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The apparent stochastic nature of neuronal activity significantly affects the reliability

of neuronal coding. To quantify the encountered fluctuations, both in neural data and

simulations, the notions of variability and randomness of inter-spike intervals have been

proposed and studied. In this article we focus on the concept of the instantaneous

firing rate, which is also based on the spike timing. We use several classical statistical

models of neuronal activity andwe study the corresponding probability distributions of the

instantaneous firing rate. To characterize the firing rate variability and randomness under

different spiking regimes, we use different indices of statistical dispersion. We find that

the relationship between the variability of interspike intervals and the instantaneous firing

rate is not straightforward in general. Counter-intuitively, an increase in the randomness

(based on entropy) of spike times may either decrease or increase the randomness of

instantaneous firing rate, in dependence on the neuronal firingmodel. Finally, we apply our

methods to experimental data, establishing that instantaneous rate analysis can indeed

provide additional information about the spiking activity.

Keywords: variability, randomness, firing rate, entropy, rate coding, neural coding, temporal coding, instantaneous

firing rate

1. INTRODUCTION

One of the primary research areas of computational neuroscience is dedicated to understanding
the principles of neuronal coding, i.e., the way information is embedded into neuronal signals. It is
generally understood that neurons use brief electrical impulses (called action potentials or spikes)
to convey information. The way information is presented in the time sequence of spikes, however,
is still a matter of debate (Shadlen and Newsome, 1994; Stein et al., 2005).

A widely accepted answer to the problem is the rate coding hypothesis, which says that the
neurons transmit information through the average number of spikes sent along the axon per a
certain time window (this is called the mean firing rate). The origin of this theory is credited to
Edgar Adrian who found out that the firing rate of the stretch receptor of a frog’s muscle changes as
a function of stimuli (Adrian, 1926). However, since then, many studies have shown that neurons
can encode information without necessarily changing the mean firing rate in response to a stimulus
(Perkel and Bullock, 1968; Gerstner and Kistler, 2002; Rigotti et al., 2013; Dettner et al., 2016)
prompting the temporal coding hypothesis, which states that the temporal structure of the ISIs
is also employed in the embedding of neural information in the spike train (Theunissen andMiller,
1995). Theoretically, information can be encoded in the temporal pattern of the ISIs in an infinite
number of ways (Thorpe and Gautrais, 1997; Jacobs et al., 2009; Ainsworth et al., 2012), therefore
measures are needed to quantify the features of spiking neuronal signals from different perspectives
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(Perkel and Bullock, 1968; Victor and Purpura, 1997; Buračas
and Albright, 1999; Rieke et al., 1999; Nemenman et al., 2004). A
possible way of looking at the role of temporal structures can be
through variability coding hypothesis (Perkel and Bullock, 1968)
which states that neuronal variability may not be entirely noise,
and part of it might reflect the aspects of neural code that is not
yet understood; whether it is the variability of the ISIs or of the
firing rate. A standard measure for comparing variability in spike
trains is through the coefficient of variation (CV ) which is defined
as the ratio of standard deviation to the mean of ISIs (Barbieri
and Brunel, 2007). Variability of the firing rate is measured by the
Fano factor (Ditlevsen and Lansky, 2011; Rajdl and Lansky, 2013;
Stevenson, 2016) which is defined as the ratio of variance to the
mean number of spikes in a fixed time window.

Another concept that is similar to variability but not
equivalent, is the notion of randomness (Kostal et al., 2007b).
Variability and randomness both are used as a differentiating
measure in the cases where spike trains might seem similar
from the rate coding perspective. It is important to distinguish
between the two quantities because highly variable data might
not be random at all if it consists of relatively predictable values.
For example multi-modal data with well separated peaks may
have higher variability than uniformly distributed data where the
outcomes are the least predictable. Shannon’s entropy (Shannon
andWeaver, 1949) is widely used to measure randomness (Steuer
et al., 2001; McDonnell et al., 2011; Watters and Reeke, 2014),
however it is not suitable for continuous distributions. Few other
randomness measures based on entropy have been used in neural
context recently. In Kostal et al. (2007a) and Kostal et al. (2013)
the authors propose a randomness measure for ISIs, creating an
alternative toCV ; whereas an entropy based randomnessmeasure
of spike counts is introduced in Rajdl et al. (2017), analogous to
the Fano factor.

