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A B S T R A C T

The olfactory system in insects has evolved to process the dynamic changes in the concentration of food
odors or sex pheromones to localize the nutrients or conspecific mating partners. Experimental studies have
suggested that projection neurons (PNs) in insects encode not only the stimulus intensity but also its rate-of-
change (input gradient). In this study, we aim to develop a simple computational model for a PN to understand
the mechanism underlying the coding of the rate-of-change information. We show that the spike frequency
adaptation is a potential key mechanism for reproducing the phasic response pattern of the PN in Drosophila.
We also demonstrate that this adaptation mechanism enables the PN to encode the rate-of-change of the input
firing rate. Finally, our model predicts that the PN exhibits the intensity-invariant response for the pulse and
ramp odor stimulus. These results suggest that the developed model is useful for investigating the coding
principle underlying olfactory information processing in insects.
1. Introduction

The temporal structure of an odor concentration in a natural en-
vironment is highly intermittent and dynamic due to atmospheric
turbulence (Murlis et al., 1992; Vickers et al., 2001; Celani et al., 2014).
The insect olfactory system has evolved to detect the dynamic stimuli
in order to process the odorant information for identifying food and
mating partners, or for detecting predators (David et al., 1983; Kostal
et al., 2008; Semmelhack and Wang, 2009; Álvarez-Salvado et al., 2018;
Levakova et al., 2018). In insects, olfactory information is initially
encoded by the olfactory receptor neurons (ORNs) (see Wilson, 2013
for a review of early olfactory system). The electric signals generated by
ORNs are transmitted to the projection neurons (PNs) in the antennal
lobe. These PNs subsequently relay the olfactory information to higher
brain centers that process the information and trigger the behavior.

Multiple studies investigated how the olfactory system process the
odors (Rospars et al., 2000, 2003; Hallem and Carlson, 2006; Kanzaki
et al., 1989; Sachse and Galizia, 2003; Geffen et al., 2009; Kim et al.,
2011, 2015; Fujiwara et al., 2014; Jacob et al., 2017; Levakova et al.,
2019). Initially, the researchers analyzed the coding properties of odor
concentration in ORNs (Rospars et al., 2000, 2003; Hallem and Carlson,
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2006) and PNs (Kanzaki et al., 1989; Sachse and Galizia, 2003). Sub-
sequently, the advanced recording techniques enabled the researchers
to focus on the coding properties of a dynamic odor stimulus (Geffen
et al., 2009; Kim et al., 2011, 2015; Fujiwara et al., 2014; Jacob et al.,
2017; Levakova et al., 2019). In particular, it was demonstrated that the
firing rates of an ORN (Kim et al., 2011) and a PN (Kim et al., 2015;
Fujiwara et al., 2014) not only depend on the inputs but also on their
rate-of-change (i.e., input gradient: the time derivative of the input).

Neuronal adaptation refers to the change in the responsiveness of
the neural system. It also occurs at the cellular level; when a neuron is
stimulated by a rectangular current injection, it initially responds with
a high firing rate, and then its firing rate decreases. This phenomenon
is termed spike frequency adaptation and it is usually mediated by slow
K+ current, e.g., Ca2+-activated K+ current 𝐼KCa and M-type K+ current
𝐼M (Koch, 1999). It has been shown that the multi-timescale adaptive
threshold model (MAT model) (Kobayashi et al., 2009) can be derived
as a reduced model of the Hodgkin–Huxley model with the slow K+

current (Kobayashi and Kitano, 2016). Previous studies reported on
the Ca2+-activated K+ currents 𝐼KCa in PNs of honey bees (Grunewald,
2003) and sphinx moths (Mercer and Hildebrand, 2002). Few stud-
ies (Farkhooi et al., 2013; Betkiewicz et al., 2020) have incorporated
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Fig. 1. Model of a projection neuron in Drosophila. Our model consists of the olfactory receptor neurons (ORNs) and a projection neuron (PN) as follows:
A) Input (ORNs): The spiking activity of ORNs (bottom) was generated by an Poisson process with a time-varying firing rate (top).
B) Projection neuron: A PN is described as an integrate-and-fire model with adaptive spike threshold (MAT model (Kobayashi et al., 2009)). The PN model generates a spike train
n response to a stimulus.
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he spike frequency adaptation into the computational model of the
Ns and simulated the insect olfactory system. These studies suggest
hat the spike frequency adaptation promotes the reliable and sparse
oding. However, there is limited information on its role in encoding a
ynamic odor stimulus.

