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The Fano factor, defined as the variance-to-mean ratio of spike counts in a time window,

is often used to measure the variability of neuronal spike trains. However, despite its

transparent definition, careless use of the Fano factor can easily lead to distorted or even

wrong results. One of the problems is the unclear dependence of the Fano factor on the

spiking rate, which is often neglected or handled insufficiently. In this paper we aim to

explore this problem in more detail and to study the possible solution, which is to evaluate

the Fano factor in the operational time. We use equilibrium renewal and Markov renewal

processes as spike train models to describe the method in detail, and we provide an

illustration on experimental data.
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1. INTRODUCTION

The frequency by which neurons generate spikes (action potentials) is commonly considered as
a basic form of information transfer within the neuronal system (Adrian and Zotterman, 1926;
Perkel and Bullock, 1968). This “frequency code” is often quantified by the number of spikes
within an appropriately set time window. The length of the window is limited by the requirement
of stable conditions on one side, and by aiming at reproducible results on the other side. The
natural conditions typically vary rapidly, but even if kept constant by an experimenter, there are
other reasons, like spiking adaptation (Benda and Herz, 2003), which restrict the duration of the
observation time window. All these constrains create difficulties for the statistical inference based
on the firing rate, andmany sophisticatedmethods to overcome them have been developed (Nawrot
et al., 1999; Dayan and Abbott, 2001; Cunningham et al., 2009; Benedetto et al., 2015; Kostal et al.,
2018; Tomar, 2019).

As mentioned, the step from the observed times of spikes to the firing rate quantification
requires a proper selection of the statistical procedure. The data available from experiments
are usually formed by repeated spike trains (repeated trials) recorded from a single neuron
exposed to the identical conditions (reaction to a stimulus). It aims to reflect activity of a neural
network of a statistically homogeneous population of neurons. In other words, multiple trials are
only an experimental counterpart of real-time multi-neuronal activity. Experiments of multi-unit
recordings are also available, however, there is currently no technical tool to simultaneously record
all spike trains coming to a target neuron. Independently, whether data come from the repeated
experimental trials or from a simultaneous multi-unit neuronal recording, in both cases additional
assumptions are often accepted, namely, that the data are independent and statistically identical
replicas of the same random variable (which is also assumed in this paper). Then, the common
definition of the firing rate is the mean number of spikes per unit time window.
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It has been noticed for a long time, and under various
experimental conditions, that the firing rate (however
defined) does not completely characterize neuronal activity,
as demonstrated by many studies going beyond the rate coding
concept (Shadlen and Newsome, 1994; Rieke et al., 1999; Olypher
et al., 2003; Stein et al., 2005; Kostal et al., 2007; Christodoulou
and Cleanthous, 2011; Rajdl et al., 2017). The “neural codes”
based on rate-independent components are generally called
temporal codes. Probably the simplest one going beyond the
mean number of spikes is the variability of that number.

Similar to the firing rate, there are several possibilities on how
to quantify the variability of spike trains or in generally non-
biological systems (Lindner et al., 2004, 2005; Bravi et al., 2011;
Kostal et al., 2013; Aoki et al., 2016; Bowden, 2017; Peterson
and Heil, 2018; Ilan, 2020). The variance of the spike count in
the observation window would be the typical first candidate.
However, large numbers usually have large variance (the second
moment is quadratic in the scaling parameter), hence some
“relative” dispersion measures are often more desirable. Based
on properties of Poisson distribution, as the Poisson process
is some kind of template for any series of uniform events
appearing in time, the index of dispersion was introduced (Cox
and Lewis, 1966). It relates the variance of the number of spikes
in a time window to its mean. In Fano (1947) a metric for
directly unmeasurable quanta was proposed. It was based on
the Poissonian character of the quanta appearance and was also
represented as the ratio between variance and mean (Fullagar
et al., 2017). It became known as the Fano factor. Despite
originally being unrelated to the time evolution and not at
all admitting data with a non-Poissonian character, due to the
formal equivalence with index of dispersion, the term Fano factor
prevailed regardless of the difference in aims. The term Fano
factor will therefore be used throughout the paper.

For the Poisson distribution the variance-to-mean ratio is
equal to one. This fact has fascinated neuroscientists for many
decades and the Fano factor has been evaluated and presented
over a wide range of experimental conditions, different types
of neurons, and species of experimental animals. The number
of references to papers in which it was evaluated would be
practically endless. Most of the theoretical models of neurons
are oriented toward the calculation of interspike interval (ISI)
distribution and directly assume a renewal character of the
firing. Many of these studies present coefficient of variation of
the interspike intervals. Considering that the squared coefficient
of variation is equal to the Fano factor (over an infinite
window), experimental studies and also countless numbers of the
theoretical papers present the Fano factor as a property of the
models investigated in them.