The instantaneous rate is often ambiguously defined as
the inverse of a certain inter-spike interval, e.g., of the first
complete ISI after stimulus onset, or of a combination of first
n intervals, etc. (Bessou et al., 1968; Awiszus, 1988; Lansky
et al., 2004). However, statistically consistent definition of the
instantaneous rate (Kostal et al., 2018) cannot depend on the
“intrinsic” timing given by the particular spike train realization
(e.g., the first evoked spike). Instead, it must be evaluated
with respect to the “external” time frame, consistently across
trials, i.e., asynchronously with respect to individual spike train
realizations. In this paper we consider models of spike trains
described by renewal processes, and investigate the dependence
between the ISI dispersion coefficients and instantaneous rate
dispersion coefficients and emphasize that instantaneous rate
provides another perspective in the evaluation of neuronal data.

The paper is divided as follows: first, the concept of
instantaneous rate is introduced. Next, the concepts of variability
and randomness are defined formally. In section 2, we derive
the instantaneous rate distribution and the related dispersion
measures for a few of the most commonly used models of steady-
state neuronal activity. Included models are restricted to the
framework of renewal spiking activity for the purpose of this
paper. In section 3, we compare the dispersion characteristics
of the neuronal models from rate coding and temporal coding

perspectives. Upon comparison we find that for some neuronal
models, the firing patterns have a different level of randomness
in different settings whereas for others, the changed perspective
of observation (from rate to temporal) does not affect the
randomness of the data. More details on this is available in
section 4.

2. MATERIALS AND METHODS

2.1. Instantaneous Rate
The class of stochastic processes whose realization consists
of a sequence of point events in time is called stochastic
point processes (Cox and Miller, 1965). Neuronal spike trains
are often described as stochastic point processes, with spikes
corresponding to events. There are essentially two ways of
describing point processes, either in terms of the number
of events occurring in a time window, or in terms of the
intervals between these events. Consequently, a spike train can
be described either by using a sequence of the occurrence
times of its individual spikes, X1,X2, ... (see Figure 1A) or
through the ISIs defined as Ti = Xi+1 − Xi. Generally, the
point process is stationary if the underlying joint probability
distribution of the numbers of the spikes in k time intervals
(t′1 + h, t′′1 + h), (t′2 + h, t′′2 + h), ...(t′

k
+ h, t′′

k
+ h) does not

depend on displacement variable h (Cox and Lewis, 1966,
p. 59). In this paper, we consider an important class of
stationary point processes, the renewal point processes, in
which the length T of consequent ISIs is an independently
and identically distributed random variable with the probability
distribution function (pdf) fT , T ∼ fT(t). Renewal processes
are often used to model the activity of spontaneously active cells
(Tuckwell, 1988).

Let the number of spikes that occur in the time interval [0,w]
be denoted by N(w). A natural way of calculating the firing rate
is to divide the number of spikes N(w) by the time window w.
The mean of ISIs, E(T), satisfies the following relationship with
the mean of the counting process E[N(w)] (Cox and Lewis, 1966;
Rudd and Brown, 1997),

lim
w→∞

E(N(w))

w
=

1

E(T)
= λ. (1)

where λ is the point process intensity (Cox and Lewis, 1966).
For finite w, Equation (1) holds true for renewal processes

only if time origin t0 is arbitrary, i.e., it is not related
to the renewal point process realization (Figure 1B). In this
case, t0 falls into some ISI, say Tk. Then the sequence of
random variables (W,Tk+1,Tk+2, ...), where W is the time to
the first spike from the origin, is not stationary. Moreover,
the point process intensity λ is equal to the mean firing
rate. The corresponding renewal process is referred to as
equilibrium renewal process, as opposed to the ordinary renewal
process which starts from an arbitrary spiking event and
all the ISIs follow the same renewal pdf (Cox and Miller,
1965).

