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Abstract

The variability of neuronal spike trains is usually measured by the Fano factor or the co-
efficient of variation of interspike intervals, but their estimation is problematic, especially
with limited amount of data. In this paper we show that it is in fact possible to estimate
a quantity equivalent to the Fano factor and the squared coefficient of variation based on
the intervals from only one specific (random) time. This leads to two very simple but
precise Fano factor estimators, that can be interpreted as estimators of instantaneous vari-
ability. We derive their properties, evaluate their accuracy in various situations and show
that they are often more accurate than the standard estimators. The presented estimators
are particularly suitable for the case where variability changes rapidly.
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1. Introduction

In the nervous system, information is transmitted by sequences of action potentials
(spike trains). However, it is still not completely clear how exactly information is en-
coded. It is generally accepted that the timing of the firing of spikes is important, not their
shape or size (Gerstner & Kistler, 2002; Rieke et al., 1999). Moreover, most information is
apparently encoded by the spike rate, defined, for example, as the average spike count in a
time window (Adrian & Zotterman, 1926; Perkel & Bullock, 1968). This concept is called
rate coding. However, the idea that information is encoded by rate characteristics alone
is simplified, different spike trains may have the same rate but carry different information
based on the specific timing of the spikes (Shadlen & Newsome, 1994; Stein et al., 2005;
Christodoulou & Cleanthous, 2011). Codes that also assume some rate-independent be-
havior of the spike trains are called temporal codes. The true coding method may be very
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complex, but it is reasonable to increase the complexity of the studied codes in steps, and
the first step above rate coding is probably variability coding (Perkel & Bullock, 1968).

In most situations, the term variability is used to describe how distant some values,
such as interspike intervals (ISIs) or spike counts, are from each other or from a typical
value (Kostal et al., 2013). It is often measured by quantities based on statistical vari-
ance. Note that variability is a different concept from randomness. These terms may seem
similar, but randomness focuses on how well some values are predictable and is mostly
measured by entropy (Kostal et al., 2007; Rajdl et al., 2017).

The two most commonly used characteristics for measuring spike train variability are
the coefficient of variation (CV), based on the variance of the lengths of the ISIs, and
the Fano factor (FF), based on the variance of the number of spikes in a time window
(Ditlevsen & Lansky, 2011; Stevenson, 2016; Rajdl et al., 2020; D’Onofrio et al., 2019).
They are used, e. g., to measure the variability of real neuronal data (Festa et al., 2021;
de Ruyter van Steveninck et al., 1997) or to study the neuronal variability using theoretical
neuronal models (Protachevicz et al., 2022; Christodoulou & Bugmann, 2001). Note that
these characteristics are used not only for neuronal data but also to measure the variability
of data corresponding to point processes (sequences of times of some events) in many
other fields (Yuan et al., 2012; Telesca et al., 2007; Contreras-Uribe et al., 2017). Their
standard estimators have been well studied, and it is known that both have problems with
bias in estimation from limited data. Specifically, the estimator of CV has a bias depending
on the number of ISI observations (it is only asymptotically unbiased), and moreover,
the observed ISIs are often right-censored (as they are limited by a fixed time window),
which introduces another type of bias (Nawrot et al., 2008). The length of the observation
window also strongly influences the estimator of FF, since FF by definition depends on
the length of the observation window. The goal is often to estimate the limit of FF for
a window length that goes to infinity. However, as in real experiments the window is
always finite, this also leads to a bias (Rajdl & Lansky, 2014; Rajdl et al., 2020). The
standard estimators of CV and FF are therefore not very suitable for estimating short-term
(instantaneous) variability. An important fact is that for spike trains modeled as renewal
processes it holds FF = CV2, assuming an infinite observation time window (Nawrot,
2010). This leads to seeing FF and CV2 as two ways to measure (estimate) the same
quantity and increases the importance of their common value FF. In this paper we mostly
write about the estimation of FF, but it could certainly be seen also as the estimation of
CV2. Even in other papers these two terms are used interchangeably (Shuai et al., 2002).
Note that there are other useful measures of variability. For example, CV2 was proposed
in (Holt et al., 1996), CVlog in (Ruigrok et al., 2011), or the coefficient of local variation,
Lv, in (Shinomoto et al., 2005). However, we see the quantities FF and CV2 as the best
variability measures, and in this paper we present alternative estimators of their common
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value. These estimators can be considered as estimators of the local value of FF (local or
instantaneous variability). Thus, we are not creating new measures of local variability, but
new estimators of the local value of FF (CV). Note that an instantaneous version of CV is
sometimes created by calculating of CV in the standard way, but using only a fixed number
of ISIs around a given time (Borges et al., 2023; Prut & Perlmutter, 2003). However, such
a method may have problem with bias due to small amount of data, as described above, or
to be insufficiently local. We therefore propose a different approach.

