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Abstract

Shared input to a population of neurons induces noise correlations, which can decrease the

information carried by a population activity. Inhibitory feedback in recurrent neural networks

can reduce the noise correlations and thus increase the information carried by the popula-

tion activity. However, the activity of inhibitory neurons is costly. This inhibitory feedback

decreases the gain of the population. Thus, depolarization of its neurons requires stronger

excitatory synaptic input, which is associated with higher ATP consumption. Given that the

goal of neural populations is to transmit as much information as possible at minimal meta-

bolic costs, it is unclear whether the increased information transmission reliability provided

by inhibitory feedback compensates for the additional costs. We analyze this problem in a

network of leaky integrate-and-fire neurons receiving correlated input. By maximizing

mutual information with metabolic cost constraints, we show that there is an optimal strength

of recurrent connections in the network, which maximizes the value of mutual information-

per-cost. For higher values of input correlation, the mutual information-per-cost is higher for

recurrent networks with inhibitory feedback compared to feedforward networks without any

inhibitory neurons. Our results, therefore, show that the optimal synaptic strength of a recur-

rent network can be inferred from metabolically efficient coding arguments and that decorre-

lation of the input by inhibitory feedback compensates for the associated increased

metabolic costs.

Author summary

Information processing in neurons is mediated by electrical activity through ionic cur-

rents. To reach homeostasis, neurons must actively work to reverse these ionic currents.

This process consumes energy in the form of ATP. Typically the more energy the neuron

can use, the more information it can transmit. It is generally assumed that due to evolu-

tionary pressures, neurons evolved to process and transmit information efficiently at high

rates but also at low costs. Many studies have addressed this balance between transmitted

information and metabolic costs for the activity of single neurons. However, information
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is often carried by the activity of a population of neurons instead of single neurons, and

few studies investigated this balance in the context of recurrent neural networks, which

can be found in the cortex. In such networks, the external input from thalamocortical syn-

apses introduces pairwise correlations between the neurons, complicating the information

transmission. These correlations can be reduced by inhibitory feedback through recurrent

connections between inhibitory and excitatory neurons in the network. However, such

activity increases the metabolic cost of the activity of the network. By analyzing the bal-

ance between decorrelation through inhibitory feedback and correlation through shared

input from the thalamus, we find that both the shared input and inhibitory feedback can

help increase the information-metabolic efficiency of the system.

1 Introduction

The efficient coding hypothesis poses that neurons evolved due to evolutionary pressure to

transmit information as efficiently as possible [1]. Moreover, the brain has only a limited

energy budget, and neural activity is costly [2, 3]. The metabolic expense associated with neural

activity should, therefore, be considered, and neural systems likely work in an information-

metabolically efficient manner, balancing the trade-off between transmitted information and

the cost of the neural activity [4, 5, 6, 7, 8].

The principles of information-metabolically efficient coding have been successfully applied

to study the importance of the excitation-inhibition balance in neural systems. It has been

shown that the mutual information between input and output per unit of cost for a single neu-

ron is higher if the excitatory and inhibitory synaptic currents to the neuron are approximately

equal if the source of noise lies in the stochastic nature of the voltage-gated Na+ and K+ chan-

nels [9]. In a rate coding scheme, where the source of noise lies in the random arrival of pre-

synaptic action potentials, the mutual information per unit of cost has been shown to be rather

unaffected by the increase of pre-synaptic inhibition associated with an excitatory input [10].

However, the balance of excitation and inhibition is likely to be more important in the con-

text of recurrent neural networks than in the context of single neurons. In recurrent neural

networks, the inhibitory input to neurons associated with a stimulus [11] arises as inhibitory

feedback from a population of inhibitory neurons. The inhibitory feedback prevents a self-

induced synchronization of the neural activity [12] and reduces noise correlations (correla-

tions between neurons calculated across trials of the same stimulus) induced by shared input

to neurons in the population [13, 14, 15]. If noise correlations have the same sign as signal cor-

relations (correlations between neurons calculated across different stimuli), then noise correla-

tions are detrimental to information transmission by neural populations [16, 17, 18].

Information is likely transmitted by the activity of a population of neurons instead of a single

neuron [19], therefore, when studying the effect of excitation-inhibition balance on informa-

tion transmission, it is essential to consider the context of neural populations. In the case of a

population of neurons tuned to the same stimulus, positive noise correlations decrease the

information content in the population.

Several studies have analyzed the effect of noise correlations on information transmission

properties [16, 17, 20]. However, these studies did not analyze the relationship between the

noise correlations and the metabolic cost of neural activity. In our work, we consider a compu-

tational model of a small part of the sensory cortex and the noise correlations caused by shared

connections from an external thalamic population. The noise correlations may then be

reduced by inhibitory feedback, which, however, increases the cost of the neural activity [10].
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Our point of interest is the trade-off between improved information transmission due to lower

noise correlations and the increase in metabolic costs due to stronger inhibitory feedback.

2 Results

2.1 Constrained information maximization in a simple linear model

In order to gain an insight into what affects the information-metabolic efficiency of a neural

population, we first solve the problem for a simple linear system. The mean response of the

system is given by γ(λext) = gλext, where λext is the stimulus and g is the gain of the system. We

measure the trial-to-trial variability of the response with the Fano factor, defined as

FF ¼
Var½N�
E½N�

; ð1Þ

where N is a random variable representing the response n of the network to some stimulus. In

this section, we assume the Fano factor to be constant, and we assume that the output is con-

tinuous and normally distributed. Therefore, the input-output relationship is described by the

conditional probability

f ðnjlextÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2glextFF

p exp �
1

2

n � glext
glextFF

� �2
" #

: ð2Þ

We assume that the cost of the activity w(λext) depends linearly on the input:

wðlextÞ ¼ w0lext þW0 ¼
w0

g
gðlextÞ þW0; ð3Þ

where W0 is the cost of the resting state.