In this paper, we develop a simple computational model for a PN
ased on the MAT model that is a minimal model incorporating the
pike frequency adaptation. We tested whether this model can repro-
uce a phasic response pattern of the PN recorded from Drosophila (Kim
t al., 2015). Furthermore, we examine the role of spike frequency
daptation in encoding the rate-of-change information. Finally, we
imulate the PN response to the rescaled ORN inputs by using the
eveloped model. The result suggests that dynamic odor encoding in
Ns has an intensity-invariant property.

. Methods

.1. Model of a projection neuron in Drosophila

We simulated a spiking neural network model with two layers,
amely the olfactory receptor neurons and the projection neuron
Fig. 1). This model consisted of 300 olfactory receptor neurons (ORNs)
nd a projection neuron (PN). The connections between the layers were
eedforward and excitatory. We modeled the ORNs as independent
oisson spike generators (Betkiewicz et al., 2020), i.e., the spike trains
ere generated using a Poisson process with time-dependent intensity

firing rate) 𝑟ORN(𝑡).
The PN was modeled either as the standard integrate-and-fire (LIF)

euron (Bugmann et al., 1997; Sacerdote and Giraudo, 2013; Dayan
nd Abbott, 2005) or as an integrated-and-fire neuron with adaptive
pike threshold (MAT model) (Kobayashi et al., 2009; Kobayashi and
itano, 2016) that accounted for the spike-frequency adaptation. In the

ollowing, we describe the MAT neuron model (see Appendix A for
2

L

he description of the LIF model). The membrane voltage 𝑣𝑚(𝑡) of the
neuron obeys the following equation:

𝜏𝑚
𝑑𝑣𝑚(𝑡)
𝑑𝑡

= −
(

𝑣𝑚(𝑡) − 𝑉𝐿
)

+ 𝑅𝐼syn(𝑡), (2.1)

here 𝜏𝑚 is the membrane time constant, 𝑉𝐿 is the leak potential, and
𝑅 is the membrane resistance. The synaptic current 𝐼syn(𝑡) from ORNs
is given by (Dayan and Abbott, 2005; Lánská et al., 1994)

𝐼syn(𝑡) = −𝑔syn(𝑡)(𝑣𝑚 − 𝑉𝐸 ), (2.2)

here 𝑉𝐸 is the excitatory reversal potential. The total synaptic con-
uctance 𝑔syn(𝑡) obeys the following equation (Betkiewicz et al., 2020;
ayan and Abbott, 2005):

𝑑𝑔syn(𝑡)
𝑑𝑡

= −
𝑔syn(𝑡)
𝜏𝐸

+
𝑁ORN
∑

𝑗=1

∑

𝑘
𝑤ORN𝛿

(

𝑡 − 𝑡ORN𝑗,𝑘

)

, (2.3)

here 𝜏𝐸 is the synaptic time constant, 𝑁ORN = 300 is the number of
ORNs, 𝑤ORN = 1.4 nS is the synaptic conductance from an ORN to the
PN, and 𝑡ORN𝑗,𝑘 represents the 𝑘th spike’s time of the 𝑗th ORN. This value
of the synaptic conductance 𝑤ORN resulted in excitatory postsynaptic
potentials (EPSPs) with amplitudes of 1.0 mV at the resting membrane
voltage (Kobayashi and Kitano, 2013).