We assume that the data used to estimate the variability are parallel spike trains (see
Fig. 1). Such data are common in neuroscience and are usually obtained from repeated ex-
perimental trials or from simultaneous multi-unit neuronal recordings. However, recording
all spike trains arriving at a target neuron is still not technically feasible. We are mainly
interested in the short-term variability estimated based on this type of data. Our approach
is such that we want to estimate variability based only on ISIs that include a particular
time t0 that we shall construct (see Fig. 1). In the case where t0 is selected independently
of the times of spikes (randomly), the ISIs containing the time t0 have in general differ-
ent probability distribution than the ISIs observed from the time of their beginning. The
difference between the distributions can be used to estimate FF. Based on this idea, we
have created two variability estimators of FF. We derive their properties and show that
they are surprisingly accurate and very easy to use. One of them is problematic when the
probability of occurrence of short ISIs is high. This probability can be partially reduced
by assuming a refractory period, and is not a problem at all in the second estimator. They
are especially effective for estimation of instantaneous variability, where they significantly
outperform the standard estimators.
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Figure 1: Illustration of the situation investigated in this paper. Assume n independent trials (realizations) of
a spike train described by the equilibrium renewal point process of interspike intervals (ISIs). The length of
consequent ISIs is determined by the random variable T (not shown). Our aim is to estimate the variability
at time t0 which is not generally related to spike times. We base our estimators on the instantaneous ISIs,
described by random variable X with realizations denoted as Xi, that contain the time t0. In some cases,
the immediately following ISI, Y with realizations Yi, is also employed. Note that due to the length-bias
sampling the probability distribution of X generally differs from that of T , while the distributions of Y and
T are the same. We exploit this fact and propose several novel estimators of the Fano factor (coefficient of
variation of ISIs). In addition, the data used for the estimation may (but not necessarily) be restricted by the
observation time window w.

The paper is structured as follows. Section 2 summarizes the necessary theory, defines
the model of spike trains used (equilibrium renewal process), and the most important con-
cepts and quantities - mainly the coefficient of variation, the Fano factor and their standard
estimators. In Section 3, we propose the new estimators, given by equations (12) and (16),
and derive their general properties. In Section 4, we consider several specific variants of
the general spike train model (renewal processes with gamma, inverse Gaussian and log-
normal distributions of the ISIs) and derive and illustrate corresponding properties of the
new estimators. Maximum likelihood estimators of FF are also derived here. In Section
5, we use these models to compare the accuracy of the new estimators with the standard
estimators using numerical simulations. In Section 6, we show a specific application -
estimation of the change in the variability over time - and compare various estimators in
this task. Finally, Section 7 summarizes the main results of the paper.

2. Spike trains model, variability measures and their estimators

We assume that the spike trains correspond to realizations of independent identical
equilibrium renewal processes, i. e., the ISIs are identical and independent positive contin-
uous random variables. The term equilibrium further implies that the time of the beginning
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of the spike trains does not affect the times of the current realizations of spikes, i.e., an
infinite amount of time has passed since the beginning (Jewell, 1960). We denote the ran-
dom variable describing the ISIs as T and its probability density function (pdf) as f(t).
The mean and variance of T are denoted as µ = E(T ) and Var(T ). The intensity of the
process is then (Cox & Lewis, 1966),

λ = 1/µ (1)

and the coefficient of variation is defined as

CV =

√
Var(T )

µ
. (2)

An alternative equivalent description of a renewal process is using the number of spikes
up to a time w > 0, i.e., a counting process N(w). Based on this quantity, the Fano factor
is defined as

FF(w) =
Var(N(w))

E(N(w))
, (3)

where time w > 0 can be seen as the length of an observation window. The term Fano
factor is often used to refer directly to the limit

FF = lim
w→∞

Var(N(w))

E(N(w))
, (4)

which removes the dependence on w. The Fano factor and the coefficient of variation are
two of the most commonly used measures of the variability of neural spike trains (point
processes). For renewal processes, they are related by a well-known equation (Cox, 1962),

FF = CV2. (5)