As mentioned above, the mean number of spikes in the
observation window is the most common metric for the firing
rate. Thus, relating the variance to this quantity may induce the
wrong feeling that the measure (index of dispersion, Fano factor)
is firing rate independent (Figure 1). Such independence is valid
only asymptotically for exceptionally fast firing and exceptionally
slow firing, in both cases with respect to the time window over
which the counts of spikes are investigated. Neglecting rate
changes while studying the Fano factor can lead to incorrect,

distorted results, mainly when comparing the Fano factor based
on various sets of spike trains from various experiments. A
change of the spiking rate changes the estimated values of the
Fano factor even if the true values remain constant. This property
of the Fano factor is known and there are some ways to avoid this
problem, e.g., using the operational time (Nawrot et al., 2008) or
the mean matching method (Churchland et al., 2010). However,
it seems to us that this issue is still often neglected and has not
yet been sufficiently described and explained. For examples of
an insufficient Fano factor analysis see the Discussion in Nawrot
et al. (2008). Our aim is to describe the dependence of the Fano
factor on the intensity in more detail, to show possible problems,
and to present and test a method on how to avoid them. The
main general solution is to use the Fano factor in the operational
time, for the firing rate equal to one. The above-mentioned mean
matching method can be suitable too, however, it is usable only
in specific situations and is thus not investigated here.

The paper is organized as follows. The relevant theory is
summarized in the first part of the paper. We introduce renewal
processes and Markov renewal processes, which we use to model
the spike trains. Then, the influence of the firing rate on the Fano
factor is described and illustrated and a rate-independent variant
of the Fano factor is defined. Finally, a method for comparison of
variability of two or more data sets with different firing rates is
proposed and evaluated.

2. MODEL OF SPIKE TRAINS

The Fano factor deals with the number of events (spikes) within
an observation time window and thus we have to specify the basic
properties of such a counting process. The equilibrium counting
process N(w) describes the number of spikes in an interval
(0,w], w > 0, where time zero is “randomly positioned” with
respect to the sequence of spikes. The dynamics of the process is
captured by its intensity function, λ(w), defined by equation

λ(w) = dE(N(w))

dw
, w ≥ 0, (1)

which reflects the rate for the occurrence of a new event for
a short time window [w, w + dw). Under the assumption of
stationarity, which means that all the statistical properties of
N(w) are time invariant, it holds

E(N(w)) = w

E(T)
, w ≥ 0, (2)

where E(T) is the mean of ISIs, which due to the stationarity of
the sequence of ISIs is constant, E(T) = µ. Combining (1) and
(2) we can see,

λ(w) = λ = 1

E(T)
= 1

µ
. (3)

Unfortunately, formulas analogous to (2) relating higher
moments of the counting process to the higher moments of ISIs
do not exist. The counting process N(w) is fully determined by
the probabilities pn(w) = P(N(w) = n)). If N(w) has Poisson
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FIGURE 1 | Fano factor might be considered to be an intensity independent measure of variability. This figure (based on simulated data) illustrates that it is not correct;

the changes of the intensity influence the (estimated) values of Fano factor significantly. The intensity of the data was changed by scaling time in the original time series

and Fano factor calculated in a fixed window of length w = 1 (only one, variously scaled, sequence of the times of spikes is shown). The true value of Fano factor (for λ

or w going to infinity) is 2.

distribution with parameter λw, the process is called the Poisson
process. For other commonly investigated point processes there
is no analytical expression for pn(w).

There is the basic duality relationship between the counting
process, N(w), and intervals between events (ISIs),

N(w) ≥ n ⇔ T0 + ...+ Tn−1 ≤ w, (4)

where T0 is time of the first spike and Tn−1 is the (n − 1)th
complete ISI. The spiking process is called the equilibrium
renewal process under the additional assumption that the ISIs
are independent and identically distributed continuous and
positive random variables, denoted by T, with the probability
density function (pdf) f (t). The variants usually employed for
pdf f (t) will be summarized later. The term “equilibrium”
again specifies that the time zero is unrelated to the sequence
of spikes.

Besides the intensity λ, a basic and very often used
characteristics of T (ISIs) is the coefficient of variation,
defined as

CV =
√
Var(T)

E(T)
, (5)

where Var(T) is the variance of T. The main advantage of
CV of ISIs, as a measure of spike train variability, is that
CV is dimensionless and that ISI probability distributions with
different means can often be compared meaningfully. More
precisely, CV does not depend on λ if the ISI pdf belongs
to the “scale (or rate) family,” i.e., if the pdf f (t; λ) (explicitly
parameterized by the rate λ) satisfies f (t; λ) = λf (λt; 1) for any
λ > 0 (Casella and Berger, 2002). For example, the exponential
pdf with fixed refractory period, discussed later in the paper, does
not belong to the scale family. Similarly, the value of CV is not
changed if the time axis is scaled linearly (e.g., if the refractory
period is also rescaled as in our example in section 4).

Renewal processes are standardly used to model neuronal
spike trains (Shinomoto et al., 2005; Nawrot et al., 2008;
Shimokawa et al., 2010; Omi and Shinomoto, 2011; Ostojic, 2011;
Fisch et al., 2012; Pipa et al., 2013; Koyama and Kostal, 2014;
Lansky et al., 2016), however, sometimes they might be seen
as too simple. We thus also use a generalization of renewal
processes–Markov renewal processes (MRPs). In this case the
ISIs are not identically distributed, but every ISI has one of the
n ∈ N probability distributions with pdfs fi(x), i = 1, . . . , n.
The pdfs of the individual ISIs are determined by the states of a
Markov process, with a transition matrix P = (pi,j), 0 ≤ pi,j ≤
1, i, j = 1, . . . , n, expressing the probabilities that after an ISI
with pdf fi(x) there will be an ISI with pdf fj(x). Such a process
is a combination of a Markov chain with n states and a renewal
process. Analogously to renewal processes, we assume MRPs in
equilibrium. For more detailed description of MRPs see (Çinlar,
1969; Cox and Isham, 1980).