The MAT neuron generates a spike when the voltage reaches the
dynamic spike threshold 𝜃(𝑡) as follows:

𝜃(𝑡) = 𝜔 +
∑

𝑡𝑘<𝑡
𝜂(𝑡 − 𝑡𝑘), (2.4)

where 𝜔 is a constant and the summation is calculated over all PN spike
times, 𝑡𝑘, up to time 𝑡. The threshold kernel function, 𝜂(𝑡), is given as
the sum of two exponential functions as follows:

𝜂(𝑡) =

{

0 for 𝑡 < 0
𝛼1𝑒−𝑡∕𝜏1 + 𝛼2𝑒−𝑡∕𝜏2 otherwise.

(2.5)

he MAT model does not reset the voltage after the spike, unlike the

IF model (Appendix A); however, the spike threshold increases after
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Table 1
Hyper-parameters used for fitting the parameters.

Parameter Initial point Lower bound Upper bound

𝛼1 20 mV 0 mV 100 mV
𝛼2 2 mV 0 mV 100 mV
𝜔 20 mV 19 mV 27.5 mV
𝜏1 10 ms 1 ms 20 ms
𝜏2 200 ms 100 ms 2000 ms

each spike. In the original MAT model (Kobayashi et al., 2009), the
threshold-kernel is given by the sum of multiple exponential decay-
ing components. In this study, the number of decaying components
was determined based on leave-one-out cross-validation (Appendix B).
When the neuron fires, the threshold instantly increases by 𝛼1 + 𝛼2
nd it subsequently decays according to the time constants (𝜏1 and
2). In addition, the MAT model includes an absolute refractory period,
.e., the neuron cannot spike during period 𝑡ref after previous spike. The

threshold parameters {𝜔; 𝛼1, 𝛼2; 𝜏1, 𝜏2} were fitted from the experimen-
tal data (see Section 2.2 for details), whereas the remaining parameters
were fixed. Table 2 summarizes the parameters of the model.

The simulation codes were written in Python. Eqs. (2.1) and (2.3)
are integrated by using Euler method with a time step of 0.1 ms.
To achieve the steady-state conditions, we simulated the model for
1.0 s before recording the activity. The simulation code shall be made
available upon request from the corresponding author.

2.2. Fitting procedure

We fitted the threshold parameters 𝐪 = {𝜔; 𝛼1, 𝛼2; 𝜏1, 𝜏2} to repro-
duce the dynamics of the PN firing rate recorded from Drosophila (Kim
et al., 2015). In this experiment, the authors recorded the response of
the PN (DM4) and ORN (Or59b) to an odor stimuli (acetone) with three
types of time-varying concentration (a pulse, a ramp, and a parabola
waveform) were recorded from the 𝑛 = 5 flies. We extracted the average
firing rates of the PNs and ORNs from the paper (Fig. 2 in Kim et al.,
2015) using Webplotdigitizer (Rohatgi, 2021).

We determined the optimal values of the threshold parameters by
minimizing the sum of the mean squared error over the mentioned
three response types (pulse, ramp, parabolic waveform),

�̂� = argmin
𝐪

[𝐸1 + 𝐸2 + 𝐸3], (2.6)

where 𝐸𝑗 is the mean squared error and 𝑗 = 1, 2, 3 indexes the response
type. Specifically,

𝐸𝑗 =
1

𝑁𝑜𝑏𝑠

∑

𝑡

{

𝑟𝐷𝑗 (𝑡) − 𝑟𝑀𝑗 (𝑡)
}2

, (2.7)

where 𝑟𝐷𝑗 (𝑡) and 𝑟𝑀𝑗 (𝑡) are the firing rate of the PN calculated from the
experimental data and the firing rate of the PN calculated from the
model, respectively, and 𝑁𝑜𝑏𝑠 is the number of observation points. We
simulated the model for 25 trials with a specified ORN firing rate, and
calculated the PN firing rate 𝑟𝑀𝑗 (𝑡) by constructing a peristimulus time
histogram (PSTH) using the sliding window method. The window size
was 100 ms, and the window was moved with a constant interval of 25
ms (Kim et al., 2015). We used the Nelder–Mead method (Nelder and
Mead, 1965) for the minimization. Table 1 summarizes the values of
the hyperparameters used for the optimization.