We treat the input λext as a random variable Λ with probability distribution function p
(λext). We can then calculate the average metabolic cost as

Wp ¼

Z lmaxext

lminext

pðlextÞwðlextÞ dlext: ð4Þ

The mutual information between the input and the output I(Λ; N) is calculated as

IðL; NÞ ¼
Z lmaxext

lminext

pðlextÞiðlext; NÞ dlext; ð5Þ

iðlext; NÞ ¼
Xþ1

n¼0

iðlext; nÞqpðnÞ; ð6Þ

iðlext; nÞ ¼ log2

f ðnjlextÞ
qpðnÞ

; ð7Þ

qpðnÞ ¼
Z lmaxext

lminext

pðlextÞf ðnjlextÞ dlext; ð8Þ

where f(n|λext) is the probability distribution function of N given that Λ = λext, p(λext) is the

input probability distribution, i(λext; n) is the amount of information that an observation of n
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spikes gives us about the stimulus λext, i(λext; N) is then the average amount of information we

get from the input λext, qp(n) is the marginal output probability distribution.

The capacity-cost function C(W) is the lowest upper bound on the amount of mutual infor-

mation (in bits) achievable given the constraint that Wp<W:

CðWÞ ¼ sup
pðlextÞ:Wp<W

IðL; NÞ:
ð9Þ

The information-metabolic efficiency E is then the maximal amount of mutual information

per molecule of ATP between the input and the output:

E ¼
CðW∗Þ

W∗ ; ð10Þ

W∗ ¼ arg max
W2½0;þ1Þ

CðWÞ
W

: ð11Þ

The capacity-cost function can be obtained numerically with the Blahut-Arimoto algorithm

[21]. The information-metabolic efficiency can be conveniently obtained directly with the

Jimbo-Kunisawa algorithm [22, 23]. However, if the Fano factor is very small, a lower bound

on the capacity-cost function can be found analytically [24, 25]. In the low noise approxima-

tion, the optimal input distribution maximizing the mutual information constrained by meta-

bolic expenses W is given by

pðlextÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
JðlextÞ
2pe

r

exp l1 � 1 � lWwðlextÞ½ �: ð12Þ

where J(λext) is the Fisher information and λ1 and λW are the Lagrange multipliers which can

be obtained from the normalization condition:

Z lmaxext

lminext

pðlextÞwðlextÞ dlext ð13Þ

and the average metabolic cost constraint (Eq 4). In the second-moment approximation [26,

27], the Fisher information is given by

JðlextÞ ¼
m0ðlextÞ

2

sexcðlextÞ
2
; ð14Þ

where μ(λext) is the mean response to the external input λext, μ0(λext) is the derivative, and

σexc(λext) is the standard deviation of the spike counts at input intensity λext. The low noise esti-

mate on the capacity-cost function is then

ClowðWÞ ¼ 1 � l1 þ lWW: ð15Þ

the information-metabolic efficiency can be conveniently obtained directly with the Jimbo-

Kunisawa algorithm [22, 23].

In the case of our simple linear system the Fisher information (Eq 14) is

JðlextÞ ¼
g

lextFF
; ð16Þ
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and the probability distribution derived from the low-noise approximation (Eq 12) is then

pðlextÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2pe
g

lextFF

r

exp ðl1 � 1 � lWw0lextÞ expð� lWW0Þ: ð17Þ

After applying the normalization conditions (Eqs 4 and 13) and using Eq (15) we obtain the

lower bound on the capacity-cost function:

ClowðWÞ ¼
1

2
log ðW � W0Þ

1

wAP

1

FF

� �

; ð18Þ

wAP ¼
w0

g
; ð19Þ

where wAP is the cost of increasing the output intensity by one action potential.

The gain g, cost scaling w0, and Fano factor FF cannot be considered constant for real neu-

ral populations. However, Eq (18) provides an insight into the importance of these properties,

which we will study numerically for a more realistic neural system.

In the following, we use

g ¼ m0extðlextÞ; ð20Þ

w0 ¼ w0ðlextÞ: ð21Þ

Next, we analyze the information-metabolic efficiency of a recurrent spiking neural net-

work, consisting of 800 excitatory and 200 inhibitory neurons. This network may represent a

small area in the cortex, tuned to the same external stimulus, such as approximately a sphere of

a 145 μm radius in the rat barrel cortex, which comprises only a small fraction of a single barrel

[28, 29]. In such case, the external input is the input from a single barreloid in the thalamus.

We assume that the role of this subnetwork is to process information about the stimulus inten-

sity. We analyze the information-metabolic efficiency in two extreme cases of the readout of

the network. First, we assume that the output of the network is read out as the summed rate of

all the neurons in the network, and second, we assume that the brain acts as an efficient unbi-

ased decoder with access to the rate of each neuron. In each case, we calculate the rate of each

neuron as the number of fired spikes in a time window ΔT = 1 s.

2.2 Inhibitory feedback decorrelates the neural activity

In our model, 1000 external neurons randomly connect to the excitatory and inhibitory sub-

populations with a connection probability Pext (Fig 1). Increasing Pext increases the mean pair-

wise correlation between the rates of the neurons in the network (feedforward network, Fig

1B). These correlations could be removed by recurrent connections. Initially, we set the excit-

atory recurrent synaptic amplitude as aexc = 0.01 nS to create a small perturbation from the

feedforward network and varied the scaling α determining the amplitude of inhibitory synap-

ses (ainh = αaexc) from 15 to 25, which leads to the amplitude of inhibitory post-synaptic poten-

tials being sever-fold (approximately 2× to 8×, depending on α and on the memory potential)

larger than the excitatory post-synaptic potentials, as commonly chosen in network modelling

[30, 31, 32, 29]. Correlations between neurons were decreased for α� 20 (Fig 1C), which was

also associated with stronger negative net current from the recurrent synapses (Fig 1D). For

the network considered further in our work we set α = 20. Simultaneously increasing the

strength of the recurrent synapses with fixed α led to a further decrease of the correlations
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among the neurons (Fig 1E) while further decreasing the net current from the recurrent synap-

ses (Fig 1F).

2.3 Fano factor of single neurons vs. a population

In an inhibition-dominated network, the input needed from the external population in order

to evoke a given average firing rate has to be higher than in the case of the feedforward net-

work. The resulting increase in synaptic noise leads to higher Fano factor in the LIF model

(Fig 2A, 2B and 2C; see also [33]).