The instantaneous firing rate is typically defined as the inverse
of the ISIs (1/T) (Pauluis and Baker, 2000). However, as proven in
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FIGURE 1 | Length-biased ISIs and instantaneous rate. (A) An overview of the ISIs when the spikes occur at times Xi−1,Xi ,Xi+1, .... We assume that the ISIs are

independent and identically distributed with pdf fT (t), under steady state conditions. (B) When the observation time t0 is fixed with respect to some reference time,

unrelated to the spike times, the probability of observing a particular ISI is proportional to its length. These “length-biased” intervals (T̃ ) are used to define the

instantaneous rate R with the property E(R) = 1/E(T ). (C) A graphical representation of how the ISI distributions can visually differ from the instantaneous rate

distributions, for some well-known ISI models with equal mean firing rate. (D) A summary of the concepts of variability and randomness for the two ways of spike train

description that we have considered in this article.

Lansky et al. (2004), the mean instantaneous firing rate is higher
than or equal to the mean firing rate,

E

(

1

T

)

≥
1

E(T)
(2)

with equality if all the ISIs are of the same length.
The undesirable inequality in Equation (2) becomes equality

once we realize that the “time instant” (at which the

instantaneous rate is measured) does not generally coincide

with a spike. As shown in Kostal et al. (2018), the instant
is chosen with respect to the “external” time frame, across

trials, i.e., asynchronously with respect to individual spike train

realizations. Consequently, the probabilities of observed ISIs (T̃)
are proportional to their length, T̃ ∼ λt̃fT(t̃) (Figure 1B). The
mean inverse of these length-biased ISIs equals to the mean firing
rate λ.
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The instantaneous rate R = 1/T̃ observed, in this case, is a
random variable described by the pdf,

fR(r) =
1

E(T)

fT(1/r)

r3
, (3)

For a detailed overview of the derivations, refer to Kostal et al.
(2018).

An immediate consequence of Equation (3) is,

E

(

1

T̃

)

= E(R) =
1

E(T)
= λ. (4)

Hence, for the purpose of the derivation of instantaneous
rate distributions for different models of steady-state firing
(Figure 1C), we will restrict ourselves to the case of equilibrium
renewal process. The variability of instantaneous rate is explored
in the next section.

2.2. Quantification of Variability and
Randomness
The most common method to measure statistical dispersion of
ISIs, described by a continuous positive random variable T, is the
standard deviation σ (T), defined as

σ (T) =
√

E([T − E(T)]2). (5)

The relative dispersion measure quantity is known as coefficient
of variation CV (T),

CV (T) = λσ (T) (6)

where λ = 1/E(T). The coefficient of variation CV (T) is a
dimensionless quantity and its value does not depend on the
choice of the units of ISIs or on linear scaling; hence it can be
used to meaningfully compare the ISI distributions with different
means, unlike σ (T) (Softky and Koch, 1993; Doron et al., 2014).

From Equation (3), we can write the standard deviation for the
instantaneous rate as

σ (R) =
√

λE(1/T)− λ2, (7)

which leads to the relative dispersion measure,

CV (R) =
√

E(1/T)

λ
− 1. (8)

From Equation (5), it follows that σ or CV measure how much
the probability distribution is “spread” with respect to the mean
value but these quantities do not describe all possible differences
between spike trains with equal rate coding characteristics. Spike
trains of equal variability may still differ in higher than second
statistical moments. Moreover, neither σ nor CV quantifies how
random or unpredictable the outcomes are Kostal et al. (2007a).

To quantify randomness as a further describing characteristic
of a spike train, entropy based measures like differential entropy
(Shannon and Weaver, 1949), h, have been proposed

h(fX) = −
∫

fX(x) ln fX(x)dx. (9)

where X is a continuous random variable with pdf fX . However,
h(fX) by itself can not be used as a measure of randomness since
it can take both positive and negative values and depends on the
scaling of the random variable X. Kostal and Marsalek (2010)
proposed the entropy-based dispersion coefficient σh,

σh = exp(h(fX)− 1). (10)

Entropy-based dispersion σh can be interpreted with the help
of asymptotic equipartition property (Principe, 2010; Cover and
Thomas, 2012), the details of which can be found in Kostal et al.
(2013). Analogous to Equation (6), the relative entropy-based
measure of dispersion, Ch is defined as

Ch = λσh. (11)

An immediate consequence of the above equation is that the
maximum value of Ch is Ch = 1, which occurs only in the case of
exponential fT .

3. RESULTS

Among the different point process models of stationary neuronal
activity, we have chosen the classically used Gamma, lognormal,
inverse Gaussian, shifted exponential, and the mixture of
exponential distributions (Tuckwell, 1988).