We also want to model and study the effect of the refractory period on the variability
estimators. The (absolute) refractory period is a time interval of length r ≥ 0 that occurs
after each spike, during which it is impossible to fire another spike. Such a property can
be easily modeled by a renewal process by setting f(t) = 0 for t ∈ [0, r]. The refractory
period is thus directly included in T , but sometimes it is useful to think of this random
variable as

T = r + S, (6)

where S is the “random” part of T .
The sample counterparts of quantities (2) and (3) yield the standard estimators of the

Fano factor and the squared coefficient of variation,

F̂F = F̂F(w) =
s2N(w)

N(w)
=

1
n−1

∑n
i=1(Ni(w)− 1

n

∑n
i=1Ni(w))2

1
n

∑n
i=1Ni(w)

(7)
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Notation Meaning
T Random variable representing lengths of ISIs (renewal process is used to model spike

trains).
f(t) Probability density function of T .
µ Mean of T , µ = E(T ).
λ Intensity of the renewal process, λ = 1/µ.
w Length of the observation window (used to get the spike counts), w > 0.
CV Coefficient of variation.

FF(w), FF Fano factor, calculated in an observation window of length w > 0, and its limit for
w →∞.

r Refractory period (dead time), r ≥ 0.
t0 A time at which we want to estimate local variability. Time t0 is generally not related

to the spike (event) times.
X Random variable representing the lengths of the ISIs observed at time t0. Its proba-

bility density function is given by equation (9).
n Number of parallel spike trains, also number of ISIs used in the estimators at each

time t0. In general, the number of data samples.
Ti, i = 1, . . . , n Realizations of T .
Xi, i = 1, . . . , n ISIs observed at time t0 (realizations of X).
Yi, i = 1, . . . , n First complete ISIs after t0 (equivalent to realizations of T ).

Table 1: Overview of the notation used in this paper. For the illustration see Fig. 1.

and

ĈV
2

=
s2T

T
2 =

1
n−1

∑n
i=1(Ti −

1
n

∑n
i=1 Ti)

2

1
n

∑n
i=1 Ti

, (8)

where Ti and Ni(w) are the sample realizations of the random variables T and N(w) and
n is the number of samples.

When observing the ISIs at (or around) a time t0 in n parallel spike trains, it is impor-
tant to distinguish the relationship between the time t0 and the times of the spikes. One
possibility is that t0 is completely unrelated to the actual spikes. Let us then denote the
ISIs containing the time t0 as Xi, i = 1, . . . , n (see Fig. 1). These ISIs generally do not
correspond to the random variable T (since longer ISIs have a greater chance of being
observed and vice versa), but to a random variable X with pdf (Kostal et al., 2018)

g(x) = λxf(x), x ≥ 0. (9)

If we want to select ISIs corresponding to the random variable T , the selection of t0 cannot
affect the length of the ISIs. E. g., we can select the first whole ISIs after t0. We denote
such ISIs as Yi, i = 1, . . . , n (see Fig. 1). For better clarity of the used notation, there is a
summary of the notation in Tab. 1.
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3. Nonparametric (moment) estimators of instantaneous variability

Based on equation (9), we can derive

E(Xk) = λE(T k+1), k ∈ Z, (10)

and

FF = CV2 =
Var(T )

E2(T )
= λE(X)− 1 = E

(
1

X

)
E(X)− 1. (11)

The value of FF can thus be calculated directly based on the mean ofX and 1/X , yielding
the estimator

F̂FX =
1

n(n− 1)

n∑
i=1

1

Xi

n∑
i=1

Xi − 1. (12)

We interpret this formula as an estimator of FF based on X . The direct conversion of
formula (11) to its sample counterpart would contain n2 instead of n(n − 1) in the first
fraction. We made this change as it ensures that the estimator is then unbiased, i. e.,

E(F̂FX) = FF. (13)

Note that both the standard variability estimators (7) and (8) have a bias depending on n
that cannot be generally removed, they are only asymptotically unbiased (Rajdl & Lansky,
2014). Next, it can be derived,

Var(F̂FX) =
λ4

n(n− 1)
((n− 2)µE(T 3)

+ (2n− 4)E2(T )E(T 2) + E2(T )E(T 3)E(1/T )

− (4n− 6)E2(T 2) + (n− 2)µE2(T 2)E(1/T ) + 1). (14)

The variance (14) depends on the first few moments of T and can be thus calculated for a
specific model of ISIs. The exact calculation of E(1/T ) for r > 0 is usually problematic,
but it can be approximated by numerical integration.