If we assume that the downstream areas decode the stimulus intensity from the summed

activity of the network, we need to look at the Fano factor of the summed activity, that is, ratio

of variance of the sum to the mean of the sum across the trials of duration ΔT = 1 s. In the case

of the total population activity, however, the pairwise correlations between the neurons have a

significant effect on the Fano factor. By denoting the random variable representing the number

of spikes of the i- th neuron observed during time window ΔT as Ni, we get for the Fano factor

Fig 1. Inhibitory feedback decreases noise correlations. A: Schematic illustration of the simulated neural network. Poisson neurons in the external

population make random connections to neurons in the excitatory and inhibitory subpopulations. The connection probability Pext 2 [0.01, 1] is varied

to achieve different levels of shared external input to the neurons. The neurons in the inhibitory (inh.) and excitatory (exc.) subpopulations make

recurrent connections (exc. to exc., exc. to inh., inh. to inh., inh. to exc.) with probability Prec = 0.2. The strength of those connections is parametrized

by arec. B: Mean pairwise correlations between any two neurons in the exc. and inh. subpopulations plotted against the mean output of the network for

different values of Pext in a feedforward network (arec = 0 nS). Pairwise correlations are calculated from the number of spikes each neuron fires in a time

window ΔT = 1 s across many trials of the simulation. The plot is vertically separated into two parts to also illustrate the smaller differences at lower

values of Pext. C: Mean pairwise correlations as in B, for different values of α (ratio of inhibitory-to-excitatory synaptic strength), arec = 0.01 nS. The

black line represents the pairwise correlations in a feedforward network without any recurrent connections (arec = 0). D: Total current from recurrent

synapses for different values of α, as in C. E-F: Same as in C-D, but with fixed α = 20 and different values of arec.

https://doi.org/10.1371/journal.pcbi.1011896.g001
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of the population activity:

FF ¼
Varð

P
iNiÞ

E½
P

iNi�
ð22Þ

¼

P
iVarðNiÞP

iE½Ni�
þ

2
P

i<j CovðNi;NjÞ
P

iE½Ni�
ð23Þ

¼

P
iVarðNiÞP

iE½Ni�
1þ

2
P

i<j CovðNi;NjÞ
P

i VarðNiÞ

� �

ð24Þ

¼
v
m

1þ ðntot � 1Þ
c
v

� �

ð25Þ

� FF0ð1þ krÞ ð26Þ

where c is the mean pairwise covariance, v the mean variance of a neuron, μ is the mean num-

ber of spikes in ΔT, ntot is the number of neurons, and r is the Pearson correlation coefficient.

The last approximation holds for neurons with identical variances and pairwise covariances

[16]. It provides an insight into how the pairwise correlations and Fano factor of individual

Fig 2. Fano factor of single neurons and of populations. A-C: Mean Fano factor of individual neurons for different values of Pext: 0.01 (A), 0.2 (B), 1

(C). The strength of the recurrent synapses (arec) is color-coded. The mean Fano factor increases with the strength of the recurrent synapses. D-F: Same

as in A-C but for the Fano factor of the population activity. The points represent the population Fano factor obtained from the simulation, and the lines

are a weighted 7th-degree polynomial, used only as a visual aid. For Pext = 0.01, the increase in Fano factor of individual neurons (A) can have a

stronger effect on the population Fano factor than decreasing the pairwise correlations, resulting in an increase of the population Fano factor with high

values of arec (D). For higher values of Pext, the pairwise correlations greatly increase the population Fano factor, which then decreases with increasing

arec.

https://doi.org/10.1371/journal.pcbi.1011896.g002
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neurons affect the Fano factor of the total activity. If the correlations or number of neurons are

small (r � ntot� 1), the decorrelation by strengthening the recurrent synapses does not signifi-

cantly decrease the population Fano factor. Instead, the population Fano factor may increase

due to the increase of the Fano factor of individual neurons (Fig 2D, Pext = 0.01). If greater cor-

relations are induced due to the shared input to the network, the correlations have a dominat-

ing effect on the population Fano factor, which can then be greatly decreased by strengthening

the recurrent synapses and in turn decreasing the pairwise correlations (Fig 2E and 2F).

2.4 Inhibitory feedback is metabolically costly

2.4.1 Stronger recurrence strength increases the cost of the resting state. We calculated

the cost of the activity by summing the cost of action potentials from the excitatory, inhibitory,

and external subpopulations, and the cost of excitatory synaptic currents in the excitatory and

inhibitory subpopulations. These excitatory currents may be evoked by action potentials from

the external or excitatory subpopulations, or from the background input. We did not consider

the cost of synaptic currents evoked in neurons not involved in our simulation. We assume

that such synaptic currents would be part of the background activity of a different area. There-

fore, if we included these costs and considered multiple cortical areas, we would have included

the background activity cost multiple times. We also did not include the cost of synaptic cur-

rents in the external population.

The cost of the resting state is an important factor for information-metabolic efficiency

[10]. In our network, increasing the recurrence strength decreased the spontaneous activity of

the neurons, due to inhibition dominating the recurrent currents. However, the simultaneous

increase in the strength of the recurrent excitatory synapses increased the cost of the excitatory

synaptic currents (Fig 3A, 3B and 3C), because the spontaneous action potentials from the

excitatory subpopulation evoke stronger excitatory post-synaptic currents.

2.4.2 Inhibitory feedback decreases gain. Because the net current from recurrent synap-

ses is hyperpolarizing, with stronger recurrent synapses, a stronger excitatory current is neces-

sary to bring the neuron to a given post-synaptic firing rate, and higher pre-synaptic firing

rates are necessary. Therefore, the gain g of the network decreases, and with increasing arec the

cost of synaptic currents and the cost of external activity increase (Fig 3D and 3E).

2.5 Shared input decreases gain

The number of synapses from the external population for each neuron in the excitatory and

inhibitory subpopulations follows a binomial distribution:

pðkÞ ¼
next
k

� �
Pk
extð1 � PextÞ

next � k
; ð27Þ

with the mean number of synapses given by next � Pext and variance next � Pext(1 − Pext). We

scaled the firing rate of the individual neurons in the external population as l
0

exc ¼
lexc

next�Pext
.

Therefore the mean output to a single neuron was always λext, independently of Pext and the

variance of the input across neurons was lextnext
1� Pext
Pext

.