First three distributions are part of the scale family (Casella
and Berger, 2002), i.e., their ISI pdfs fT(t; λ), explicitly
parameterized by the intensity λ, satisfy the relationship

fT(t, λ) = λfT(tλ, 1). (12)

We explore these neuronal models in the following subsections
(Figure 1D). Detailed derivations of the following results are
provided in the Supplementary Material for better legibility.

3.1. Gamma Distribution
Gamma distribution is frequently used as a descriptor of ISIs in
experimental data analysis (Levine, 1991; McKeegan, 2002; Reeke
and Coop, 2004; Pouzat and Chaffiol, 2009), its pdf is

fT(t) =
bata−1e−bt

Ŵ(a)
, (13)

where Ŵ(z) =
∫ ∞
0 xz−1e−xdx is the gamma function and a > 0,

b > 0 are the parameters. The mean firing rate and the coefficient
of variation are,

λ =
b

a
, CV (T) =

1
√
a
. (14)

Using Equation (9), the expression for the entropy of the ISI
distribution is derived as

h(fT) = log

(

Ŵ(a)

b
ea+(1−a)ψ(a)

)

, (15)

where ψ(x) = Ŵ′(x)/Ŵ(x) is the digamma function.
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Substituting the values from Equations (14) and (15) into
Equation (11), gives the dispersion coefficient of randomness,

Ch(T) =
Ŵ(a)

a
ea+(1−a)ψ(a)−1. (16)

The instantaneous rate distribution fR(r) is obtained through
Equation (3) and it follows the inverted gamma distribution,

fR(r) =
ba+1r−a−2e−b/r

Ŵ(a+ 1)
. (17)

Coefficient of variation CV (R) is evaluated through Equation (8),

CV (R) =
√

1

a− 1
, a > 1. (18)

The differential entropy for fR(r) is,

h(fR) = log(Ŵ(a+ 1)be(a+1)−(a+2)ψ(a+1)), (19)

and the dispersion coefficient of randomness is,

Ch(R) = aŴ(a+ 1)ea−(a+2)ψ(a+1). (20)

The dispersion measures CV (T) and CV (R) are related through
the following equation,

CV (R) =
CV (T)

√

1− CV (T)2
. (21)

This relationship is illustrated in Figure 2 and we see that
CV (R) → ∞ asCV (T) → 1. ForCV (T) = 1, gamma distribution
becomes exponential distribution with pdf,

fT(t) = λe−λt . (22)

Note that the firing intensity λ completely characterizes the
exponential distribution and that CV (T) = 1, regardless of the
value of λ. The entropy h(fT) of the exponential distribution is

h(fT) = 1− ln λ. (23)

One of the key features of the exponential distribution is that, for
a fixed mean firing rate λ, it maximizes the differential entropy
among all probability distributions on the real positive half line
(Cover and Thomas, 2012). Deriving from Equation (11),

Ch(T) = 1. (24)

The corresponding instantaneous rate distribution, follows from
Equation (3),

fR(r) =
λ2e−λ/r

r3
(25)

which is the inverse gamma distribution mentioned in Equation
(17) with a = 1 and b = λ. For the inverse gamma distribution,
the second moment exists only when a > 1. In Figure 3, we
can see where gamma distribution becomes exponential and has
Ch(T) = 1.

FIGURE 2 | Comparison of CV (T) and CV (R) for several standard statistical

ISI models. For the gamma distribution, CV (R) → ∞ as CV (T ) → 1, since

gamma distribution becomes exponential for CV (T ) = 1. For lognormal and

inverse Gaussian distribution, the relationship between the dispersion

coefficients is an identity. For shifted exponential distribution, CV (T ) and CV (R)

depend on the mean firing rate λ and the refractory period τ . Hence, we vary

the value of CV (T ) and CV (R) (consequently of λ and τ ) and we see that

CV (R) > CV (T ) until CV (T ) = 0.7715 but then instantaneous rate distribution

maintains a higher variability than ISIs. As CV (T ) → 1, the shifted exponential

becomes exactly exponential and therefore CV (R) → ∞.