The mean of 1/T in formula (14) implies a potential problem of the estimator F̂FX ,
since it can diverge. E. g., E(1/T ) is infinite even for the exponential distribution (Poisson
process). In situations with large or diverging E(1/T ), the obtained estimates are very
unstable. In general, it holds that if f(0) > 0 then E(1/T ) is infinite, and it can be proven
that if f(t) is continuous on (0, ∞) with f(0) = 0 and f ′(0) exists and is finite, then
E(1/T ) <∞ (Piegorsch & Casella, 1985). While the proof does not provide the complete
sufficient and necessary conditions for the existence does not give complete conditions
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for the existence of E(1/T ), but it confirms the intuitive idea that models with a non-
negligible probability of occurrence of very small ISIs are problematic. Thus, we can
expect that adding a refractory period to a renewal model can reduce the value of variance
(14) (especially when the value of E(1/T ) is high or infinite). We will explore the effect
of the refractory period in specific illustrations later.

Moreover, we can eliminate this problem entirely by using the fact that E(1/X) = λ =
E(N(w))/w and modifying formula (11) to

FF =
1

w
E(N(w))E(X)− 1, (15)

which yields a different estimator

F̂FXN =
1

wn2

n∑
i=1

Ni(w)
n∑
i=1

Xi − 1. (16)

This estimator does not require the calculation of E(1/X), but it is not based purely on
information obtained from X , it also uses information from the counts of spikes in a time
window of length w. The window w must be somehow specified, a reasonable choice is to
use a window that contains on average the same amount of “time” as used by F̂FX , i.e.,

w0 =
1

n

n∑
i=1

Xi. (17)

Estimator (16) then transforms into an interesting formula

F̂FXN(w0) =
1

n

n∑
i=1

Ni(w0)− 1, (18)

showing that FF can be simply estimated as the mean number of spikes in window of
a length equal to the mean of the ISIs Xi, 1 = 1 . . . , n, minus one. Note that formula
(16) is also based only on the mean of two simple quantities although it is an estimator of
variability.

Next we can derive
E(F̂FXN) = FF (19)

and

lim
w→∞

Var(F̂FXN) =
λ4

n
(µE(T 3)− E2(T 2)). (20)
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Differentiating equation (20) by r, assuming equation (6), yields (using Jensen’s inequal-
ity)

∂ limw→∞Var(F̂FXN)

∂r
(r) ≥ 2rλ4

n
Var(S) ≥ 0. (21)

The variance of F̂FXN (for w →∞) is thus an increasing function of r and the minimum
occurs for r = 0.

4. Probabilistic ISI models and MLE of instantaneous variability

For specific illustrations we use three probability distributions of ISIs (T ) - gamma
(GM), inverse Gaussian (IG) and log-normal (LN), including also the refractory period.
They are probably the most often used distributions for modeling ISIs (Ditlevsen & Lan-
sky, 2011; Nawrot, 2010; Shimokawa et al., 2010). All of these distributions are parametrized
using two independent parameters (except for r), which can be expressed using λ and FF.
The density of the gamma distribution is

fGM(t) =
βα(t− r)α−1exp[−α(t− r)]

Γ(α)
, t ≥ r, (22)

where α = (1− λr)2/FF and β = λ(1− λr)/FF, the density of the IG distribution is

fIG(t) =

√
β

2π(t− r)3
exp

[
−β(t− r − α)2

2α2(t− r)

]
, t ≥ r, (23)

where α = 1/λ− r and β = (1− λr)3/(λFF) and the density of the LN distribution is

fLN(t) =
1

(t− r)
√

2πβ
exp

[
−(ln(t− r)− α)2

2β

]
, t ≥ r, (24)

where β = ln(FF/(1− λr)2 + 1) and α = ln(FF)/2− ln(λ2(exp(β)− 1))/2− β/2. For
all the probability distributions it holds r ≤ 1/λ and f(t) = 0 for t < r.

Explicit formulas for Var(F̂FX) can be derived for r = 0. For the gamma distribution,
equation (14) is then simplified to

Var(F̂FX) =
2FF2((n− 1)FF + n)

n(n− 1)(1− FF)
, FF < 1, (25)

for the IG distribution to

Var(F̂FX) =
1

n(n− 1)
FF2((n+ 1)FF + 2n) (26)
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and for the LN distribution to

Var(F̂FX) =
1

n2
(FF + 1)((3− 2n)(2FF + 1) + (FF + 1)2(2n− 3 + FF)). (27)