Given the convexity of the single neuron tuning curve in the analyzed input range (S1 Fig)

that out of two inputs with an identical mean λext, but different variances across neurons, the

input with the higher variance will lead to a higher average firing rate. Assuming that the input

across neurons follows a normal distribution with mean λext and variance σ2 and that the single

neuron tuning curve can be approximated by an exponential function in the form of c1 exp
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(c2x), where x is the input intensity to the single neuron, we obtain the mean firing rate:

Z þ1

� 1

1

s
ffiffiffiffiffiffi
2p
p exp �

ðx � lextÞ
2

2s2

� �

c1 expðc2xÞ ¼
c1

2
exp

c2

2
ðc2s

2 � 2lextÞ
� �

; ð28Þ

which grows with the standard deviation of the input.

Accordingly, we observed that networks with higher Pext needed higher λext in order to pro-

duce the same mean PSFR as networks with lower Pext (Fig 4A, 4B and 4C), which translates to

lower gain with higher Pext (Fig 4D, 4E and 4F). Moreover, the mean Fano factor of individual

Fig 3. Metabolic cost of the network activity. A-C: Cost at resting state (λext = 0). A: Cost of the excitatory synaptic currents from the background

input (Eq 35) and excitatory action potentials evoked by the background input. B: Cost of the action potentials (both excitatory and inhibitory) evoked

by the background input. C: Total resting cost obtained by summing A and B. D: The total cost of the network activity is plotted against the output of

the network (the total post-synaptic firing rate). Filled areas represent individual contributions of each cost component: cost of action potentials from

the external population, cost of the excitatory synaptic currents, and cost of the post-synaptic (evoked) action potentials. As Pext increases, the

contribution of external action potentials to the overall cost decreases. With increasing arec, the contribution of excitatory synaptic currents increases. E:

The cost of increasing the mean input by one action potential (wAP, Eq 19) is significantly lower for higher Pext. However, although the difference

between Pext = 0.01 and Pext = 0.2 is approximately 10-fold, the difference between Pext = 0.2 and Pext = 1 is only approximately 2-fold, as the cost of the

external population starts to contribute less to the overall cost.

https://doi.org/10.1371/journal.pcbi.1011896.g003
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neurons increased with increasing Pext (Fig 4G, 4H and 4I). This effect could be mostly

removed by fixing the number of connections from the external population to each neuron in

the excitatory and inhibitory populations to Pextnext (S2 Fig).

2.6 Optimal regimes for metabolically efficient information transmission

We illustrated that the recurrence strength 1) increases the metabolic cost of the neural activity

and 2) decreases the population Fano factor by decreasing the correlations between the neu-

rons. Similarly, the increased probability of a synapse from an external population (Pext)

decreases the cost of the neural activity but increases the noise correlations. The increased

noise correlations then result in higher Fano factor (Eq 26). To find the balance between the

cost of the network activity (Eq 4) and the mutual information between the input and the

Fig 4. Shared input decreases the gain and increases the individual Fano factor. A-C: The input intensity λext needed to evoke a given firing rate (x-axis)

with different connection probabilities Pext relative to the input intensity for Pext = 0.01. A: arec = 0 nS, B: arec = 0.2 nS, C: arec = 1 nS. For higher Pext, higher

values of λext are needed to achieve the same post-synaptic firing rates as with lower values of Pext. This effect becomes more pronounced in stronger

recurrent synapses (E-F). D-F: Gain of the network (Eq 20). A higher Pext leads to a lower gain of the population activity. G-I: Higher values of Pext also

increase the Fano factor of individual neurons.

https://doi.org/10.1371/journal.pcbi.1011896.g004
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output (Eq 5), we calculated the information-metabolic efficiency, which maximizes the ratio

of the mutual information to the cost of the network activity (Eq 10).

For low values of Pext (� 0.1), increasing the strength of the recurrent input did not lead to

an increase in the information-metabolic efficiency. For higher values of Pext the information-

metabolic efficiency was maximized for arec between 0.1 nS and 0.5 nS (Fig 5A and 5B), mean-

ing that the strength of the recurrent excitatory synapses was 2× to 5× lower that the strength

of the synapses from the external population.

Moreover, varying Pext had a significant effect on the information-metabolic efficiency

across all values of arec. Namely, low values of Pext resulted in lower values of information-met-

abolic efficiency across all values of arec, showing that shared input from the external popula-

tion is beneficial for metabolically efficient information transmission. Overall, the highest

values of information-metabolic efficiency (E� 2bit/1012 ATP) were reached for arec between

0.05 nS and 0.5 nS and Pext between 0.2 and 1 (Fig 5B).

We analyzed the effect of the resting cost (Fig 3A, 3B and 3C) by setting the resting cost in

all cases equal to W0, the resting cost of the feedforward network. This did not have a signifi-

cant effect on the information-metabolic efficiencies (S3 Fig).

Neural circuits might not necessarily maximize the ratio of information to cost. Instead,

neurons and neural circuits could modulate their properties to maximize information trans-

mission with the available energy resources [5]. For example, neurons in the mouse visual cor-

tex have been shown to decrease the conductance of their synaptic channels after food

restriction [35].

Accordingly, we studied how the optimal strength of recurrent synapses changes with the

available resources. We calculated the optimal value of arec for different values of available

resources (3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 30, and 40 × 1012 ATP). In Fig 5C, 5D, 5E, 5F, 5G and

5H, we plotted C(W; arec), the capacity-cost function (Eq 9) extended by one dimension with

arec. For each cost W, the optimal arec is highlighted, and the corresponding contour of C(W)

is shown (see Table 1 for the values of C(W)). With decreasing W, the optimal value of arec typ-

ically decreases. This effect is more robust with high values of Pext, because the contours are

more curved at the optimum.

We calculated the extended capacity-cost functions using input distributions obtained from

the low-noise approximation. To verify that the low noise approximation applies in the case of

the studied system, we compared these results to the information-metabolic efficiency

obtained with the Jimbo-Kunisawa algorithm. The relative difference did not exceed 10% and

did not have a significant impact on the information-metabolic efficiency heatmap structure

(S4 Fig).

2.7 Limits of efficient information transmission by the population activity

So far we have assumed that the information about the stimulus is transmitted by the total

activity of the network. Such analysis provides us with important insights, however, such sim-

plistic decoding might not necessarily occur in the brain. To explore the limits of decoding the

input intensity from the population activity, we assert that the brain can perform optimal unbi-

ased decoding of the stimulus, i.e., for each stimulus λext, it holds for the estimation of the

input l̂ that

E½l̂� ¼ lext; ð29Þ

Var½l̂� ¼
1

JpopðlextÞ
; ð30Þ
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Fig 5. Information transmission with cost constraints. A: Information-metabolic efficiency E (Eq 10) for different values of recurrence strength arec.