For simplicity, we focus only on a variant with n = 2 and
p1,2 = p2,1 (the probability of transition from the state one to
the state two is the same as the probability of reverse transition),
thus we have two random variables with pdfs f1(x) and f2(x) (with
meansµ1 andµ2 and coefficients of variation CV1 and CV2) and
a transition matrix

P =
(
1− p p
p 1− p

)
, (6)

where 0 ≤ p ≤ 1 is the probability that the state will be changed.
The intensity of such a process is

λ = 2

µ1 + µ2
, (7)

which yields λ/2 < µ−1
1 ≤ λ ≤ µ−1

2 (for µ2 ≤ µ1). If
the difference of µ1 and µ2 is large and p is small, we obtain
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a bursting process. On the contrary, if p = 1, the process
always changes the states (distributions of ISIs) and is called an
alternating renewal process (ARP). A basic example of MRPs
(resp. ARPs) is the Markov (resp. alternating) Poisson process
(MPP, APP), when the ISIs have exponential distributions f1(x) =
µ−1
1 exp{−x/µ1} and f2(x) = µ−1

2 exp{−x/µ2}, µ1, µ2 > 0.
Finally, let us mention a special and interesting case of

equilibrium renewal processes situation for CV → 0. We obtain
a sequence of equidistant points (times of spikes) with a random
origin. All the ISIs are thus constant with length 1/λ and the
only source of variability is the time to the first spike, T0, which
is distributed uniformly. This model is called the (equilibrium)
pacemaker (PM) and it represents the limit case of renewal
processes from the point of view of (low) variability.

3. FANO FACTOR

Fano factor is a measure of variability of a counting process
defined as

F(w) = Var(N(w))

E(N(w))
, w > 0, (8)

thus, as the variance to mean ratio of the number of spikes in
a time window of a length w. As mentioned, this quantity was
originally called the index of dispersion for count (Cox and Lewis,
1966). Fano factor defined by (8) is a function of w, however, the
same term is often used to directly denote the limit

F = lim
w→∞

F(w), (9)

which removes the dependence on w.
For renewal processes, basic properties of Fano factor are

(Cox, 1962)

lim
w→0+

F(w) = 1, (10)

F = lim
w→∞

F(w) = Var(T)

E2(T)
= CV2. (11)

Equation (11) has such an effect that there are cases when CV2

is also called Fano factor (Shuai et al., 2002). The function
F(w) cannot be expressed analytically for most of the probability
distributions of T, however there are some formulas that can be
solved numerically, e.g., Rajdl and Lansky (2014),

F(w) = 1

w
L
−1

{
1+ L{f }(s)

s2[1− L{f }(s)]

}
(w)− λw, (12)

where L and L
−1 denote the Laplace transform and its inversion.

For CV → 0 (the equilibrium pacemaker process), we obtain

F(w) = 2τ + 1− (τ + 1)τ

λw
− λw, (13)

where τ = ⌊λw⌋. The limit of formula (13) for w → ∞ is (as
expected) zero.

For the Markov renewal processes, analytical calculation of
F(w) is even more complicated. At least the limit of F(w) for
w → ∞ can be derived in a closed form, using the results from
Ball and Milne (2005),

F = µ2
2(2CV

2
1 − 1)+ 2µ1µ2 + µ2

1(2CV
2
2 − 1)

(µ1 + µ2)2
+ 1

p

(µ2 − µ1)
2

(µ1 + µ2)2
.

(14)
The limit for w → 0+ equals one, as for the renewal processes.
For MPPs relationship (14) reduces to

F = 1+ 1

p

(µ2 − µ1)
2

(µ1 + µ2)2
, (15)

and for APPs to

F = 2
µ2
1 + µ2

2

(µ1 + µ2)2
. (16)

The parameter p thus highly influences F, and by decreasing p we
can increase F arbitrarily. Also, an alternating Poisson process
is always more variable than a simple Poisson process; from
Equation (16) we can see 1 ≤ F < 2, with F = 1 only forµ1 = µ2

(standard Poisson process). Equations (7) and (15) yield that to
obtain a MPP with given λ and F (for a fixed p), the individual
means need to be

µ1 =
1+

√
p(F − 1)

λ
, (17)

µ2 =
2− λµ1

λ
. (18)

Estimates of the Fano factor, F(w), and the intensity λ are
standardly calculated based on observed numbers of spikes
N1(w), N2(w), . . . ,Nn(w) in a time window (0, w], w > 0, where
n is the number of repeated trials or number of simultaneously
recorded neurons (see Figure 2A). The standard estimators are

λ̂ = N(w)

w
= 1

nw

n∑

i=1

Ni(w), (19)

F̂ = F̂(w) =
s2
N(w)

N(w)
=

1
n−1

∑n
i=1(Ni(w)− 1

n

∑n
i=1 Ni(w))

2

1
n

∑n
i=1 Ni(w)

.

(20)
Formula (20) is clearly an estimator of F(w), however, it is used
to estimate also directly the limit F.