FIGURE 3 | Relationship between the dispersion coefficients of randomness

for the gamma, lognormal, inverse Gaussian, and shifted exponential

distribution of ISIs. Starting from the origin, the arrow indicated to the end

corresponds to CV (T ) values ranging from 0 to ∞. For the first three

distributions, which are part of the scale family and for which we consider

λ = 1 for a meaningful comparison, it holds that for CV (T ) → 0, we see that

Ch(T ) → 0 for Ch(R) → 0. As CV (T ) grows, the randomness grows for ISIs and

instantaneous rate in the beginning. After a certain point, the randomness

starts to decline and as CV (T ) → ∞, we have Ch(T ) → 0 and Ch(R) → 0. For

the shifted exponential distribution where we have to consider a varying CV (T )

and for that a varying mean firing rate λ and refractory period τ , Ch(T )

increases monotonously as a function of CV (T ), whereas Ch(R) obtains its

maximum for CV (T ) = 0.85 and then declines.

3.2. Lognormal Distribution
The lognormal distribution represents a common ISI descriptor
in experimental data analysis (Levine, 1991; Pouzat and Chaffiol,
2009), even though it is rarely presented as a result of any of the
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neuronal models (Bershadskii et al., 2001). The pdf is,

fT(t) =
1

σ t
√
2π

exp

{

−
(ln t − lnm)2

2σ 2

}

, (26)

wherem is the scale parameter and σ > 0 is the shape parameter.
The mean firing rate and coefficient of variation are as follows,

λ =
1

meσ
2/2

, CV (T) =
√

eσ
2 − 1. (27)

We compute the differential entropy

h(fT) =
1

2
log(2πeσ 2m2), (28)

and the dispersion coefficient of randomness,

Ch(T) = σ
√
2πe−(σ 2+1)/2. (29)

The instantaneous rate distribution follows the pdf,

fR(r) =
1

meσ
2/2

1

r2σ
√
2π

exp
{

−
(ln r + lnm)2

2σ 2

}

, (30)

with

CV (R) =
√

eσ
2 − 1. (31)

The expression for the differential entropy is derived from
Equation (11),

h(fR) =
1

2
log

(

2πeσ 2

m2e2σ
2

)

. (32)

The dispersion coefficient is evaluated as,

Ch(R) = σ
√
2πe−(σ 2+1)/2. (33)

For the lognormal distribution, there is a “symmetric”
relationship between fT(t) and fR(r) (Kostal et al., 2018),

fR(r; λ) = fT(r; 1/λ), (34)

i.e., the shape of the probability distributions of ISI and
instantaneous rates are exactly the same for λ = 1. Furthermore,
the relationship between CV (T) and CV (R) is that of an identity
(Figure 2),

CV (R) = CV (T) (35)

and from Equations (29) and (33), we have

Ch(T) = Ch(R). (36)

For lognormal distribution, the randomness and variability of
instantaneous rate and ISI are the same, regardless of the
perspective, as seen in Figures 2, 3.

3.3. Inverse Gaussian Distribution
Inverse Gaussian distribution is often fitted to experimentally
observed ISIs (Gerstein andMandelbrot, 1964; Berger et al., 1990;
Levine, 1991; Pouzat and Chaffiol, 2009). The time that a Weiner
process with positive drift takes to reach the first passage time
is distributed according to the inverse Gaussian distribution.
The probability density of inverse Gaussian distribution can be
expressed as a function of its mean a > 0 and scale parameter
b > 0

fT(t) =
√

a

2πbt3
exp

{

−
1

2b

(t − a)2

at

}

, (37)

with

λ =
1

a
, CV (T) =

√
b. (38)

From Equation (9), the expression for differential entropy is,

h(fT) =
1

2
log(2πa2be)+

3e1/b
√
2πb

K(1,0)

(

−
1

2
,
1

b

)

, (39)

where K
(1,0)
ν (z) is the derivative of the modified Bessel function of

the second kind (Abramowitz and Stegun, 1972).