Pext is color-coded. B: Contour plot of the information-metabolic efficiency. Contours are at 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, and 2.25 bits/s. C-H: Contour

plots showing the capacity-cost function C(W) (Eq 9) with dependence on the recurrence strength arec for different values of Pext. The contours show

the maximal capacities constraint at different values of W (see Table 1 for the costs and capacity values at the contours). The heatmaps in B-H were

calculated using piece-wise cubic 2D interpolation (SciPy interpolator CloughTocher2DInterpolator [34]) from the grid calculated with Pext values

0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5, 0.8, 1 and arec values 0, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5, and 1 nS.

https://doi.org/10.1371/journal.pcbi.1011896.g005

PLOS COMPUTATIONAL BIOLOGY Shared input and recurrency in neural networks for efficient coding

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011896 February 23, 2024 12 / 23

https://doi.org/10.1371/journal.pcbi.1011896.g005
https://doi.org/10.1371/journal.pcbi.1011896


where the second equation corresponds to an estimator which saturates the Cramér-Rao

bound, and Jpop(λext) is the Fisher information about the stimulus from the population activity.

If we assume that l̂ is distributed normally, we may then write the conditional probability dis-

tribution function as:

f ðl̂jlextÞ ¼
ffiffiffiffiffiffiffi
Jpop
2

r

exp �
Jpop
2
ðlext � l̂Þ

2

� �

; ð31Þ

obtaining a noisy identity channel with the noise given by the Cramér-Rao bound.

To reduce the effect of sampling bias, we estimated Jpop from the first 500 principal compo-

nents of the output and employed a bias correction (see section 4.4 for details). Increasing the

strength of recurrent connections (arec) increased the information metabolic efficiency of the

network (Fig 6). The increase was more pronounced with higher values of Pext, and overall was

the highest for Pext = 0.8 and Pext = 1. In this sense, the results remain qualitatively very similar

to the information-metabolic efficiency calculated from the summed activity (Fig 5). Interest-

ingly, however, our results indicate that when using information from the entire population,

not only the summed activity, the noise correlations introduced by the shared input are less

detrimental, and Pext = 1 reaches the highest or close to highest values of the information-met-

abolic efficiency.

Table 1. Capacity-cost function values (in bits).

Pext \ W(1012 ATP) 2 3 4 5 6 7 8 10 12 15

0.02 2.71 3.55 4.06 4.43 4.71 4.93 5.12 5.40 5.61 5.83

0.05 3.50 4.26 4.69 4.99 5.20 5.36 5.48 5.66 5.79 5.89

0.10 3.83 4.49 4.85 5.09 5.27 5.42 5.53 5.68 5.77 5.87

0.20 3.97 4.54 4.87 5.10 5.27 5.41 5.51 5.67 5.78 5.86

0.50 3.90 4.45 4.78 5.01 5.18 5.31 5.41 5.56 5.64 5.67

1.00 3.78 4.32 4.64 4.87 5.03 5.16 5.27 5.40 5.46 5.50

https://doi.org/10.1371/journal.pcbi.1011896.t001

Fig 6. Information-metabolic efficiency with multi-dimensional output. A: Information-metabolic efficiency E (Eq 10) for different values of

recurrence strength arec. Pext is color-coded. B: Contour plot of the information-metabolic efficiency. Contours are at 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5,

and 2.75 bits/s.

https://doi.org/10.1371/journal.pcbi.1011896.g006
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3 Discussion

Information in the brain is likely transmitted by neuronal populations instead of single neu-

rons [19]. One of the benefits is that by considering the signal from many neurons, it is possi-

ble to decrease the noise inherent to rate coding spiking neurons, and thus increase the

information carried by the system. The information increase is however influenced by correla-

tions between the neurons and their structure. In this work, we investigated a situation where

a population of neurons tuned to the same stimulus transmits information about the stimulus

intensity. In this case, positive noise correlations decrease the information carried by the

population.

We parameterized the shared input with the probability of connection from the external

population Pext. Higher Pext means that the firing rate of neurons in the external population

can be lower to maintain the same mean input to the information-transmitting population.

This way, the shared input, while increasing the noise correlations, decreases the metabolic

cost of the activity. In the studied system, we could mitigate the noise correlations by strength-

ening the recurrent connections and thus increasing the inhibitory feedback. However, to

excite a population with inhibitory feedback requires stronger input than to excite a popula-

tion without inhibitory feedback, and therefore, strengthening the recurrent connection

increased the cost of the activity.

In our work, we studied the balance between increasing the transmitted information by

decreasing the noise correlations and the associated increase in the cost of the activity. We

showed that in a linear system, if the Fano factor of the population activity and the ratio
g

w0FF
(g

is the gain of the system, or slope of the stimulus-response curve, w0 is the slope of the stimu-

lus-cost curve) remain constant, the cost-constrained capacity will remain constant as well.

We proceeded to calculate the stimulus-response relationship and the metabolic cost for a

more biologically realistic neural system. In the studied system, the population Fano factor

could not be considered constant. Instead, correlations between neurons increased with the

mean output of the system, and the mean Fano factor of single neurons was also dependent on

the mean output of the system, leading to complex dependence of the population Fano factor

on the mean output of the system (Fig 2D, 2E and 2F). We found that despite increasing the

noise correlations, the shared input helps with information-metabolically efficient information

transmission. This was further accented if the noise correlations are decreased by the increase

in the inhibitory feedback. Increasing the recurrence strength could lead to a 10% to 15%

increase in the information-metabolic efficiency. The magnitude of the increase was depen-

dent on the cost of the action potentials. If the cost of synaptic currents is negligible compared

to the cost of the action potentials, there would be a higher benefit in increasing the inhibitory

feedback since the increases in the cost of the synaptic current could also be neglected.