The mean square error (MSE), the common quantity to
measure the quality of the estimator, can be decomposed to bias
and variance,

MSE(̂F) = E(̂F − F)2 = [E(̂F)− F]2 + E[̂F − E(̂F)]2

= Bias2 (̂F)+ Var(̂F). (21)

The bias and variance of the Fano factor estimator can be
approximated as

Bias(̂F) ≈ (F(w)− F)+ F(w)

λw
−

Cov(s2
N(w)

,N(w))

(λw)2
, (22)
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FIGURE 2 | (A) Example of typical data used for estimation of the Fano factor. (B) Illustration of the operational time. Two sets of spike trains with intensity λ1 = 0.5

and λ2 = 2 are shown. A window of the original length w = 3 has the operational time length w0 = 1.5 in the first set of spike trains and w0 = 6 in the second one.

For the purpose of the Fano factor comparison, it is more convenient to use the same length of the window in operational time, w0, in both of the cases.

Var(̂F) ≈ F2(w)

(
Var(s2

N(w
))

Var2(N(w))
− 2

Cov(s2
N(w)

,N(w))

λwVar(N(w))
+ F(w)

λw

)
.

(23)
Formula (22) shows that the main part of bias of the estimator is
unsurprisingly created by the difference F(w)− F.

Besides MSE, a standard measure of error of an estimator is
the mean absolute error,

MAE = E|̂F − F|, (24)

which is a more natural and better interpretable error measure
than MSE, however, it is more difficult to analyze it theoretically.

4. INFLUENCE OF INTENSITY ON FANO
FACTOR

The purpose of the Fano factor evaluation is to measure the
variability without the effect of the intensity. However, only the
limit value F is generally intensity independent. To show this
fact, let us consider two identical equilibrium renewal processes
N1(w), N2(w), which differ only in the values of intensities λ1 >

λ2 > 0. For this process, it clearly holds

P(N1(w) = n) = P

(
N2

(
λ1

λ2
w

)
= n

)
, w > 0, n ∈ N0, (25)

which directly yields

F1(w) = F2

(
λ1

λ2
w

)
, w > 0. (26)

The values of the Fano factor for the processes N1(w) and N2(w)
are thus generally not equal for all w > 0, a change of the
intensity changes the value of F(w) even if all other characteristics
are constant.

For an illustration of these facts we show the dependence
of F(w) on the intensity λ for renewal processes with several

very often used probability distributions of ISIs, gamma, inverse
Gaussian, and shifted exponential. These distributions can be
parameterized using λ and F, their probability density functions
are then

f (t) = (λ/F)1/Ft(1/F−1)e−λt/F

Ŵ(1/F)
, t ≥ 0, (27)

for the gamma distribution, where Ŵ(x), x > 0, is the gamma
function, and

f (t) =
√

1

2πλFt3
e−λ(t−1/λ)2)/(2Ft), t ≥ 0, (28)

for the inverse Gaussian distribution. The most basic distribution
of ISIs is the exponential distribution,

f (t) = λe−λt , t ≥ 0, (29)

yielding the sequences of spikes corresponding to a Poisson
process. However, as for this distribution F(w) = 1 for anyw > 0,
there is no dependence of Fano factor on the intensity. Situation
changes when we extend the model for a refractory period (RP)
of a length r ≥ 0. Refractory period is a time period after each
spike when the probability of occurrence of another spike is zero.
ISIs then correspond to a random variable T = r + T′, where T′

has exponential distribution. If we want such a process to have
intensity λ and Fano factor F, F ≤ 1, its density has to be

f (t) = (λ/
√
F)e−(λt−1+

√
F)/

√
F for t ≥ 1/λ −

√
F/λ (30)

and zero otherwise.
To calculate the values of F(w) we numerically solved formula

(12) and confirmed the results by Monte-Carlo method using
(20). We also show the values of F(w) for MPPs with p = 1 (APP)
and p = 0.1 (a bursting process). In these cases, we calculate the
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FIGURE 3 | Values of F (w), for w = 1, in dependence on λ for renewal processes with gamma (full lines), inverse Gaussian (dashed lines) and exponential with RP

(dashed-dotted line, F = 0.5) distributions of ISIs and for Markov Poisson processes with p = 1 (APP, dashed-dotted line, F = 1.5) and p = 0.1 (MPP, dotted line) and

for PM process (full line, F = 0). The red lines show F (w) with F = 1.5, the blue lines with F = 0.5 and the green line with F = 0. The λ-axis is logarithmically scaled.

means µ1 and µ2 using Equations (17) and (18) and the values
of F(w) using Monte Carlo simulations. Note that the results for
these processes are shown only for F = 1.5, as F cannot be lower
than one. The limit case with zero Fano factor (the pacemaker
model) is shown too.

The results are shown in Figure 3, and we can see that the
dependence on the intensity is high, yielding various values
of F(w) without changing w or F. As already mentioned, the
dependence on λ is the same as the dependence on w, thus we
obtained known curves showing the dependence of the Fano
factor on the length of the observation window. Note that this
holds assuming that the refractory period, included in T, scales
with the firing rate. If the refractory period is fixed, not influenced
by the changes of intensity, the interchangeability of w and λ

does not hold. There are several interesting features, we would
like to point out. Firstly, it is the non-monotonicity of the curve
for inverse Gaussian distribution with F = 1.5. As shown
and explained in Rajdl and Lansky (2014), this holds for any
distribution with f (0) = 0 and F > 1. Secondly, we can see that
F(w) for gamma distribution with F = 1.5 converges to unit value
for λ → 0 very slowly. It is caused by the fact that probability
of occurrence of two spikes in a very short window is in this case
not negligible, which results from the specific shape of the gamma
distribution with F > 1 (the probability of occurrence of a spike
near zero is relative large). Finally, for the peacemaker model, the

dependence is non-monotonic, with a cyclic-like behavior. Fano
factor is zero in integer multiples of the length of the window w,
when we know exactly how many spikes will be observed.