For the variance of FFXN , equation (20) gives the following relations. For the gamma
distribution

lim
w→∞

Var(F̂FXN) =
FF

n

(
1 + λr

1− λr
FF + 1

)
, (28)

for the IG distribution

lim
w→∞

Var(F̂FXN) =
FF

n

(
2 + λr

1− λr
FF + 1

)
(29)

and for the LN distribution

lim
w→∞

Var(F̂FXN) =
FF

n(λr − 1)3(2λr − 1)4
(4λ5r5 − 16λ4r4 + (5FF + 25)λ3r3−

(12FF + 19)λ2r2 + (9FF + 7)λr − (FF + 1)2). (30)

Note that formulas (28), (29), and (30) hold only for w →∞, but since w only affects the
intensity estimator in formula (16), these approximations should give a good insight into
the behavior of Var(F̂FXN).
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Figure 2: Performance of the proposed Fano factor estimators, F̂FX (solid line) and F̂FXN (dashed), mea-
sured by the relative root mean square error, rRMSE, in percent. The estimation is tested on three standard
renewal spike train models (columns) given by the gamma, inverse Gaussian and log-normal distributions,
in dependence on the number n of trials (rows) and on the true value of the Fano factor (horizontal axis).
The color distinguishes the relative value of the refractory period (dead time) with respect to the mean ISI
E(T ). For F̂FXN the values of rRMSE were calculated using the “ideal” infinite observation window. See
Section 4. for the discussion of estimator performance.

Fig. 2 and 3 show the values of error of the estimators for the GM, IG and LN dis-
tributions of the ISIs as a function of FF and r. They are calculated based on equations
(14) and (20), using numerical integration of E(1/T ) if necessary. Specifically, we use the
relative root mean square error,

rRMSE(F̂F) = 100

√
MSE(F̂F)/FF, (31)
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where MSE(F̂F) (mean square error) can be calculated as

MSE(F̂F) = E(F̂F−FF)2 = Var(F̂F)+Bias2(F̂F) = Var(F̂F)+(E(F̂F)−FF)2. (32)

●
●

●
●

●
● ● ● ●

●

●● ● ● ● ●
●

●
●

●

●
●

●
●

●
● ● ●

●

●●● ● ● ● ●
●

●
●

●

●
●

●
●

●
● ● ●

●

●
●● ● ● ● ●

●
●

●
●

●● ● ● ● ● ● ●
●

●

●● ● ● ● ●
●

●
●

●

●● ● ● ● ●
●

●

●

●

●● ● ● ●
●

●
●

●

●

●● ● ● ● ●
●

●

●

●

●● ● ● ●
●

●
●

●

●

●● ● ● ● ●
●

●

●

●

●● ● ●
●

●
●

●

●

●

●● ● ● ●
●

●

●

●

●

●● ● ●
●

●
●

●

●

●

●● ● ● ●
●

●

●

●

●

●● ● ●
●

●
●

●

●

●

Gamma distribution Inverse Gaussian distribution Log−normal distribution

n =
 2

n =
 10

n =
 50

0 20 40 60 0 20 40 60 0 20 40 60

100

300

500

50

100

300

30

50

100

Refractory period [% of E(T)]:

rR
M

S
E

 [%
, l

og
 s

ca
le

]

Estimator: FX FXN F ● 0.5 1 2

Figure 3: Performance of the proposed Fano factor estimators F̂FX and F̂FXN . Visualization is analogous
to Fig. 2. The estimation is tested for three different values of the true Fano factor (color) in dependence on
the relative value of the refractory period (horizontal axis).

Let us look mainly at the dependence of rRMSE on the refractory period. For F̂FXN ,
increasing the refractory period increases the error, in accordance with equation (21). For
F̂FX , large values of r also have a negative effect on rRMSE, but smaller values reduce
the error. This corresponds to the earlier described expected decrease of the value E(1/T )
in equation (14). Thus, there is a minimum of the error for an r > 0. Specifically, for the
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gamma distribution with r = 0 the error is infinite for FF ≥ 1, since E(1/T ) diverges, but
this problem can be removed by adding a refractory period. E. g., with a refractory period
of length 10% of µ the errors are reasonably small. In general, it seems that F̂FXN is more
accurate for low values of FF and F̂FX is more accurate for high values of FF, neither of
which completely outperforms the other. With a low probability of very short ISIs, F̂FX
is often more precise. However, in the opposite case, it can yield very high errors, F̂FXN
is then a safer choice.

Finally, we derive the maximum likelihood estimators (MLE) of FF based on realiza-
tions of X for the GM, IG and LN distributions of T (with r = 0). The derivation of the
MLE assuming a gamma distribution of T leads to equation

(1/FF + 1)X̃ = X̄eψ(1/FF+1), (33)

where ψ(x) is the digamma function, X̄ is the sample mean and X̃ is the sample geometric
mean ofX1, . . . , Xn. Unfortunately, there is no analytical solution of equation (33), it must
be solved numerically.

