows. For each g we define

G = min G¢(p), (547)
plx

where the minimization is over all admissible p(x). To each G¢* and p there corresponds a line in
the “(E,, R)-plane”, given by

Lo(Y) = —gR — In G%*. (S48)

Note that the information rate, R, is hereafter given in the units of nats for notational convenience,
i.e., R/In2 is in bits. From Eq. (10) follows that E,.(R) is the maximum over all these lines at
given R [4, p. 144].

The error exponent sensitivity function g¢(x) is defined so that

() = [ gptalp(a) dz, (549)

and thus by comparison with Eq. (10) we obtain

g5@) = [ [ [ 1t 2 au]” sl /0 ay. (550)

The next step is to express G?(pp) at some arbitrary po(z) € F in terms of linear functionals (in
po), similarly to the case of capacity-cost function. From the convexity of the functional G¢(p)
follows that for some admissible po(x) and p(z) holds

G®(po) = G4(p) + (G (p), po — ), (S51)
where (f,g) = [ f(x)g(z)dz. In other words,

G®(po) Z/gg(x)p(:p) dz+
+(1+0) [ g8(@)lpole) — pla)] do =
=(1+ Q)<g,§’,po> - 9<g£,p>7 (S52)

with equality if and only if p(z) = po(x). Hence, G?(py) can be expressed as the maximization
problem,

G4(po) = max[(1+ ) (g8, po) — 0G*(p)] (S53)
p(z)
The main idea here is that the maximization above is linear in py.
The evaluation of G¢(p) is then performed iteratively. We start with an arbitrary distri-
bution po(xz) € F. In the j-th iteration we have a set of j admissible input distributions,
{po(z),p1(z),...,pj—1(x)} C F, and from Eq. (S53) follows

Gi(p) = max [(1+o){gf,p) — olgi, pi)]. (554)



where g (x) = g2 (). The next input distribution, p;(z), is obtained from

pj(z) = arg r;&r)l{Gf(p) :p(x) € F}. (S55)

Consequently, we arrive to the following sequence of mini-max problems

minimize ¢
subject to (14 0)(g7,p) — 0(9,pi) <, (S56)
fori=0,...5—1, px)eF,

which is converted into the sequence of linear programming problems of the form,

maximize d'z
subject to Az <b (S57)
z > 0.

Again, we fix the grid of r points of support (z1,x2,...,z,), let

Zp] Nz — ), (S58)

where p;(z;) are the components of the input distribution in the j-th iteration and we form

z' = (5,p(a:1),p(x2),...,p(a:r)), (859)

d" = (-1,0,0,...,0). (S60)

From (1 + 0){(g9?,p) — e < 0{(g9%,p;) we have in the j-th iteration,

L= (1,75 (21),7§ (xq), - -, 75 (z1)), (S61)
FjZ < ﬁj, (862)
where
Vi (i) =(1+ 0)gj (i), (S63)
Bi =0 g5(zo)p;(x), (S64)
= )
9% () —/ [Zf ylae)Tpi(ze) | fyle) T dy. (S65)

The algorithm is evaluated for each ¢ € (0,1) as follows.
1. Initialization (j =0). Set o, {z1,...,2,} and some py(z;) for i = 1...r. Evaluate 'y and Jo.

2. Iteration (j > 1). Form the matrix A and vector b,

Aq 1
—A; -1
A=| To |, b=]| b |, (S66)

| IR Bj-1



where A; = (0,1,1,...,1), I'y and f; are given by Eqns. (S61) and (S64). Solve the linear
programming problem in Eq. (S57), denote the resulting value of € as ¢, use the values
{p(z1),...,p(zx)} as the j-th distribution for the next iteration. The following holds as
j — 0o [6, Theorem 3.1]

(98.p1) = G°(0"), (S67)

e1<ex<ez = GUBY), (S68)

pj(zi) = p* (i), (569)

so that ¢; provides a lower bound on the true G¢(p*) and p;(z;) converges to the optimizer

p* ().
C. Gaussian approximation

The Egs. (9) and (14) can rarely be solved in a closed-form. Even simple and frequently employed
models of f(y|x), such as Poisson distribution with intensity z, or Gaussian with z-dependent
variance, require the numerical approach. We provide a potentially useful closed-form approximation
to Egs. (9) and (12), by employing several results valid for the discrete-time additive white Gaussian
noise (AWGN) channel subject to variance constraint on the input and average variance constraint
on the (non-asymptotic) codeword ensemble [4, Ch. 7] and [5, 7].

The AWGN channel is described by the conditional probability density function f(y|z) such
that f(y|z) = fn(y — ), where fy(z) is Gaussian with zero mean and variance o2. Furthermore,
the support of the input distribution p(x) is the whole real line, but X is constrained in variance,
Var(X) < P. The AWGN information capacity C¢ is then known to be

A o?
where P/o? is the signal-to-noise ratio (SNR). We use Eq. (S70) to define the effective SNR, S, of
an arbitrary information channel with capacity C given by Eq. (2) as

S =e22C¢ 1. (S71)

CG—lln(l—i—P), (S70)

Efficient algorithms for the calculation of capacity exist, e.g., the cutting-plane approach employed
here or the classical alternatives [8, 9].