We illustrated the effect of inhibition-dominated recurrence and shared input on the meta-

bolic cost of neural activity. An increased strength of recurrence increased the cost of excit-

atory synaptic currents due to the stronger excitatory synapses and stronger input from the

external population, as well as the cost of the activity of the external population. A higher con-

nection probability from the external population (higher shared input probability) led to a

decrease in the external population activity cost, as the overall activity of the external popula-

tion could be lower to result in the same mean input to the post-synaptic neurons. On the

other hand, due to less variable input to single neurons with high values of Pext, a higher mean

input was required across all neurons to evoke the same mean post-synaptic activity.

In our model of the cortical area, we considered two neural subpopulations: excitatory and

inhibitory. Each subpopulation was homogeneous, but we set the threshold of the inhibitory

neurons lower to mimic the behavior of fast-spiking inhibitory neurons. The difference
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between excitatory, regular spiking neurons and inhibitory, fast-spiking neurons is often

described not only by differences in the threshold but also in differences in the adaptation

properties [36, 37, 29]. In our case, we did not consider adaptation for simplicity because esti-

mating the information capacity of a neural system with adaptation is computationally consid-

erably more difficult [10].

In our work, we assumed that the neural circuit maximizes the mutual information between

the input and the output neurons while minimizing the cost of the neural activity. Such an

approach does not provide any information about how the information is encoded. It only cal-

culates the limit on the amount of information that can be reliably transmitted. Yet, the princi-

ples of mutual information maximization have proven very useful in explaining the properties

of neural systems. For example, the tuning curves of blowfly’s contrast-sensitive neurons are

adapted to the distribution of contrasts encountered in the natural environment [38]; the

power spectrum of distribution of odor in pheromone plumes follows the power spectrum pre-

dicted for an optimal input to olfactory receptor neurons [39]; distributions of post-synaptic

firing rates of single neurons during in-vivo recordings follow distributions predicted from

cost-constrained mutual information maximization [40, 41, 42].

By assuming a particular coding scheme, it is possible to place further constraints on the

complexity of information encoding, with the assumption that complex codes are not an effi-

cient way to transmit information [43, 44]. We did not attempt this in our study. However, it

would be interesting to study whether inhibitory feedback decreases or increases the encoding

complexity.

We have shown that a cortical area can adapt to the amount of available energy resources.

When resources are scarce, information transmission can be adapted by weakening the synap-

tic weights, thus expending fewer resources to reduce the noise correlations. Such a mecha-

nism is implemented in the mouse visual cortex [35]. Padamsey et al. [35] showed that in

food-restricted mice, the orientation tuning curves of individual orientation-sensitive neurons

in the visual cortex become broader due to weakened synaptic conductances. In our work, we

studied the properties of a neuronal population instead of single neurons. In particular, we

considered a population encoding the stimulus intensity instead of the stimulus identity, such

as orientation. An extension this model to a situation in which stimulus identity is encoded

and shared input is introduced due to the overlap of receptive fields would be interesting.

Neurons recorded in-vivo typically exhibit a Fano factor close to 1.0 and constant over a

broad range of post-synaptic firing rates [45, 46, 19]. In the optimal regimes with stronger

recurrent synapses, the Fano factor decreased only very slowly over the studied range of post-

synaptic firing rates (up to 30 Hz in a single neuron). With weaker synaptic strengths, the

Fano factor of a single neuron decreases rapidly with an increasing post-synaptic firing rate.

Our model predicts that fewer available resources would lead to weaker recurrent synapses.

This hypothesis is straightforward to test by calculating the Fano factors during stimulus pre-

sentation (both population and single neuron) in food-restricted animals and comparing them

to controls. We expect that the population Fano factor will increase (alternatively, the noise

correlations will increase) with food scarcity, and single neuron Fano factors will decrease.

4 Methods

4.1 Network model

We modeled a network consisting of three subpopulations: external (ext), excitatory (exc), and

inhibitory (inh). The external subpopulation consisted of Poisson neurons, defined by their fir-

ing intensity l
0

ext (same for all the neurons in the subpopulation). Neurons in the excitatory
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and inhibitory subpopulations were modeled as leaky integrate-and-fire (LIF) neurons:

Cm
dVi

dt
¼ gLðEL � ViÞ þ Ii

recðV
i; tÞ þ Ii

extðV
i; tÞ þ Ii

bcgðV
i; tÞ; ð32Þ

Ii
recðV

i; tÞ ¼ gi
excðEe � ViÞ þ gi

inhðEi � ViÞ; ð33Þ

Ii
extðV

i; tÞ ¼ gi
extðEe � ViÞ; ð34Þ

Ii
bcgðV

i; tÞ ¼ gi
bcg;excðEe � ViÞ þ gi

bcg;inhðEi � ViÞ; ð35Þ

texc
dgi

ext

dt
¼ � gi

ext þ
Xnext

j¼1

X

ts2T
j
ext

Wij
extdðt � tsÞ; ð36Þ

texc
dgi

exc

dt
¼ � gi

exc þ
Xnexc

j¼1

X

ts2T
j
exc

Wij
excdðt � tsÞ; ð37Þ

tinh
dgi

inh

dt
¼ � gi

inh þ
Xninh

j¼1

X

ts2T
j
inh

Wij
inhdðt � tsÞ; ð38Þ

texc
dgi

bcg;exc

dt
¼ ðmbcg;exc � gi

bcg;excÞ þ texcsbcg;exc

ffiffiffiffiffiffiffi
2

texc

s

Zi
excðtÞ; ð39Þ

tinh
dgi

bcg;inh

dt
¼ ðmbcg;inh � gi

bcg;inhÞ þ tinhsbcg;inh

ffiffiffiffiffiffiffi
2

tinh

s

Zi
inhðtÞ: ð40Þ

Irec is the synaptic current arising from the recurrent connections (exc. to exc., exc. to inh.,

inh. to exc., inh. to inh.). Iext is the excitatory current from external neurons. Ibcg is the current

from synapses from neighboring cortex areas. T j
ext, T

j
exc, T

j
inh represent the spike times of the j-

th external, excitatory, and inhibitory neuron respectively. The matrices Wext, Wexc, Winh con-

tain the synaptic connection strengths, Wij
X ¼ aX (X 2 {ext, exc, inh}) if the j-th neuron con-

nects to the i-th neuron and 0 otherwise. The background (bcg) input from neighboring

cortical areas is modeled as the Ornstein-Uhlenbeck process with means μbcg,exc and μbcg,inh

and standard deviations of the limiting distributions σbcg,exc and σbcg,inh [47, 48]. We set the

values of the background activity to match the moments of an exponential Poisson shot noise

with rates λbcg,exc = 0.5 kHz and λbcg,inh = 0.125 kHz [49]:

mX ¼ aXtXlX; ð41Þ

sX ¼ aX

ffiffiffiffiffiffiffiffiffiffi
lXtX

2

r

; ð42Þ

where X represents the excitatory or inhibitory background activity, leading to the ratio of

inhibitory to excitatory conductance of
glbcg;inh
lbcg;exc

¼ 5, as observed in-vivo [48] and a spontaneous

firing rate of about 0.5 Hz to 1 Hz.
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When the membrane potential V crosses the firing threshold (θexc, θinh) a spike is fired and

the membrane potential is reset to EL.