For the IG distribution, the MLE is directly equal to estimator (12), i.e., the moment
and MLE estimators coincide. This is particularly interesting because the IG distribution
arises as the first passage time of the Wiener process with drift, which is a widely used
model of neuronal membrane potential. For the LN distribution, the MLE is

F̂FML = es − 1, (34)

where

s =
1

n

n∑
i=1

ln2 xi −
1

n2

(
n∑
i=1

lnxi

)2

. (35)

The above estimators were derived under the assumption that there is no refractory
period (r = 0). For the case where r > 0, we present at least the MLE estimator for the
exponential distribution. It is

F̂FML =

(
X̄

X̄ + 2 min(X)

)2

. (36)

5. Comparison of F̂FX and F̂FXN with the standard estimators

In the previous section, we have created two new estimators of FF based on the vari-
able X . Now, we want to compare their accuracy with the standard estimators based on
N(w) or T , given by equations (7) and (8). Let us now denote the estimator (7) as F̂FN
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or F̂FN(w) if we want to specify the used window. The question is then, what value of w
should be used in this estimator, since the choice of w strongly influences its properties (in
particular, smaller w yields mostly larger bias (Rajdl & Lansky, 2014)). We use mainly w0

given by equation (17). However, this window is selected based on realizations of X , so
it may seem to favor the F̂FX estimator. Therefore, we will also assume a (theoretically)
infinite window, wI = ∞ (very large in practice), which is the best choice for F̂FN . For
estimator (8) we need realizations of T , so it is natural to use the first complete ISIs after
t0 (values Yi, i = 1, . . . , n, see Fig. 1). We will denote this estimator F̂FY in the rest of
the paper. In the estimator F̂FXN we use the window w0 to calculate the intensity. We cal-
culate also the performance of the MLE estimators (F̂FMLE), we always use the estimator
derived for the specific distribution for r = 0, even if the real r is not zero.

To measure the accuracy, we again use rRMSE (31), but since there are no reasonably
simple formulas for MSE for all the estimators, we will calculate the values using nu-
merical simulations for spike trains with the GM, IG and LN probability distributions
of the ISIs. For the parameters, we use the following values, λ = 1, r ∈ {0, 0.1},
n ∈ {2, 10, 50} and FF ∈ [0.1, 10]. For each combination of parameters, the values
of error were calculated based on 20000 estimates for each estimator. The results for
r = 0 are shown in Fig. 4 and for r = 0.1 in Fig. 5. Examining these figures yields the
following conclusions.

• RMSE of F̂FN(wI) creates an almost constant line, representing approximately the
lowest error that can theoretically be achieved by an F̂FN(w) estimator. Surprisingly,
it is rarely the best estimator.

• F̂FN(w0) is relatively good (but not the best) for large FF, but mostly the worst for
small FF.

• For very small n, F̂FY seems to be the best, but for larger n it is quickly outper-
formed by other estimators. In general, for the lowest n shown (n = 2), the errors
are very large for all estimators.

• The error of F̂FX is often very small for small FF, but grows rather quickly with in-
creasing FF. As expected, the refractory period reduces this error growth, especially
for the gamma distribution.

• F̂FXN removes the problem of F̂FX for large FF, it is often the best for FF > 1, but
the error increases for small FF. The refractory period does not affect the accuracy
of this estimator too much.
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• The MLE estimators for r = 0 have similar accuracy as F̂FX . For the IG distribution
the estimators are identical, for the LN distribution the errors seem to be very similar
for large n, and for the GM distribution the MLE is better than F̂FX but also has
problems with large FF.

• We also tested (not shown) the accuracy of the F̂FXN estimator while using the
exact (not estimated) value of λ. Surprisingly, the resulting error is larger than when
the intensity is estimated. The reason is that when both E(X) and λ are estimated,
their errors (biases) can partially cancel each other out.

• The MLE (36) assuming an exponential distribution with a refractory period was
also tested (not shown) for the situations presented. However, the results were poor,
which is not surprising since the generated distributions are not exponential.