The maximization over p(x) in Eq. (10) is not carried out explicitly for AWGN, instead it is
assumed that the ensemble-generating distribution is Gaussian with zero mean and variance P,
which permits the indicated integration and maximization over p [4, pp. 338-343] but also can be
shown to be essentially optimal [7]. Since we only need the whole ensemble to satisfy the variance
constraint, but not the individual input vectors, the term [2¢™ /u]? in [4, Thm.7.3.2, Eq. 7.3.45]
can be omitted [5, Ch.4] and the results may be summarized as follows.

For all rates R. < R < C the Eq. (10) gives

46

s mfp- G0 W

2 (B—1)8

where 8 = 2% and R, is the AWGN critical rate (Eq. 15)

- 1 1S 1] 52
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Below the critical rate, for R, < R < RC it holds

1 1
ET(AR)zl—BJrSJrln(ﬁ—s>+nﬁ—AR, (S74)
2 2 2 2
1 S 52
5_2[1+2+4], (S75)
1 1 1 52
Re ﬁln [2+2 1+4:|, (876)

from which the critical population size 7. = [—(In P.)/E.(AR,)] follows as
ﬁc—[—4[2+S—m—4ln2+2ln(2—s+m)]11nPe] (S77)
Finally, for 0 < R < R,,
E,(AR) = i(l _ m) (S78)

The Gaussian lower (achievable) bound in Fig. 2 is obtained by combining Egs. (S72), (S76)
and (S78) and substituting into Eq. (9).

The case of AWGN channel with variance constraint and P, defined by Eq. (7) is exceptional in
the sense that the normal approximation [10] given by Eq. (12) cannot be directly employed [5,
pp. 136, Thm. 77]. Instead, the upper bound in Fig. 2 is approximated by the sphere-packing bound
as derived by Shannon [7], which is given by Eq. (S72) for 0 < R < C and R,, < nE, }(—In P./n)/A,
i.e., the upper and lower bounds coincide above R..

The Gaussian approximation above would be exact for a given neuronal model f(y|z) and
stimulus distribution p(x), if there existed bijective mappings & = ¢(z) and § = {(y) such that
X ~ N(0,P) and Y|& ~ N(&,0?), as follows from the transformation invariance of I(X;Y). (E.g.,
for a “neuronal” model with exponential tuning curve and lognormal distribution of firing rates).
Nonetheless, the Gaussian approximation is useful and works rather well for a range of actual
neuronal models (Figs. 2, and S1-S3), where f(y|x) is sufficiently regular and varies continuously
with x.

D. Neuronal models

We simulated two kinds of model neurons, the conductance based model and the spike response
model. Both neurons are driven by synaptic input, which consists of excitatory and inhibitory
inputs.

1. Conductance based model

The neuron is modeled by the single-compartment conductance based model [11, 12] driven by
synaptic input Iy,

dVv

Cm 3

=—g9.(V — Er) — INa — Ixd — Isyn, (S79)

where C,,, = 1 uF /cm? is the membrane capacitance, V is the membrane voltage, gr, = 0.1 mS/cm?
is the leak conductance and E;, = —67mV is the leak reversal potential of the neuron.
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The sodium current Iy, is given by

INa = gNamgh(V - ENa)u (880)
dm
= an (V)= m) = 5 (V)m,
0.32(V + 54)
V) = S s -1
B (V) = 0.28(V + 27)

exp[(V +27)/5] =1
dh

3 = (V)AL= h) = Bu(V)h,
ap(V) = 0.128¢~(V+50)/18

4
V) = T E v T 20 /50

where gna = 100mS/cm?, Ex, = 50 mV.
The delayed rectifier potassium current Ixq is given by

IKd = ngn4(V - EK), (881)
= an(V)(1 =) = fulV ),
(V) = —0.032(V + 52)

exp[—(V +52)/5] — 1’
Bn(v) _ 0'567(V+57)/407

where ggq = 80mS/cm? and Ex = —100mV. Eqs. (S79—S81) was solved numerically using by
using Euler-Maruyama integration scheme with a time step of 0.01 ms.