3. Results

3.1. Simple neuron model for a projection neuron in Drosophila

We developed a simple model that reproduces the response patterns
of a projection neuron (PN) in Drosophila (Fig. 1). This model consists
of two layers, namely ORNs and a single PN. The input layer consists
of 300 ORNs modeled as a Poisson spike generator with the firing
3

Table 2
Parameters of the projection neuron model.

Neuron parameters fitted/fixed
Membrane time constant 𝜏𝑚 5 ms fixed (Kobayashi et al., 2009;

Nagel et al., 2015)
Membrane resistance 𝑅 50 M𝛺 fixed (Kobayashi et al., 2009)
Leak reversal potential 𝑉𝐿 0 mV fixed (Kobayashi et al., 2009)
Refractory period 𝑡ref 2 ms fixed (Kobayashi et al., 2009)
Weight of adaptation 𝛼1 13.6 mV fitted
Weight of adaptation 𝛼2 0.477 mV fitted
Asymptotic value of threshold 𝜔 20.4 mV fitted
Adaptation time constant 𝜏1 10.1 ms fitted
Adaptation time constant 𝜏2 805 ms fitted

Synaptic parameters
Synaptic weight 𝑤ORN 1.4 nS fixed (Kobayashi and Kitano,

2013)
Excitatory reversal potential 𝑉𝐸 65 mV fixed (Betkiewicz et al., 2020)
Excitatory time constant 𝜏𝐸 2 ms fixed (Betkiewicz et al., 2020)
Number of ORNs 𝑁ORN 300 fixed

Table 3
Fitting error (mean squared error). Bold letters indicate that the error

is significantly smaller.
LIF MAT

Peaked input: Fig. 2D 449 ± 3.0 202 ± 2.5
Rectangular input: Fig. 2E 1814 ± 4.1 181 ± 3.8
Ramp input: Fig. 2F 2991 ± 6.8 493 ± 5.6

rate 𝑟ORN(𝑡). The PN is described either by the standard LIF model,
r the LIF model with an adaptive spike threshold (denoted as MAT
odel) (Kobayashi et al., 2009).

We validated the proposed models by analyzing the experimental
ata from Drosophila (Kim et al., 2015). Fig. 2 depicts the average firing

rate 𝑟ORN(𝑡) of ORNs (Or59b) (Fig. 2 A, B, and C), and the rate 𝑟PN(𝑡) of
PNs (DM4) (Fig. 2 D, E, and F) for three types of time-varying stimulus
estimated from the experimental data. We examined if the MAT model
(see Section 2.1) can reproduce the firing rate of the PN in response to
the input firing rate 𝑟ORN(𝑡). This model accurately reproduces the time
course of the PN responses for each stimulus condition (Fig. 2 D, E, and
F, magenta lines).

Table 2 summarizes the model parameters. The majority of pa-
rameters were adopted from previous studies (Kobayashi et al., 2009;
Betkiewicz et al., 2020; Kobayashi and Kitano, 2013; Nagel et al.,
2015), whereas the number of ORNs 𝑁ORN was selected to reproduce
the spontaneous firing rate of a PN (Kim et al., 2015; Perez-Orive
et al., 2002; Krofczik et al., 2009). We determined the parameters of
the spike threshold (responsible for the spike frequency adaptation) by
minimizing the squared error between the model firing rate and the
data (see Section 2.2).

Next, we examine the importance of the spike frequency adaptation
for reproducing the response pattern of the PN. The leaky integrate-
and-fire (LIF) model that does not incorporate the spike frequency
adaptation was fitted to the same data (see Appendix A for the model
and fitting procedure). The LIF model cannot reproduce the peak and
the response pattern to the rectangular and ramp input (Fig. 2 E and
F). Moreover, its response pattern is always similar to that of the
input. Furthermore, we compared the fitting error (Eq. (2.7)) to the
experimental data between the model with spike frequency adaptation
(MAT model) and the LIF model (Table 3). We calculated the mean and
standard deviation of the error from 20 trials. Table 3 demonstrates that
the MAT model reproduces the experimental data significantly better
than the LIF model for all the cases. Therefore, these results imply that
the spike frequency adaptation is essential to reproduce the response
pattern of a PN in Drosophila.