In conclusion, there is clearly no single estimator that is best in all situations, however,
considering all the distributions and parameters, the F̂FXN estimator seems to be the most
accurate.
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Figure 4: Comparison of performance between the proposed Fano factor estimators, F̂FX and
F̂FXN , maximum-likelihood, F̂FMLE, and non-parametric estimators based on standard formulas,
F̂FN (w0), F̂FN (wI) and F̂FY . Analogously to Fig. 2 three standard ISI renewal models (columns) are
tested at different number n of trials (rows) and various values of the true Fano factor (horizontal axis). For
the purpose of the figure the refractory period is set r = 0, the mean ISI E(T ) = 1 and each case was
generated 20000 times. See Section 5. for more details and discussion of the results.
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Figure 5: Comparison of various Fano factor estimators. Visualization and setting analogous to Fig. 4, except
that the value of the refractory period is set to r = 0.1.

6. Estimation of the change in the variability over time

So far, we have assumed that we estimate the variability (Fano factor) at a specific
(random) time from stationary spike trains. However, probably an even more important
task is to estimate the time dependence of the Fano factor in multiple parallel spike trains to
detect the changes in the (instantaneous) variability. The main advantage of the estimators
F̂FX and F̂FXN in this scenario is that there is no need to select a time window (except
for the window for intensity estimation in F̂FXN ), they use only one ISI from each spike
train and thus automatically focus on the instantaneous variability. If we use w0 (17) as the
length of the window for intensity in F̂FXN , then even this estimator automatically adjusts
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the time scale it focuses on.
To test the accuracy of the estimators in such a situation, we need a suitable model

of spike trains that allows us to change the variability (CV2, FF) at a specific time t0.
Unfortunately, a renewal process cannot be directly adjusted to immediately change its
variability at a given time. Therefore, we will generate two renewal processes, one with
Fano factor FF1 and the other one with FF2, and join them at a random time t0. From the
first process we will use the spikes up to t0, from the second process we will use the spikes
after t0. Using this model, we test the ability of the studied estimators to correctly detect
the change of FF over time. We assume t0 = 0, FF1 = 0.5 and FF1 = 2 and generate
n = 50 parallel spike trains and estimate the Fano factor for a time sequence with a step
of 0.05. We repeat the procedure 20000 times and compute the means and errors of the
estimators. The estimators being compared are FFN(1), FFN(5), FFN(10), FFY , FFX and
FFXN . Three specific values of w (1, 5, 10) are used for the FFN estimator to better see
the influence of the size of the window. A comparison of these estimators for the GM, IG
and LN distributions of the ISIs is shown in Fig. 6. We focus on the mean of the estimates,
which should be as close as possible to FF1 for t < 0 and to FF2 for t > 0, and on rRMSE
which of course should be as small as possible for all t.

Exploring Fig. 6 provides the following insights. The behavior of the F̂FN estimator is
not surprising, for large w the estimated variability change is too smoothed, the estimator
detects it too early. On the other hand, for small w the estimator has a large bias and there
seems to be no satisfactory compromise. The F̂FY estimator is based on the first whole
ISIs after the inspection time, so it catches the beginning of the change very poorly and
generally has the largest error. It may seem strange that it has a large negative bias even
for t > 0. This is a bias dependent on n, which vanishes for n → ∞, but is still large for
n = 50. From the point of view of the mean values, the estimators F̂FX and F̂FXN are
very similar (F̂FX is slightly better) and quite good when compared to the other estimators.
They capture the beginning of the variability change well and are the only estimators that
converge to the true value of FF2 for t → ∞. From the point of view of rRMSE, F̂FXN
is mostly more precise than F̂FX and even than the other estimators. For t < 0, F̂FN with
smaller windows sometimes outperforms F̂FXN , but for t > 0, F̂FXN is clearly the best.

In summary, as in the previous section, no estimator is always the most accurate, but
F̂FXN seems to be the best choice, especially for situations where we expect FF > 1.
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Figure 6: Estimation of spike train variability change in time. The proposed Fano factor estimators, F̂FX