The network consisted of next = 1000 neurons in the external population, nexc = 800 neu-

rons in the excitatory population, and ninh = 200 neurons in the inhibitory population. The

connections were set randomly with connection probability for the recurrent connections

(exc. to exc., exc. to inh., inh. to inh., inh. to exc.) set to Prec = 0.2 and the connection probabil-

ity from the external population (ext. to exc. and ext. to inh., Pext) was varied from to 0.01 to 1

(Fig 1A). We created the connection matrices WX by generating a matrix of random uniformly

distributed numbers RX from the interval [0, 1) and set Wij
X ¼ aX if Rij

ext < Pext or Rij
X < PX for

X 2 {exc, inh}. The random matrix Rext was the same for all values of Pext. In simulations

where we controlled for the effects caused by a random number of connections from the exter-

nal population, we fixed the number of connections by setting only the k = nextPext elements in

each row of Wext non-zero, in the location of the k largest elements of the i-th row of Rext.

The simulations were carried out using the Brian 2 package [50] in Python with a 0.1 ms

time step. Used parameters are given in Table 2.

4.2 Obtaining the input-output relationship of the network

We considered the total number of action potentials n from the excitatory and inhibitory sub-

populations in time window ΔT = 1 s as the output of the network. We modeled the stimulus

as the input from the thalamic neurons, parametrized by the mean input rate to a single neu-

ron:

lext ¼ nextl
0

ext

1

Pext
; ð43Þ

where l
0

ext is the firing rate of a single neuron in the external population, nextl
0

ext is the input fir-

ing rate at Pext = 1, and 1

Pext
is a scaling factor to keep the mean input same regardless of Pext.

For each set of parameters (arec and Pext pair) we determined the input l
max
ext ðarec; PextÞ for

which the output reached 30 kHz. In order to obtain the input-output relationship, we discre-

tized the input space into 30 equidistant stimulus intensities: l
i
extðarec; PextÞ ¼

i
30
l
max
ext ðarec; PextÞ,

Table 2. Parameters of the LIF model.

Membrane capacitance Cm 150 pF

Leak conductance gL 10 nS

Resting potential EL −80 mV

Exc. reversal potential Ee 0 mV

Inh. reversal potential Ei −80 mV

Exc. synapse decay τexc 5 ms

Inh. synapse decay τinh 5 ms

Exc. threshold θexc −55 mV

Inh. threshold θinh −60 mV

Ext. synapse amplitude aext 1 nS

Exc. synapse amplitude aexc 0.01–1 nS

Inh. synapse amplitude ainh g � aexc

Exc. inh. synapse amplitude abcg,exc aext

Bcg. inh. synapse amplitude abcg,inh g � aext

Inh. scaling factor α 20

https://doi.org/10.1371/journal.pcbi.1011896.t002

PLOS COMPUTATIONAL BIOLOGY Shared input and recurrency in neural networks for efficient coding

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011896 February 23, 2024 17 / 23

https://doi.org/10.1371/journal.pcbi.1011896.t002
https://doi.org/10.1371/journal.pcbi.1011896


where i = 0, . . ., 30. With a fixed network connectivity, we simulated the network 10800 times

for each l
i
extðarec; PextÞ.

We discretized the input space to 1000 equidistant stimulus intensities and estimated the

mean output μ(λext) and variance σ2(λext) for each intensity by linear interpolation from the

simulated data. We then estimated the input-output relationship, defined by the conditional

probability distribution f(n|λext) as a discretized normal distribution for each λext, with corre-

sponding mean and variance:

f ðnjlextÞ ¼
1

Z
exp �

ðx � mðlextÞ
2
Þ

s2

� �

; ð44Þ

Z ¼
Xþ1

n¼0

exp �
ðx � mðlextÞ

2
Þ

s2

� �

: ð45Þ

4.3 Metabolic cost of neural activity

In our calculations, we focus on the energy in the form of ATP molecules required to pump

out Na+ ions. We take into account the Na+ influx due to excitatory post-synaptic currents,

Na+ influx during action potentials, and Na+ influx to maintain the resting potential. To this

end, we follow the calculations in [2] and [3], which we modify for our neuronal model.

We assume the standard membrane capacitance per area as cm = 1 μF/cm2 and the cell

diameter as D = 69 μm, giving the total capacitance Cm = πD2cm = 150 pF. Therefore, to depo-

larize a neuron by ΔV = 100 mV the minimum charge influx is ΔVCm = 1.5 × 10−11 C and the

minimum number of Na+ ions
DVCm

e ¼
:
9:375� 107, where e¼: 1.6 × 10−19 is the elementary

charge. The minimal number of Na+ ions is then quadrupled to get a more realistic estimate of

the Na+ influx due to the simultaneous opening of the K+ channels [2]. The Na+ influx must be

then pumped out by the Na+/K+-ATPase, which requires one ATP molecule per 3 Na+ ions.

The cost of a single action potential can be then estimated as
4

3
� 9:375� 107 ATP ¼ 1:25� 108 ATP. However, about 75% of the metabolic costs associ-

ated with an action potential are expected to come from the propagation of the action potential

through the neuron’s axons [51, 2]. Therefore, we estimate the total cost as 5.0 × 108 ATP.