3.2. Potential mechanism of the rate-of-change coding in PNs

The MAT model can reproduce the response patterns of PNs in
Drosophila (Fig. 2), which implies that the spike frequency adaptation
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Fig. 2. The model with spike frequency adaption (MAT) can reproduce the response patterns of PNs in Drosophila. (A–C) The firing rate of ORNs extracted from the experimental
data (Kim et al., 2015). The firing rates are used to generate the spike trains of ORNs. (D–F) The firing rate of a PN. Comparison of average firing patterns of PNs (Kim et al.,
2015) (black dashed lines) with the response of the model neurons. Magenta and cyan lines represent the firing rate of the MAT and LIF model, respectively.
w
t

Fig. 3. The MAT model can encodes the rate-of-change of the input firing rate. (A)
Firing rate of the input neurons. The firing rate linearly increases from the spontaneous
firing rate (10 Hz) to the maximum one (200 Hz). (B), (C) Firing rate of the model
neurons: (B) MAT and (C) LIF model neuron. Colors of lines represent the levels of the
rate-of-change.

is an essential factor to reproduce the experimental data (Table 3). An
experimental study suggests that a PN in Drosophila encodes not only
the firing rate of the ORN (input neuron) but also its rate-of-change
(input gradient) (Kim et al., 2015). In this subsection, we examined the
4

effect of spike frequency adaption on the encoding of the rate-of-change
information.

We considered a piece-wise linear input firing rate (Fig. 3A) as
follows:

𝑟in(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑟sp for 𝑡 ≤ 𝑡st
𝑟sp + 𝑠(𝑡 − 𝑡st ) for 𝑡st < 𝑡 < 𝑡en
𝑟max otherwise,

(3.1)

here 𝑟sp = 10 Hz is the spontaneous firing rate, 𝑟max = 200 Hz is
he maximum firing rate, 𝑠 represents the rate-of-change (slope) of the

firing rate, and 𝑡st is the start time of a stimulus.
We compared the response of the MAT model neuron with that

of the LIF model neuron. First we considered the MAT model that
incorporates the spike frequency adaptation. The MAT model converges
to a constant firing rate in 2 s following the stimulus onset for all
the stimuli (Fig. 3B). For the stimulus with a high rate-of-change (≥
80 Hz/s), the model exhibits a ‘‘phasic’’ response, that is, the firing rate
exhibits a peak and subsequently converges to the constant level. For
the stimulus with a low rate-of-change (≤40 Hz/s), the model does not
exhibit an obvious peak. In contrast, the response pattern of the LIF
model is similar to that of the input firing rate (Fig. 3C). In addition,
we observe that the MAT model responses more rapidly to the stimulus
onset than the LIF model. This result implies that the spike frequency
adaptation enables the neuron to encode the rate-of-change of the input
firing rate using a peak (Fig. 3B).

We examined how the MAT model and the LIF model encode the rise
of the input firing rate using the piece-wise linear signal (Fig. 3A). Fig. 4
shows how the model neurons transform the input firing rate into the
output firing rate. We calculated the output firing rate by constructing
the PSTH (Section 2.2). For a low input firing rate (< 20 Hz), the slope
between input and output firing rate of the MAT model (Fig. 4A) is
steep. However, the output firing rate of LIF model remains zero when
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Fig. 4. Coding the stimulus onset in model neurons. Scatter plots in which each point represents the input firing rate and output firing rate of the model neuron at the same
time. Two model neurons were examined, namely (A) MAT model and (B) LIF model. Colors of points represent the rate-of-change of the input.
Fig. 5. Intensity-invariant response of the PN model. Responses of the PN model to the rescaled (A) pulse, (B) ramp, and (C) parabolic odor stimulus. The left panels show the
scaled ORN activity corresponding to the response to a rescaled odor stimulus. The ORN firing rates are scaled by constant factors (from 0.2 to 1.0 with the step of 0.2) after
subtracting the spontaneous activity. The center and right panels show the PN model responses, and their normalization based on the peak values, respectively.
a input firing rate is lower than 40 Hz (Fig. 4B). In other words, the
output gain of the MAT model is higher than the LIF model. In addition,
the firing rate of the MAT model does not depend on the input firing
rate for a high input regime (> 30 Hz), but it depends on the input
ate-of-change (Fig. 4A). It means that a similar input firing rate results
n a different output firing rate in the MAT model, depending on the
ate-of-change of the input. By contrast, a particular input rate gives
lways the same output rate for the LIF model, which is independent
f the input rate-of-change (Fig. 4B). Note that the result in Fig. 4B was
btained by employing the optimal model parameters (see Appendix A
or the LIF model). It is possible to make the LIF neuron more sensitive
firing for low input rates), e.g., by decreasing the threshold 𝜃𝑉 , but