5. COMPARISON OF FANO FACTOR IN
EXPERIMENTS WITH VARIOUS SPIKE
INTENSITY

It follows from the previous section that the values of F(w)
cannot be studied separately without considering the values of
intensity λ. The natural way how to deal with this problem is to
compare values of Fano factor only under the condition that the
intensity is fixed. Generally, it is suitable to transform time so that
the intensity equals one, before calculation (estimation) of F(w).
Such a time (window) is called operational time (Nawrot et al.,
2008) and can be expressed as wo = wλ. Two values of Fano
factor can be then compared if calculated for the same wo (see
Figure 2B). To avoid prior explicit time transformation, we can
define operational Fano factor as

Fo(wo) = F(wo/λ) = F(woµ), wo > 0, (31)

where wo is the operational time (time expressed in multiplies of
mean ISIs), see Equation (1), but F(wo/λ) is calculated on the
original time scale. Characteristics Fo(wo) is then a variability
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measure fully independent from the intensity (for equilibrium
renewal processes) and it is thus directly comparable even for
different experiments.

For estimation of quantity (31) we need to also estimate the
intensity. It can be easily done by estimator (19), which yields the
estimator of operational Fano factor in form

F̂o(wo) =
s2
N(wo/λ̂)

N(wo/λ̂)
. (32)

Measuring Fano factor in operational time is especially important
if we want to compare its values estimated based on data
from various experiments with various conditions. Nevertheless,
there are also some issues complicating this method. Firstly,
while estimating the operational Fano factor, we work only
with estimated intensities. Estimation of the intensity is a
simple task, but it still brings some additional uncertainty
(variance) to the value of estimator (32), which could reduce
its accuracy. Secondly, we need to determine and use only
the greatest common operational time wo available for all the
data (experiments). Suppose that we have m > 0 experiments
with observation windows wi and estimated intensities λ̂i, i =
1, . . . ,m, then

wo = min{wiλ̂i; i = 1, . . . ,m}, (33)

see Figure 2B. This implies that some data (spiking times) might
not be used, which could seem contra productive. To clarify the
severity of these problems and positives of the operational Fano
factor while comparing values from different experiments, we
perform various evaluations based on Monte Carlo simulations.

In the following we suppose that we have measured the
responses, times of spikes fired in a window (0,w], of a neuron
under two different stimuli, and we are interested in the change
of variability in the responses, measured by Fano factor. Thus,
we have two sets of n > 0 spike trains, first set with intensity
λ1 and Fano factor F1 and second with intensity λ2 and Fano
factor F2. We aim to find out, how reliable is the ratio r(F) =
F2/F1 estimated using the standard estimator (20) and using the
estimator of the operational Fano factor (32). Let us denote the
estimated ratio for the standard Fano factor as r(̂F) and for the
operational Fano factor as r(̂Fo).

We study this situation based on data generated using several
models of spike trains with various parameters. Specifically,
we use equilibrium renewal processes with gamma and inverse
Gaussian distribution, MPP with p = 0.1 and MPP with p = 1
(APP). Without the loss of generality, we fix λ1 equal to one and
vary λ2 in the interval (0, 5]. For the length of the window in
operational time we use values 1, 5 and 10 and always generate
n = 50 spike trains. For F1 and F2 we use values 0.5 and 1.5
in all combinations, thus we assume situations when Fano factor
increases, decreases and remains constant. Every situation was
repeated (generated) 2,000 times.

While using the operational Fano factor, the observation
window in the set of spike trains with the larger value of wλ̂ is
shortened. It is thus possible not the use the window which starts
at zero, but to shift it within the original window. For example,

besides starting at zero, a reasonable possibility could be shifting
it to the middle or select its position randomly. This decision
depends mainly on where the most likely information is that
we want to capture. Nevertheless, while using the equilibrium
processes as the spike trains model, the location of the window
does not matter. Therefore, in the following examples we use zero
as the beginning of the sampling window. Another possibility,
how to deal with this question, is to estimate Fano factor
repeatedly while shifting the shortened window gradually in
the original one and use average as the final estimate. This
method also removes the disadvantage of the operational Fano
factor, regarding omitting some time of spikes after shortening
the window. We evaluate performance of this method too,
specifically, we shift the window gradually so that all the spikes
are used, but as few as possible spikes are used twice. We denote
the corresponding estimator F̂õ.

Firstly, in Figure 4, there are shown the median values (across
the 2,000 repetitions) of r(̂F) and r(̂Fo) in situation when F1 =
F2. In this scenario, the true ratio of the Fano factor values
equals one. While changing intensity λ2, the standard Fano
factor shows systematically non-unit ratios, thus a false change
of variability. The problems are larger mostly for smaller w, when
the dependence of F(w) on λ is stronger. Further, the ratios do
not tend to unit value for increasing λ2, as F1(w) is generally
different from F1 [to which converges F2(w)]. Note that the initial
slight non-monotonicity of the curve for the inverse Gaussian
distribution in situation with F1 = F2 = 1.5 and w = 1 is
caused by the non-monotonicity of the corresponding curve in
Figure 3. Contrary to these inconvenient properties of standard
Fano factor, the ratios of the operational Fano factor are always
(near) one, the dependence on the intensity is removed. It holds
even for MPP with p = 0.1, where the dependence of standard
Fano factor on the intensity is very high.