K(1,0)
ν (z) =

∂

∂ν
Kν(z). (40)

Equation (11) gives,

Ch(T) =
√

2πb

e
exp

{

3e1/b
√
2πb

K(1,0)

(

−
1

2
,
1

b

)}

. (41)

The instantaneous firing rate follows the distribution

fR(r) =
√

1

2πabr3
exp

{

−
1

2b

(1− ar)2

ar

}

. (42)

From Equation (8),

CV (R) =
√
b, (43)

and from Equation (9), differential entropy is,

h(fR) =
1

2
log

(

2πbe

a2

)

+
3e1/b
√
2πb

K(1,0)

(

−
1

2
,
1

b

)

. (44)

The expression for the dispersion coefficient of randomness is as
follows,

Ch(R) =
√

2πb

e
exp

{

3e1/b
√
2πb

K(1,0)

(

−
1

2
,
1

b

)}

. (45)

Analogous to the lognormal distribution, we observe that the
inverse Gaussian distribution also satisfies the “symmetrical”
property (Equation 34) and,

CV (T) = CV (R), Ch(T) = Ch(R). (46)

Results from Figures 2, 3 illustrate this curious property that the
randomness and variability of this distribution is equal for ISIs
and instantaneous rate perspective.
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3.4. Distribution Involving a Refractory
Period
The refractory period is a state of the neuron, occurring right after
a spike, where it is impossible for another spike to be emitted.
A shifted exponential distribution function is used as an ISI
descriptor for neurons with refractory period τ (Reeke and Coop,
2004). The probability density function of the shifted exponential
function with parameter a > 0 and refractory period τ ≥ 0 is

fT(t) =
{

0, t ≤ τ

ae−a(t−τ ), t > τ
(47)

with

λ =
a

1+ aτ
, CV (T) =

1

1+ aτ
. (48)

We observe that CV (T) < 1 for a > 0 and τ > 0. The differential
entropy for the shifted exponential distribution is evaluated as

h(fT) = log

(

e

a

)

, (49)

and substituting these values into Equation (11), we arrive at

Ch(T) =
1

1+ aτ
. (50)

The pdf of the instantaneous rate is,

fR(r) =
{

0, r ≥ 1/τ
a2

r3(1+aτ )
e−a( 1r−τ ), r < 1/τ

(51)

with

CV (R) =
√

(1+ aτ )eaτŴ(0, aτ )− 1 (52)

where Ŵ(s, x) =
∫ ∞
x ts−1e−tdt is the upper incomplete gamma

function (Abramowitz and Stegun, 1972).
Evaluation of the differential entropy fromEquation (9) yields,

h(fR) = − log

(

a2

1+ aτ

)

−
3(1+ eaτŴ(0, aτ )+ (1+ aτ ) log τ )

1+ aτ

+
2+ aτ

1+ aτ
(53)

Expression for the dispersion coefficient is derived through
Equation (11),

Ch(R) =
1+ aτ

a
exp

{

− log

(

a2

1+ aτ

)

−
3(1+ eaτŴ(0, aτ )+ (1+ aτ ) log τ )

1+ aτ
+

2+ aτ

1+ aτ
− 1

}

.

(54)

For the shifted exponential distribution, we observe that from
Equation (48),

a =
λ

1− λτ
, (55)

which leads to,

CV (T) = 1− λτ , (56)

i.e., CV (T) depends on λ and τ . Hence, in order to analyze the
relationship betweenCV (T) andCV (R) we have to vary the values
of λ and τ (Figure 2).

Substituting the values from Equations (55) and (56) into
Equation (54), we get

CV (R)

=

√

(

1+
1− CV (T)

CV (T)

)

exp

(

1− CV (T)

CV (T)

)

Ŵ

(

0,
1− CV (T)

CV (T)

)

− 1

(57)

The dispersion coefficient of randomness Ch(R) increases until
it attains its maximum value 0.8137 for CV (T) = 0.85, whereas
Ch(T) keeps increasing monotonously. This behavior can be
better understood by looking at the behavior of Ch(R) while
CV (T) increases in Figure 6C. It is observed that Ch(R) attains
its maximum value and then declines as CV (T) → 1, whereas
Ch(T) monotonously increases.