and F̂FXN , and standard non-parametric estimators, F̂FY and F̂FN (w) for three observation windows,
w ∈ {1, 5, 10}, are compared. The estimation is tested on three renewal spike train models with dead
time (columns), the gamma, inverse Gaussian and log-normal distributions of ISIs, in dependence on time
(horizontal axis). At time t = 0 the true Fano factor (black, dashed line) changes from FF = 0.5 to FF = 2.
The top row shows the estimated Fano factor, the bottom row is the estimator performance measured by the
relative root mean square error (rRMSE) in percent. The values were calculated from 20000 repetitions of
50 parallel spike trains with E(T ) = 1 and refractory period r = 0.1.
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Figure 7: Estimation of spike train variability under change of firing rate in time. The proposed Fano
factor estimators, F̂FX and F̂FXN , and standard non-parametric estimators, F̂FY and F̂FN (w) for three
observation windows, w ∈ {1, 5, 10}, are compared. The estimation is tested on the gamma distribution of
ISIs (with dead time) such that there is a change in firing rate: E(T ) = 2 up to time t = 0 and E(T ) = 0.5
after t = 0. The true Fano factor however remains constant throughout each simulation (dashed line) at
one of the three selected values (columns), FF = {0.5, 1, 2}. The top row shows the estimated Fano factor,
the bottom row is the estimator performance measured by the relative root mean square error (rRMSE) in
percent. The values were calculated from 20000 repetitions of 50 parallel spike trains with refractory period
r = 0.1.

The studied scenarios assume that the variability changes, but the intensity remains
constant. However, in real experiments, the intensity is rarely constant, which could neg-
atively affect the accuracy of the estimators. Therefore, we also explore situations where
FF remains fixed, but the intensity changes. As the probability distribution of the ISIs,
we use only the GM distribution, but with three values of FF (0.5, 1, 2). For t0 ≥ 0 the
intensity is λ1 = 0.5, for t0 > 0 λ2 = 2. Other settings are analogous to the previous
experiment. The results are shown in Fig. 7. Unfortunately, we can see that the new es-
timators are strongly influenced by the change in the intensity, which is mistaken for a
change in variability. The standard estimators deal with this situation better, they are also
influenced by the intensity change, but significantly less than the new estimators. One
way to reduce this problem is to transform the spike trains into the operational time be-
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fore estimating the variability. Operational time is such a time transformation that yields
unit, constant intensity (time axis expressed in multiples of µ) (Nawrot, 2010; Rajdl et al.,
2020).

7. Conclusions

We focused on the estimation of the (instantaneous) variability of multiple parallel
spike trains at a specific, but random (with respect to the spikes) time t0. For such a task,
standard estimators of the Fano factor or the coefficient of variation are often used. In
the first case, the estimates are based on the number of spikes in a time interval around
t0, in the latter case, the lengths of some ISIs are used (e. g., also from a time window).
We showed that, under the assumption that the spike trains are realizations of a renewal
process, it is very easy to estimate a quantity equivalent to the Fano factor based only on
ISIs containing time t0 (one ISI from each spike train, see Fig. (1)), eventually to combine
information from these ISIs with information from the number of spikes. In this way, we
created two alternative Fano factor estimators F̂FX and F̂FXN (which can also be seen as
estimators of the coefficient of variation).

The first estimator, F̂FX , is based purely on ISIs Xi, i = 1, . . . , n. Contrary to the
estimators (7) and (8), F̂FX is unbiased and its accuracy is often better than the accuracy
of the standard estimators. Another advantage is that when estimating the instantaneous
variability, it is not necessary to adjust some parameters (e.g., the width of a window) to
capture only local information. The estimator uses only one ISI from each spike train, thus
automatically changes the used time scale based on the current intensity. It is also interest-
ing that this estimator is the MLE estimator of FF assuming the IG distribution of the ISIs.
The IG distribution can be derived as a distribution of ISIs from a very often used model of
the neuronal potential – the Wiener process with drift, which gives another relevance to the
F̂FX estimator. Unfortunately, it also has a relatively large drawback. Its error increases
greatly for distributions of ISIs with a high probability of occurrence of very short ISIs. In
the worst case scenario, the error can diverge, leading to very unstable estimates. We have
shown that this problem decreases rapidly in the presence of a refractory period (which is
common in real data), but it still cannot sufficiently improve every situation. We therefore
modified the F̂FX estimator to F̂FXN , by replacing the problematic intensity estimation
(part of F̂FX estimator) with an intensity calculated based on the number of spikes in a
time window. It is then necessary to choose a time window for the intensity estimator, but
we have proposed that the size of the window is simply calculated as the mean of the used
ISIs. Such an estimator retains the good properties of F̂FX , but completely removes the
problem with short ISIs. Note also note that, although F̂FXN is a variability estimator, it
is based only on the means of some simple quantities.
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We derived some properties of the new estimators, mainly formulas for variance, and
analyzed them. Then we performed various tests of the accuracy of the estimators, espe-
cially in comparison with the standard estimators (7) and (8). It turned out that no estimator
is best in all situations, however, considering all the test scenarios, the most accurate is the
new estimator F̂FXN . It is especially useful for estimating the time dependence of the
variability. Besides being the most accurate, it is also very easy to use.
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