When the real values of Fano factor remain constant (F1 =
F2), operational Fano factor fully removes the potentially false
change of estimated r(F), as expected. However, it does not
immediately imply, that the operational Fano factor gives better
information about r(F), e.g., the estimator can have larger
variance (as explained earlier) and thus possibly also larger MSE
or MAE. To explore this possibility we show, in Figure 5, by
how much is MAE of the standard estimator larger than MAE
of the estimator of the operational Fano factor [assuming one
as the real value of r(F)]. We also show the difference from
the improved operational Fano factor r(̂Fõ). We can see that
the operational Fano factor almost always decreases MAE, the
few opposite cases are likely just random events. Moreover, the
estimator r(̂Fõ) further decreases MAE significantly.

In Figure 6, there are shown some situations where the values
F1 and F2 in the individual experiments differ. In this case, it is
more complicated to determine the optimal results. Of course,
ideally, we would like to obtain value F2/F1 independently of λ2
as the ratio of the Fano factor estimators, but it is clearly not
possible (it would require w going to infinity). The best result we
can hope for is to obtain constant ratios of Fano factor estimates
(independent of λ2), positively correlated to F2/F1. As we can
see, the standard Fano factor does not fulfill this requirement,
the differences highly depend on λ2 (mainly for small w). The

Frontiers in Computational Neuroscience | www.frontiersin.org 7 November 2020 | Volume 14 | Article 569049

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Rajdl et al. Fano Factor: A Potentially Useful Information

FIGURE 4 | Values of r (̂F ) and r (̂Fo) for two renewal processes with gamma (full lines) and inverse Gaussian (dashed lines) probability distributions of ISIs and for

Markov Poisson processes with p = 1 (APP, dashed-dotted line) and p = 0.1 (dotted line). Fifty spike trains (n = 50) were generated twice with equal values of F

(F1 = F2 = 0.5 in upper panels and F1 = F2 = 1.5 in lower panels) and various values of λ2 (λ1 = 1). Based on this data, estimates of r(F ) were calculated. Three

sampling windows (w = 1, 5, 10) were used. All the shown values were calculated (generated) 2,000 times and the medians are shown in the graphs. The blue lines

(with circles) correspond to the estimates of standard Fano factor, the red lines (with squares) to the estimates of operational Fano factor.

behavior of the operational Fano Factor is better, as the ratios are
intensity independent at least for λ2 > 1. However, for λ2 < 1
they change highly even for this variant of Fano factor. It is caused
by the fact that decreasing of intensity decreases usable length
of the window in operational time, which causes convergence
of Fano factor to unit value. The difference from the Figure 4,
where shortening of the operational window causes no problems,
is that in Figure 4 the bias of the Fano factor estimates (for λ1
and λ2) due to the short operational window is the same for
the both estimates and therefore cancels out in their ratio. The
transformation to the operational time removes any bias of the
Fano factor estimate caused by differences in intensities, but there
is another type of bias due to the limited usage of spikes, which is
enhanced when the window is short.

6. REAL DATA EXAMPLE

Similar to the previous section, we study the change of variability
between two sets of spike trains but now recorded from real
neurons under different experimental conditions. Our aim
cannot be to show that information about variability deduced

from the operational Fano factor is more accurate than that from
the standard method because, in contrast to the simulated data,
we do not know the truth. We also do not intend to deduce
any specific conclusions about the data, our aim now is only
to show that these two methods can yield very different results.
The data sets were obtained from www.crcns.org (Kohn and
Smith, 2016), where can be found details about the experiment.
Briefly, the data consist of spike trains measured in visual
cortex of three adult Macaca fascicularis monkeys under three
different visual stimuli. While measuring the neuronal activity,
the monkeys (anesthetized and paralyzed) were watching three
different movies (white noise, a natural scene, and sinusoidal
gratings), which yielded spike trains of length 30 s from dozens
of neurons. Each experimental setting and measurement were
repeated identically 120 times. For our purpose, a much smaller
data set is sufficient, we use only a specific part of the data. We
compare Fano factor in two of the three experiments, monkeys
watching the white noise (experiment 1) and the natural scene
(experiment 2). We also use only data of one monkey from time
interval 5–10 s as it is sufficient duration for our purpose. This
part of data was selected rather randomly as exploring other parts
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FIGURE 5 | Comparison of MAE of r (̂F ), r (̂Fo), and r (̂Fõ) for two renewal processes with gamma (full lines) and inverse Gaussian (MPP, dashed lines) probability

distributions of ISIs and for Markov Poisson processes with p = 1 (APP, dashed-dotted line) and p = 0.1 (MPP, dotted line). Fifty spike trains (n = 50) were generated

twice with equal values of F (F1 = F2 = 0.5 in upper panels and F1 = F2 = 1.5 in lower panels) and various values of λ2 (λ1 = 1). Based on this data, MAE of r (̂F ),

r (̂Fo), and r (̂Fõ) were estimated and differences MAE(r (̂F ))−MAE(r (̂Fo)) and MAE(r (̂F ))−MAE(r (̂Fõ)) for various intensities calculated. Three sampling windows

(w = 1, 5, 10) were used. All the differences were calculated (generated) 2,000 times and the averages are shown in the graphs.

does not yield fundamentally different results. In this data, there
are 74 neurons each with 120 repeated spike trains. Based on
them we calculate the change of Fano factor in various windows
of length w and the change using the operational Fano factor
concept. The operational Fano factor is calculated in window
wo, using formula (33). Thus, we first estimate the intensities
in window w, λ̂1, and λ̂2, and then shorten the window in the
experiment with larger intensity according to the ratio of the
intensities. These calculations are performed for each neuron
separately—the spike trains from experiments 1 are compared
to the spike trains from experiment 2 for the same neuron.
An example of the data is shown in Figures 7A,B. Times w
and wo illustrate shortening of observation window (w) in the
spike trains with larger intensity, to obtain the greatest common
operational time (window) wo.