3.5. Mixture of Two Exponential
Distributions With Refractory Period and
Application to Experimental Data
Throughout the years, empirical studies have produced evidence
of bimodal or multimodal trends in ISI data (Rodieck et al.,
1962; Nakahama et al., 1968; Obeso et al., 2000; Dorval et al.,
2008). The underlying assumption is that a neuron might be in
one of the several “states,” with each state being characterized by
a different ISI distribution (Tuckwell, 1988). A mixture of two
distributions is commonly used to modal such data, for example,
Bhumbra and Dyball (2004) used a mixture of two lognormal
distributions as an ISI descriptor of supraoptic nucleus neurons,
and recently gamma-exponential mixture distribution has been
used to characterize the ISI distribution in the auditory system
(Heil et al., 2007; Neubauer et al., 2009).

In this section, we consider the mixture of two exponential
distributions (Tuckwell, 1989), which is often used to describe
the bursting activity in neurons, where a sequence of short ISIs is
dispersed among comparatively longer ISIs. In 1965, Smith and
Smith (1965) used the mixture of two exponential distributions
to explain the bursting activity in the isolated cortical neurons
of an unanesthetized cat. Thomas (1966) used mixed exponential
distributions to describe the ISIs in their study of the clustered
firing of cortical neurons. Trapani and Nicolson (2011) found
that in the lateral line organs of a zebrafish, when the depolarizing
currents were blocked, the ISI data of afferent neurons was best
described by a mixture of exponential distributions.

The pdf of the mixed exponential distribution with refractory
period τ ≥ 0 and mixture components with parameter a >

0, b > 0, a 6= b is given by

fT(t) =
{

0, t ≤ τ

pae−a(t−τ ) + (1− p)be−b(t−τ ), t > τ
(58)
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FIGURE 4 | Dispersion measures of the mixed exponential distribution with refractory period randomly set to τ = 0.2 and variable weight of components as p ∈ [0, 1]

in the direction of the arrows. The rate parameter of one component is fixed at a = 1 whereas the rate parameter b of the second component varies. When p = 0 or

p = 1, the distribution is shifted exponential with refractory period τ . The dispersion measure of randomness Ch(T ) describes CV (T ) uniquely when the a = 1,b = 1/2,

whereas the reverse is not true (A). This relationship gets complicated with the increasing separation between the rate parameters of the components. As seen in

(B–D), the relationship between the other dispersion measures is relatively complicated and non-unique for the given set of parameters.

where p ∈ (0, 1). In this case,

λ =
ab

pb(1+ aτ )+ (1− p)a(1+ bτ )
. (59)

The analytical expressions for the CVs and Chs are difficult
to obtain, however, they can be calculated numerically for a
given set of parameters (Figure 4). The parameter range for this
distribution can be vast, we analyze the dispersion coefficients for
a few different sets of component rate parameters a and b, given
a value of τ and p ∈ [0, 1]. We study the change in randomness
and variability as probability variable p increases in the direction

of the arrows. The behavior of this model is relatively complicated
but for selected cases, such as when a = 1, b = 1/2, or a = 1, b =
1/4, different firing regimes are uniquely described by Ch(T) but
not by CV (T).

Song et al. (2018) model the spike generation in the
spontaneously active afferent neurons of the Zebrafish lateral
line, as a renewal process. The authors propose that a spike is
generated if the neuron is recovered from the refractory period
and a synaptic release (excitatory input) from hair cells has
arrived and thus ISI T = τ + TE where τ is the absolute
refractory period and TE is the time to excitation (we omit
the small relative refractory period used in the original paper,
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FIGURE 5 | Comparison between the dispersion coefficients of variability and randomness of the experimental data for the data sets used in Song et al. (2018). The

ISI data has two components: the refractory period and the hair-cell synaptic release time (the time to excitation input). Latter is modeled by a mixture distribution of

two exponentials. The color gradient indicates the mean firing rate of the particular data set. The comparison of various dispersion quantities reveal various aspect to

differentiate the data sets. As seen in (A), Ch(T ) classifies the data sets in a similar category from the randomness perspective even if their ISI variability are on a wider

scale. The dispersion measure of variability CV (R) also does a better job of differentiating among the data sets in (B) when their randomness dispersion measure would

put them in a similar category. In (C), CV (T ) and CV (R) reveal separate aspects of the data sets. Overall CV (R) helps differentiate among the data sets with similar CV (T )

values. Finally in (D) we can see that Ch(R) further differentiates the data sets with equal Ch(T ). The data sets which might have similar randomness on the ISI scale,

can be differentiated on the basis of their instantaneous rate randomness. All of these figures support our assertion that dispersion measures of instantaneous rate

provide additional information that can be helpful in distinguishing the data sets.