the qualitative consequences would remain the same, that is, the LIF
model cannot encode the rate-of-change input information. Thus, these
results suggest that the spike-frequency adaptation enables the neuron
to encode the rate-of-change of the input.

It is known that a single neuron exhibits a high-pass filtering prop-
erty when it encodes the visual stimulus (Victor and Shapley, 1979).
Furthermore, it has been shown that the spike frequency adaptation
contributes to the high-pass filtering property (Benda and Herz, 2003).
Here, we show that the spike frequency adaptation facilitates the
5

neuron encoding of the input rate-of-change (i.e., the differential of the
input). Note that the differentiator is a special case of the high-pass
filter, but they are not equivalent. In this study, we have shown that
the MAT model with the parameters fitted from PN data achieves the
differentiator property in addition to the high-pass filter property.

3.3. PN model exhibits intensity invariant response

A previous study (Martelli et al., 2013) showed that the shape
of the ORN response pattern (or response dynamics) is remarkably
invariant to the intensity of the odor concentration. Specifically, the
ORN responses to the stimuli with equal timescales and dynamics but
different intensities were the same when normalized to the peak firing
rate (Martelli et al., 2013, Fig. 10b, c). The authors concluded that
the response invariance to stimulus intensity is a robust feature of
ORNs in Drosophila. We investigated a similar question using our PN
model (described in Section 2.1), i.e., whether the response invariance
to stimulus intensity is also a feature of the PNs. We simulated the
ORN response to the odor stimulus with the same dynamics but with
a different intensity, and we use this response as the input to the PN
model. In particular, we obtained the ORN activity by rescaling the
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Table A.1
Hyper-parameters used for fitting the LIF model.

Parameter Initial value Lower bound Upper bound

𝜏𝑚 10 ms 0.1 ms 100 ms
𝜃𝑉 15 mV 5 mV 100 mV
𝑣res 5 mV −100 mV 100 mV

ORN firing rate extracted from experimental data (Fig. 2A–C), after the
removal of the spontaneous activity.

Fig. 5 shows that the model PN response is intensity-invariant for
the (A) pulse and (B) ramp stimulus when the output firing rate is
rescaled to its peak rate (as in Martelli et al., 2013). In contrast,
the PN response does not exhibit the intensity-invariant property for
the (C) parabolic odor stimulus. We observed that the LIF model
neuron exhibits the intensity-invariant response property similar to
the PN model (Appendix C). The result suggests that the intensity-
invariant property highly depends on the temporal pattern of the input
rather than the neuronal property. The intensity-invariant property of
a neuron can be explained by the linearity of the stimulus–response
curve. If the stimulus–response curve is the simple linear function:
𝑟(𝑠) = 𝐴𝑠 (𝑠 represents the input stimulus), we can expect that the
esponse to a rescaled stimulus 𝑐𝑠 (𝑐 represents the scaling factor) is also
escaled: 𝑟(𝑐𝑠) = 𝑐𝑟(𝑠). Indeed, the previous studies (Ermentrout, 1998;
obayashi, 2009) suggest that the stimulus–response curve of the LIF
odel is asymptotically linear in the strong input regime, and the spike

requency adaptation in the MAT model linearizes its stimulus–response
urve in the weak input regime.