Next, we assume that the excitatory synaptic current is mediated by the opening of Na+ and

K+ channels with reversal potentials ENa = 90 mV and EK = −105 mV. For the excitatory synap-

tic current, the following must hold

ðgexc þ gextÞðV � EeÞ ¼ gNaðV � ENaÞ þ gKðV � EKÞ; ð46Þ

gNa þ gK ¼ gext þ gexc: ð47Þ

Therefore:

INa ¼
gKðV � EKÞ

ðgexc þ gextÞðV � EeÞ
: ð48Þ

The sodium entering with the sodium current INa must be pumped out by the Na+/K+-ATPase

and therefore we calculate the cost of the synaptic current as 1

3e INaDT ATP, where ΔT is the

time interval over which we are measuring the cost.
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Each input to the network (parametrized by λext) is then associated with a cost, which we

express as

wðlextÞ ¼ ðNexcmexc þ ninhminh þ nextlext
1

Pext
ÞWAP þþ

NexchIexcNa i þ ninhhIinhNa i
3e

� �

DT; ð49Þ

where μexc = μexc(λext), μinh = μinh(λext) are the mean firing rates of a single excitatory and

inhibitory neuron (given the input λext), hIexcNa i ¼ hI
exc
Na iðlextÞ and hIinhNa i ¼ hI

inh
Na iðlextÞ are the

average excitatory synaptic currents in a single excitatory and inhibitory neuron.

4.4 Fisher information with multidimensional output

When we consider that the output of the network is either the full vector of firing rates, or its

low-dimensional projection, we can calculate the Fisher information as

JpopðlextÞ ¼ f
0
ðlextÞ

T
S� 1f 0ðlextÞ þ

1

2
Tr S� 1 @S

� 1

@lext
S� 1 @S

� 1

@lext

� �

; ð50Þ

where f(λext) is the mean of the multidimensional response vector, S(λext) (dependence of S

was omitted for legibility) is the covariance matrix of the response components at input λext,

and Tr stands for the Trace operator. The first term in the equation is analogous to the Fisher

information in one-dimensional case (Eq 14), while the second term indicates how much

information we gain about the stimulus from changes in the covariance matrix. In our case,

the second term was always very small compared to the first term.

We performed dimensionality reduction of the output across all stimuli by principal com-

ponent analysis and used the first 500 principal components. We used 500, because the

increase in information-metabolic efficiency for higher number of components is small, and

the sampling bias is still relatively small (S5 Fig). To deal with the remaining sampling bias we

calculated the information-metabolic efficiency with the Jimbo-Kunisawa for different num-

bers of trials and performed the quadratic extrapolation method to estimate the unbiased

information-metabolic efficiency [52, 53]. Overall, the results remain qualitatively very similar

to the information-metabolic efficiency calculated from the summed activity. However, we

found the increase in information-metabolic efficiency from using high-dimensional output is

the largest for higher values arec and Pext.

4.4.1 Correcting the sampling bias. In the case of a high-dimensional output, insufficient

number of trials may lead to perceived correlations in the data which are in fact not there, sub-

sequently increasing the calculated mutual information [54, 52, 55, 56, 53]. To decrease the

sampling bias, we first performed principal component analysis to decrease dimensionality of

the output and employed a quadratic extrapolation method to estimate the unbiased value of

information-metabolic efficiency. We used the Jimbo-Kunisawa algorithm to calculate infor-

mation-metabolic efficiency with 10800, 5400, and 2700 trials, obtaining the estimates of E (Eq

10): E10800, E5400, and E2700. We then assumed that the estimates follow the following depen-

dency on the number of trials k [52]:

Ek ¼ E0 þ
a
k
þ

b
k2
: ð51Þ

By solving the linear system we obtained the estimate of the unbiased information-metabolic

efficiency E0 (S5 Fig). We found that with 500 principal components the bias is still relatively

low, and further increasing the number of components leads only to minor increase in the

information-metabolic efficiency. Therefore, we used the first 500 components to obtain the

results in the Fig 6.
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Supporting information

S1 Fig. Input-output relationship of a single neurons. To exclude the network effects, we

plotted the tuning curves for the feedforward network separately for the excitatory (blue) and

inhibitory (yellow) neurons. The thick line represents the median response across the neurons,

which shows that their tuning curves are convex in the studied range. The shaded area shows

the spread of the tuning curves across neurons (2.5 to 97.5 percentile). With low values of Pext,

the tuning curves across neurons vary significantly and are skewed to the higher firing rates.

(TIF)

S2 Fig. Fixing the number of external connections to each neuron. Same as Fig 4, but exactly

kextPext external neurons connected to each excitatory and inhibitory neuron. This removed a

large part of the dependence on Pext seen in Fig 4.

(TIF)

S3 Fig. Effect of equalizing the resting cost on the information-metabolic efficiency. We

observed that the cost of the resting state was different for different recurrence strengths arec

(Fig 3A–3C). This could potentially explain the higher information-metabolic efficiency E (Eq

10) for intermediate values of arec and its decrease for high values of arec. To quantify the effect

of the resting cost, we set the resting cost in each case to the resting cost of the feedforward net-

work W0(arec = 0). The differences in the cost of the resting state did not have a qualitative

effect on the conclusions. A: The same contour plot as in Fig 5B. B: Contour plot with equal-

ized resting costs (contours as in Fig 5B: 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, and 2.25 bits/s). C: Heat-

map of the relative differences.

(TIF)

S4 Fig. Accuracy of information-metabolic efficiency approximation. To calculate the

capacity-cost functions, we calculated the mutual information using Eq (5) with the input

probability distribution calculated from Eqs (12) and (14). Here we compare the information-

metabolic efficiencies calculated with the approximation and the Jimbo-Kunisawa algorithm.

A: The same contour plot as in Fig 5B with information-metabolic efficiencies calculated with

the Jimbo-Kunisawa algorithm. B: Information-metabolic efficiencies calculated with the

Fisher-information-based input distribution. C: Heatmap of the relative differences. Note that

the approximation can only reach values lower than the actual information-metabolic effi-

ciency.

(TIF)

S5 Fig. Sampling bias and extrapolation. The information-metabolic efficiency calculated by

the Jimbo-Kunisawa algorithm is plotted for different numbers of principal components used.

We calculated the information-metabolic efficiency from different numbers of trials. At high

number of components, lower number of trials lead to significantly higher information-meta-

bolic efficiency. This is the effect of the sampling bias. We attempted to remove the bias by

using the quadratic extrapolation method. For 500 principal components the bias is still rela-

tively low, and increasing the number of components brings little benefit in terms of informa-

tion-metabolic efficiency.

(TIF)
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