for computational simplicity). It is demonstrated in the paper
that the mixture of exponential distributions used to model the
hair cell synaptic release time TE, yields the best fit for the
ISI data. The pdf of the ISI, in this case is given by Equation
(58). We calculated Ch and CV for ISIs and the instantaneous
rate of each data set fitted with a combination of absolute
refractory period and mixture of exponential distributions. For
the given data sets, CV (T) and CV (R) offer more information
than their randomness counterparts Ch(T) (Figure 5A) and

Ch(R) (Figure 5B) respectively. When it comes to the dispersion
measures of variability, as seen in Figure 5C, in some situations
CV (R) offers additional information to distinguish further
nuances in the data. The data sets which might seem of similar
ISI variability, differ when it comes to the variability of their
instantaneous rate. Similar results follow for the randomness
(Figure 5D). This example supports our assertion that the
dispersion measures based on the instantaneous rate can provide
additional information to help differentiate among the data sets.
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FIGURE 6 | Dispersion measures of the gamma, lognormal, inverse Gaussian, and shifted exponential distributions. Each randomness dispersion measure Ch(R) and

Ch(T ) is categorized by their dependence on ISI variability CV (T ) and on instantaneous rate variability Ch(T ). Firing rate is fixed at λ = 1 for the scale family distributions.

For the gamma distribution, Ch(T ) declines as a function of CV (T ) (A) but increases as a function of CV (R) (B). For lognormal and inverse Gaussian distribution

Ch(T ) = Ch(R), regardless of the perspective change (A–D). The shifted exponential distribution has a monotonously increasing Ch(T ), when it is a function of CV (T ) or

CV (R) (A,B); whereas Ch(R) attains its maximum for CV (T ) = 0.85 and CV (R) = 0.9282 respectively, and then declines (C,D).

4. DISCUSSION

We studied the spiking activity described by the renewal
processes from two perspectives, the temporal point of view
(in terms of ISIs) and the frequency point of view (in terms
of instantaneous rate). We found that for a given spike
train the temporal characteristics and the instantaneous rate
characteristics, can either follow the same trend or opposite
trends. This is due to the fact that the instantaneous rate

distribution is obtained from length-biased sampling of ISIs
(Equation 3). Spike trains described by non-renewal processes
have been studied widely (Eden and Kass, 2016) but are beyond
the scope of this paper. For the special case of serially correlated
ISIs, the results of our analysis apply to marginal distributions
and therefore remain unchanged (Kostal and Lansky, 2006).

1. We observe several different relationships between the
variability from temporal and instantaneous rate perspectives
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(Figure 2). For gamma distribution, the variability of
instantaneous rate is higher than the variability in ISIs whereas
for lognormal and inverse Gaussian distribution it stays the
same, CV (T) = CV (R). On the other hand, for shifted
exponential distribution CV (R) < CV (T) until CV (T) =
0.7715 but after that CV (R) increases rapidly compared to
CV (T).

2. In the case of gamma distribution, both the randomness
measures Ch(T) and Ch(R) decline eventually as a
function of CV (T) but they become constant as a
function of CV (R) (Figures 6A–D). The randomness
for gamma distribution differs in each particular case,
and for small values of CV (T), Ch(R) < Ch(T).
Lognormal and inverse Gaussian distributions attain
their maximum for CV (T) values close to 1 and then
their randomness keeps declining (Figures 6A,C).
For these two distributions, Ch(T) = Ch(R) whether
it is mapped against CV (T) or CV (R). For shifted
exponential distribution, Ch(T) increases as a function
of CV (T) (Figure 6A) whereas Ch(R) attains its
maximum for CV (T) = 0.85 and then declines fast
as CV → 1 (Figure 6C).

3. We studied the case of mixed exponential distribution
with a refractory period. Although the theoretical analysis
is complicated, we use the experimental data obtained
from Song et al. (2018) to inspect the temporal and
instantaneous rate perspectives. The dispersion measures for
instantaneous rate provide a novel outlook on the data,
different from the one provided by the dispersion measures
for the ISIs (Figure 6). In cases like these, the instantaneous
rate may be helpful in distinguishing further nuances in
the data.
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