This way we obtain (for every w and neuron) two estimates
of standard Fano factor, F̂1 and F̂2, and operational Fano factor,
F̂o1 and F̂o2. As in the previous section, we measure the change
of the estimates as ratios, r(̂F) = F̂2/̂F1 and r(̂Fo) = F̂o2/̂Fo1.
Note that median values of Fano factors and intensities estimated
in the whole window (w = 5 s) are m(̂F1) = 6.62, m(̂F2) =
4.05, m(λ̂1) = 3.48 spikes/s, and m(λ̂2) = 4.77 spikes/s. The

values of F are relatively high, which is given partially by bursting
character and partially by some inhomogeneous behavior of the
spike trains in time, resulting from the nature of the experiments
(mainly for the movie scenario). This violates the theoretical
assumptions, however, as we study the data mostly in short time
intervals, the influence should not be serious.

The relation of r(̂Fo) to r(̂F) is shown in Figure 7C. The value
d is calculated as the mean absolute difference between r(̂F) and
r(̂Fo). We can see that the differences of the results obtained by
these two methods can be relatively large, there are even frequent
cases when one method shows increase of variability and the
other one a decrease [the largest difference is for r(̂F) = 1.88 and
r(̂Fo) = 0.78]. Of course, for small w the differences are small
(w = 0.002 and w = 0.005), but they increase with increasing w
and later decrease again. For w = 5 the difference d is practically
the same as for w = 0.005 (although the distributions of the
underlying data are different). It corresponds to the theoretical
results, for both small and large w the influence of intensity on
Fano factor decreases and thus the application of the operational
Fano factor in these situations does not change the results much.
We can also see that for λ̂1 < λ̂2 it is more likely that r(F̂o) < r(̂F)
and vice versa. This is not a general rule, in this case, it is caused
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FIGURE 6 | Values of r (̂F ) and r (̂Fo) for two renewal processes with gamma (full lines) and inverse Gaussian (dashed lines) probability distributions of ISIs. Fifty spike

trains (n = 50) were generated twice with various values of F (F1 = 0.5, F2 = 1.5 in upper panels and F1 = 1.5, F2 = 0.5 in lower panels) and various values of λ2

(λ1 = 1). Based on this data, estimates of r(F ) were calculated. Three sampling windows (w = 1, 5, 10) were used. All the shown values were calculated (generated)

2,000 times and the averages are shown in the graphs. The blue lines (with circles) correspond to the estimates of standard Fano factor, the red lines (with squares) to

the estimates of operational Fano factor.

by the fact that the spike trains are mostly highly variable (F > 1),
which leads to this behavior. The reason is that we are shortening
the window in the second experiment and then, from Equation
(10), the value of Fano factor mostly decreases nearer to one,
decreasing also the ratio r(F̂o).

7. DISCUSSION AND CONCLUSIONS

The dependency of the Fano factor on firing intensity has been
investigated in the previous sections. We studied the effect
of the firing rate on the sampling Fano factor F(w). This
approach should not be confused with the study of the objective
dependency of the Fano factor, F, on the firing intensity, which is
described in some experimental studies and in many theoretical
models. If an increase in the firing rate is not accompanied by
the same increase in the variance of the number of spikes, then
the Fano factor F changes with the firing rate. For theoretical
treatment of this problem, see Koyama (2015), Stevenson (2016),
and Charles et al. (2018).

The Fano factor is commonly seen as an analogy to CV based
on the numbers of spikes instead of ISIs. They both create two
basic measures of variability in series of events. However, the

analogy is not accurate. The reason is that the idea of removing
the influence of the rate does not work for F(w) as for CV as the
random variable N(w) depends on linear change of rate (time).
The definition (8) is based on a different justification, namely,
it is the variance of a counting process related to the variance
of Poisson process with the same intensity. For Poisson process
the mean count equals its variance and it implies Equation
(8). Because of the importance of Poisson process, F(w) is just
a relative variability of the investigated process with respect
to the Poisson process. The reason F(w) became popular as
variability measure is its relation to CV for renewal processes
(11). However, there is an important difference from CV, the
additional parameter—the length of the observation window w,
which (often highly, mainly for lower w) influences the value of
F(w), whereas (theoretical) CV remains constant. Of course, in
practice, estimation of CV is also performed for a limited number
of ISIs (in other words, in a fixed observation window), leading to
similar problems, but of a different nature (caused by censoring
of ISIs) (Pawlas and Lansky, 2011; Rajdl and Lansky, 2014). The
aim of this paper is to stress that the Fano factor does not parallel
the simple notion of CV of ISIs for the case of counts, as often
implicitly assumed.We show that even for simple and commonly
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FIGURE 7 | (A,B) Example of spike trains from one neuron, for the experiment 1 (A) and experiment 2 (B). (C) Comparison of changes of variability in two

experiments measured by standard Fano factor, r (̂F ), and operational Fano factor, r (̂Fo), for various length of the observation window w. The values were estimated

from experimental data, spike trains from 74 neurons recorded under two experimental conditions. Each point corresponds to one neuron and they are distinguished

by color and shape according to values of estimated intensities λ̂1 and λ̂2. Value d is the mean absolute difference between r (̂F ) and r (̂Fo).