In addition, the PN response is approximately invariant already on
he actual firing rate when the input is relatively high (the scaling
actor is larger than 0.6 in Fig. 5). In other words, the PN response
xhibits an intensity-invariant feature without normalizing the firing
ate, while the ORN response still encodes the overall intensity (Martelli
t al., 2013, Fig. 10b, c). Without the normalization, the LIF model
euron does not exhibit the intensity-invariant response (Appendix C).
his intensity-invariant property can be explained by the fact that the
timulus–response curve of the MAT model neuron is approximately
onstant for the strong stimulus (Fig. 4A). Therefore, our model predicts
hat the PN can exhibit the intensity-invariant response for the pulse
nd ramp odor stimulus. This result also has an implication for coding
roperties by the ORNs. A previous study suggested that the ORNs in
oth exhibit the spike frequency adaptation (Levakova et al., 2019),
hich implies that the spike frequency adaption in ORNs also facili-

ates the differentiator property and the intensity-invariant response in
RNs.

. Conclusion

In summary, we have presented a simple model that reproduces
he phasic response pattern of a PN in Drosophila. The MAT model
ncorporating the spike frequency adaptation reproduces the response
attern, whereas the LIF model cannot. Therefore, the spike frequency
daptation is a potential mechanism for generating the phasic response.
n addition, we demonstrate that the spike frequency adaptation fa-
ilitates the neuron to encode dynamic inputs in two ways. First, it
mproves the ability to signal the small input change. Second, it enables
he neuron to encode the input rate-of-change using the peak firing rate.
hese results suggest that the spike frequency adaptation facilitates the
euron to encode the rate-of-change information. Finally, our model
redicts that the PN exhibits the intensity-invariant response for the
ulse and ramp odor stimulus. Future studies can focus on testing these
redictions and their implications on olfactory information processing
6

n insects.
Table B.1
Cross-validation errors of the MAT model with all the combinations of
the time constants. The best result is shown in bold.

Number of components Time constant(s) CV error

10 ms 3031 ± 9.0
1 100 ms 2652 ± 8.3

1000 ms 5372 ± 40

10, 100 ms 2963 ± 9.0
2 10, 1000 ms 1354 ± 9.1

100, 1000 ms 4640 ± 37

3 10, 100, 1000 ms 1462 ± 10
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Appendix A. Leaky integrate-and-fire model

We adopted the leaky integrate-and-fire (LIF) model (Dayan and
Abbott, 2005), which is one of the simplest models of a neuron. This
model does not incorporate the spike-frequency adaptation mechanism.
The membrane voltage 𝑣𝑚 of the neuron obeys the same Eq. (2.1) as the
proposed model:

𝜏𝑚
𝑑𝑣𝑚
𝑑𝑡

= −(𝑣𝑚 − 𝑉𝐿) + 𝑅𝐼𝑠𝑦𝑛(𝑡), (A.1)

here 𝜏𝑚 is the membrane time constant, 𝑉𝐿 = 0 mV is the leak
otential, 𝑅 = 50 M𝛺 is the membrane resistance, and 𝐼𝑠𝑦𝑛(𝑡) is the

synaptic currents from ORNs. The synaptic current obeys the same
Eqs. (2.2) and (2.3) as the proposed model and the model parameters
are also the same.

The spike generation mechanism of the LIF model is different from
the proposed model. The model neuron generates spikes when the
voltage reaches the spike threshold, 𝑣𝑚(𝑡) ≥ 𝜃𝑉 , where 𝜃𝑉 is the constant
threshold parameter. If the model generates a spike, the voltage is reset
to 𝑣res with an absolute refractory period 𝑡ref = 2 ms.