2. Spike Response Model (SRM)

The neuron is modeled by the spike response model (SRM) [13-17] driven by synaptic input
Isyn,

V(t) = Viee — /0 k() Lagn(t — $)ds + S n(t — 1), ($82)

t; <t

where V' (t) is the membrane voltage, Vies = —70mV is the resting potential, ¢; is the i-th spike time,
and the kernels (s) and n(s) describe the integrative and refractory property of the neuron. The
model neuron generates a spike, if the voltage V() reaches the threshold 6y = —59mV. We used
exponential kernels [15], x(s) = koe~*/™ and n(s) = noe=*/™, where 7,,, = 10 ms is the membrane
time constant. This model (S82) can be written in a form of a differential equation [18]:

€™ — s (V(8) ~ Vi) — Tan(t) + 04 Y 00— ) (383)

t;<t

where C,,(= rg") is the capacitance, giot(= Cpm/Tm) is the total conductance, and §(t) is the
Dirac’s § function. Eq. (S83) was solved numerically using by using Euler-Maruyama integration
scheme with a time step of 0.01 ms. The parameters are Cp, = 1 uF/cm?, gt = 0.1 mS/cm?, and
an(=m0/Ko) = —10nC/cm?.
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A Information capacity and coding bounds
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FIG. S1. Non-asymptotic behavior of achievable information transmission rate in a homogeneous neuronal
population discretized to non-overlapping time intervals A = 25 ms. The visualisation is analogous to Fig. 2
in the manuscript, other parameters of the conductance based model were not changed. The information
capacity (C' = 33bit/s per neuron) is almost twice as large compared to the A = 50ms case (C = 17.3bit/s
per neuron). Qualitatively, the situation looks similar to Fig. 2. Note that the Gaussian approximation
works well in this case.

3. Synaptic input
The synaptic input Iy, is given by sum of excitatory and inhibitory input,
Isyn(t) = ge(t)(V — Ee) + g:(t)(V — Ej), (S84)
where Ge(i) and E.;y are the excitatory (inhibitory) synaptic conductances and reversal potentials,

F. = 0mV, E; = —70mV. The synaptic conductances are described by the point-conductance
model [19],

(S85)

where 7,;) is the time constant of the excitatory (inhibitory) synaptic conductance, and 7 ;) (t) are
mutually independent Gaussian white noises with zero means and unit variances. The asymptotic
mean and variance of the synaptic conductances are <ge(i)> and az(i), respectively. The standard
deviations of the synaptic conductances are assumed to be proportional to the corresponding mean,
e = (ge)/2 and o; = (g;)/4. The parameters are £, = 0mV, E; = —70mV, 7. = 2.7ms, and

7; = 10.5ms. The effective potential V,. is defined by the voltage at which the mean synaptic current
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FIG. S2. For completeness we present a coarsely-grained situation with time intervals set to A = 100 ms,
other model parameters unchanged (conductance-based model). The upper and lower bounds for the exact
and Gaussian cases are in good agreement, the critical rate is approximated less accurately.

Isyy is equals to zero, and determines the proportionality between (g.) and (g;) (the balanced input
[20-22])

<ge>(Ee - V;") + <gz>(Ez - V;“) = 0. (886)

where V. = —65mV is the effective reversal potential. We confirmed that the result did not change
qualitatively when the effective potential was changed.

E. Additional results

We assume that the neuron encodes the stimulus by the rate-code. The stimulus (mean excitatory
synaptic conductance (g.)) and response (number of action potentials) are determined within non-
overlapping time intervals of length A. The timescale A = 50 ms is investigated in the manuscript
(Fig. 2) was chosen to minimize the effect of stimulus history on the current response (so that
the discrete-time memoryless channel assumption is not violated) while being biologically relevant.
For completeness we show two other timescales (A = 25ms and A = 100 ms) while keeping other

model parameters (conductance model) unchanged. In addition we show results for the SRM model
(A = 50ms).

— Fig. S1: A = 25ms, conductance-based model. The shorter timescale is more interesting from the
biological perspective, however, we believe that memory effects might start to play a non-negligible
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FIG. S3. Spike response model, A = 50ms. The capacity (C' = 17.9 bit/s per neuron) is comparable to the
conductance based model (Fig. 2), the upper bound in the Gaussian approximation is less accurate.

role here. Qualitatively, the situation looks similar to Fig. 2 in the manuscript. The quantitative
indicators are changed, i.e., the capacity C' = 33 bit/s per neuron and the critical parameters
R. = 20bit/s, R.n. = 4650bit/s and the critical population size n. = 229. The Gaussian
approximation works well in this case and R. = 17bit/s, Refi. = 3196 bit/s and 71, = 188.

— Fig. S2: A =100 conductance-based model. The timescale is perhaps too coarse-grained and is
shown for completeness only. The capacity C' = 9.6 bit/s per neuron and the critical parameters
R = 6.6bit/s, Ren. = 1741 bit/s, n. = 260. The Gaussian approximation gives: R. = 5.2bit/s,
R.fi. = 909 bit/s and 71, = 175.

— Fig. S3: A = 50ms, spike response model. The capacity C' = 17.9bit/s per neuron and the
critical parameters R, = 12.6 bit/s, R.n. = 3039 bit/s, n. = 241. The Gaussian approximation,
especially of the upper bound, is less accurate, however, the other parameters are comparable
within the order of the magnitude: R. = 9.3bit/s, R.f. = 1685 bit/s and 7, = 181.
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