Frontiers in Computational Neuroscience | www.frontiersin.org 11 November 2020 | Volume 14 | Article 569049

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Rajdl et al. Fano Factor: A Potentially Useful Information

used renewal models the dependence on λ must be accounted for
(i.e., by the method of operational time).

If the Fano factor is employed to measure the variability of
spike trains (or other events occurring in time), the effect of
the intensity has to be removed. This is not an unknown fact,
but it is almost always overlooked or (probably) not entirely
understood. We have explored and explained this issue in detail
and showed that Fano factor needs to be used carefully. First,
we have theoretically explained the influence of intensity on the
values of the Fano factor, and illustrated it using several models
of neural spike trains. Next, we described how to avoid potential
problems - by estimating Fano factor in operational time and
defined the intensity-independent approach (the operational
Fano factor). Finally, we showed the benefits of the operational
Fano factor while comparing the variability in two experiments
with different intensities. For the theoretical results and studies
based on Monte-Carlo simulations, we used renewal processes
and their generalization (Markov renewal processes) as the spike
train models.

It is important to emphasize that the theoretical part of the
paper was based on specific models of the spike trains, mostly
renewal processes. In reality the behavior of neuronal spike trains
can be of course much more complex. Let us remind here the
main simplifications made when modeling spike trains using the
renewal processes, as their violation can cause misinterpretation
of the achieved results, for a more detailed discussion see Nawrot
et al. (2008). Firstly, the stationarity in time is assumed. This
condition can be sufficiently fulfilled in spontaneous activity,
but seriously violated in a response to a stimulus. In such a
situation, estimation of time dependent intensity and following
transformation to operational time can be performed as in
Nawrot et al. (2008). However, when the time dependence of
intensity is not too significant and the observation window is
relatively small (as it mostly is while estimating Fano factor),
assuming stationarity in time can be sufficiently accurate. The
second possible violation of the theoretical assumptions is non-
stability across trials, e.g., when the firing rate in consecutive trials
is not constant. This is a troublesome problem, as it is difficult
to distinguish between the intrinsic changes and systematic ones.
An indicator of this issue can be joint analysis of both F and CV,
as in such a situation F tends to be larger than CV2 (Nawrot,
2010). Finally, the renewal assumption is often found violated
in real data and it has a large effect on the dependency of the F
estimate on the length of the observation window, as shown in
Chacron et al. (2001), Farkhooi et al. (2009), and Avila-Akerberg
and Chacron (2011).

Additionally, to these three potentially critical points we
assumed that scaling of time is equivalent to the scaling of
intensity, in other words that the ISI distribution belongs to the
scale family. It is also a simplification, however, the majority
of frequently applied ISI distributions (Gamma and Inverse
Gaussian) belong to this family. A warning example when
this condition is violated can be consideration of the absolute
refractory period, expressed in real (fixed) time. It would imply
that the intensity and the observation window are not fully
interchangeable and estimating both standard and operational
Fano factors, these issues should be kept in mind.

Under the mentioned assumptions, the results can be
summarized in the following points.

• Values of Fano factor calculated in a finite window depend on
the intensity, even if other characteristics of the spike trains are
fixed. Intensity independent (for renewal processes) is only the
limit value F, the values F(w) are influenced by λ, mainly for
small w.

• the influence of the intensity is caused by the fact, that changes
of intensity are equivalent to changing the length of the
observation window with fixed intensity. Note that this holds
under the definition of intensity λ = 1/E(T) and T from the
scale family of distributions. However, for example, in a model
with absolute refractory period, the interchangeability ofw and
λ does not hold.

• to remove the influence of the intensity, it is suitable to
calculate Fano factor in time linearly transformed so that
λ = 1 (operational time) and we show how to calculate an
operational Fano factor.

• the influence of intensity has to be taken into account mainly
while comparing results from two (or more) experiments. If
the intensity is not same, any comparison of Fano factors
could be misleading. We show, for example, that a change of
intensity causes a false change of estimated Fano factor even if
F remains fixed.

• This problem can be (mostly) eliminated by using Fano
factor calculated in the operational time, when the values are
compared for the greatest common operational time.

• If Fano factor is the same between different experiments, the
operational Fano factor removes otherwise false change in the
observed values. The bias of the differences of the estimated
Fano factor is zero and MAE is (in studied cases) smaller than
for the standard estimator.

• If the values of Fano factor change between the experiments,
the situation is more complex. The operational Fano factor
ensures better behavior of the estimates from the point of view
of the influence of the intensity, however, it is still necessary to
be careful about interpretation of the obtained values even for
the operational Fano factor.

• When using operational Fano factor to compare various
experiments, some data are wasted. This can be seen
as a drawback of the method. It is, however, possible
to use all the data so that we shift the shortened
window and calculate the estimates of Fano factor multiple
times and average them. We show that this procedure
further decreases MAE of the estimated differences of
Fano factor.
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