We fitted the parameters 𝐪 = {𝜏𝑚, 𝑣res, 𝜃𝑉 } to reproduce the dynam-
ics of the firing rate of a projection neuron recorded from Drosophila
(Kim et al., 2015). The parameters were determined by minimizing
the sum of the squared error (Eq. (2.6)) as with the case of the
proposed model. We again used the Nelder–Mead method (Nelder and
Mead, 1965). Table A.1 summarizes the hyper-parameters used in the
minimization. The following parameters were fitted from the data:
𝜏 = 35.3 ms, 𝑣 = −21.7 mV, and 𝜃 = 42.4 mV.
𝑚 res 𝑉
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𝜃

Fig. C.1. Response of the LIF model to the scaled inputs. The LIF model was stimulated with the rescaled (A) step and (B) triangle input firing rate (Left panels). The center and
ight panels show the model responses (firing rate) and their normalized value based on the peak values, respectively.
Fig. C.2. Response of the MAT model to the scaled inputs. The MAT model was stimulated with the rescaled (A) step and (B) triangle input firing rate (Left panels). The center
and right panels show the model responses (firing rate) and their normalized value based on the peak values, respectively.
Appendix B. Determination of the number of decaying compo-
nents in the MAT model

In the original MAT model (Kobayashi et al., 2009), the dynamic
spike threshold 𝜃(𝑡) is given by the following equations

(𝑡) = 𝜔 +
∑

𝑘∶𝑡𝑘<𝑡
𝜂(𝑡 − 𝑡𝑘), (B.1)

𝜂(𝑡) =

⎧

⎪

⎨

⎪

⎩

0 for 𝑡 < 0
𝐿
∑

𝑗=1
𝛼𝑗𝑒

−𝑡∕𝜏𝑗 otherwise,
(B.2)

where 𝑡𝑘 is the 𝑘th spike time, 𝜂(𝑡) is the threshold-kernel, 𝐿 is the
number of decaying components, and 𝛼𝑗 and 𝜏𝑗 (𝑗 = 1, 2,… , 𝐿) are the
weight and time constant of the 𝑗th component, respectively.

Here, we determine the number of components 𝐿 based on the
leave-one-out cross-validation. We calculated the cross-validation error
(CV error) with the sum of the error of three types of input waveform
(pulse, ramp, and parabola). For each input type, we calculated the
mean squared error using the model with the fitted parameters from
the remaining two data sets (see Section 2.2 for the fitting procedure).

Table B.1 compares the cross-validation errors of the MAT model
with single (𝐿 = 1), two (𝐿 = 2), and three (𝐿 = 3) decaying
components. For simplicity, the time constants of the spike threshold
were fixed and selected from 10, 100, and 1000 ms. We determined the
time constants with the fitting result of the three-component model:
7

𝜏1 = 10 ms, 𝜏2 = 93 ms, and 𝜏3 = 940 ms. The MAT model with a single
decaying component (𝐿 = 1) cannot accurately predict the response
dynamics of the PNs (Table B.1). The two-component model with 𝜏1 =
10 ms and 𝜏2 = 1000 ms achieved minimal error, which suggests the
two-component model (𝐿 = 2) is the best model for predicting the
PN response. Thus, we adopted the spike threshold with two decaying
components (Eq. (2.5)).

Appendix C. Intensity-invariant response in model neurons

We examine the effect of spike frequency adaptation and the input
stimulus on the intensity-invariant response property by simulating two
model neurons: the LIF model (Fig. C.1) and MAT model (Fig. C.2).
Here, we used the simple input patterns (step and triangle input wave)
as the input firing rate to examine essential response properties.

When the output firing rate is normalized, both the LIF and MAT
model exhibit the intensity-invariant response for the step input but
not for the triangle input (right panels in Figs. C.1 and C.2). This
result suggests that the intensity-invariant property in the normalized
response is associated with the temporal pattern of the input. For the
triangle input, while the LIF model preserves the peak time of the
input (Fig. C.1B), the peak time of the MAT model response depends
on the input rate-of-change (Fig. C.2B). The high input rate-of-change
facilitates the MAT model to respond quickly. Finally, the MAT model
neuron approximately achieves the intensity-invariant response with-
out normalization (center panel in Fig. C.2) when the input is relatively
high (scale is larger than 0.6 in Fig. 5). The LIF neuron does not exhibit

the intensity-invariant response without normalization.
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