# Neuronal population size and reliable information transmission 

Lubomir Kostal<br>Institute of Physiology CAS, Prague, Czech Republic



## Summary

1. Classical 'information' measures: additivity $(\log p)$ Fisher (1925), Hartley (1928), Shannon (1948), Savage (1954)
2. Asymptotic vs. achievable: finite-size effects might be important!
3. Achievable (operational) info may not be additive in i.i.d. setup

- Application: ‘Critical’ size of neural population for reliable information transmission
$\rightarrow$ Ryota Kobayashi (University of Tokyo)
$\rightarrow$ LK \& RK, Phys Rev E (Rapid) (2019)


## Motivation

- Neural coding: How neurons (populations) encode and process information about their environment?

- Indirect: degree to which the response reflects the stimulus

1. "How much information?" (stimulus $\rightarrow$ response)

Mutual information (bits)
MacKay \& McCulloch (1952), Stein (1967), Laughlin (1981), Bialek et al., ...
2. Coding precision: the accuracy of stimulus identification

Fisher information (Cramér-Rao bound):
Paradiso (1988), Stemmler (1996), Abbott \& Dayan (1999), Greenwood et al.

## Asymptotic vs. non-asymptotic information (heuristic)



## Asymptotic vs. non-asymptotic information (heuristic)



Asymptotic vs. non-asymptotic information (heuristic)


## Example: threshold effect (toy model)



$$
\begin{aligned}
& Y=\theta+Z \\
& Z \sim(1-p) \mathcal{N}\left(0, \sigma_{1}^{2}\right)+p \mathcal{N}\left(0, \sigma_{2}^{2}\right) \\
& \sigma_{1} \gg \sigma_{2}, 0<p<1 \\
& \varepsilon_{n}^{2}(\theta) \doteq \frac{(1-p)^{n} \sigma_{1}^{2}}{n}+ \\
&+\sum_{k=1}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} \frac{\sigma_{2}^{2}}{k} \\
& \theta=0, p=0.1, \sigma_{1}=1, \sigma_{2}=0.001
\end{aligned}
$$

## Example: threshold effect (toy model)


? Information theory?

- Clustering, mixtures, ...
- Non-exponential parametric family, closed-form approx. to optimal MSE Kostal et al., J. Neur. Eng. (2015)


## Information theory: methods

- Input (stim. intensity, feature) $x$, duration $\Delta$, r.v. $X \sim \pi(x)$
- Response $y$, r.v. $Y \sim f(y \mid X=x)$ (DT-MC, no feedback)
- Mutual information and capacity (nat/s)

$$
\begin{aligned}
I(X ; Y) & =\frac{1}{\Delta} \mathbb{E}\left[\log \frac{f(Y \mid X)}{p(Y)}\right], \quad p(y)=\mathbb{E}[f(y \mid X)] \\
C & =\sup _{\pi(x)} I(X ; Y)
\end{aligned}
$$

- $I(X ; Y)$ : maximum information that can be communicated reliably by neuronal 'model' $f(y \mid x)$ subject to the input statistics $\pi(x)$
- Optimal information decoding $\Rightarrow$ guiding principle (Efficient coding hypothesis Barlow, 1961)


## Shannon's theorem

- 'Reliability' $\Rightarrow$ sequence vs. per-symbol decoding, 'errors' (BSC)

- Information rate (nat/s) assuming $m$ (known) input $n$-sequences

$$
\mathbf{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \Rightarrow R=\frac{\log m}{n \Delta}
$$

- Shannon's theorem (channel coding) $\doteq$ if $R<C$ then $\exists$ a set of $\mathbf{x}$ 's such that $\operatorname{Pr}$ of $\hat{\mathbf{x}} \neq \mathbf{x}$ is arbitrarily small ( $\Rightarrow n$ increasing!)
- Signal estimation vs. detection: up to $m \approx e^{\Delta n C}$ 'patterns' decoded reliably for $n$ large enough


## Asymptotics vs. achievable information rates

- In fact: the (average) probability of decoding error $P_{e}$ : phase transition at $R=C$ in the 'thermodynamic' limit $n \rightarrow \infty$ (Gallager: $P_{e}=0$ for $R<C$, Wolfowitz: $P_{e}=1$ for $R>C$ )
- Finite-size effects ( $n$ ): relationship $R \leftrightarrow P_{e}$ ?

Perhaps $R>C$ for some 'reasonable' $P_{e}$ ?

- Maximal asymptotic vs. achievable rates?

$$
\begin{array}{lr}
R_{n} \approx n C \propto \log m & (n \rightarrow \infty) \\
R_{n}=? & \text { (generaly a function of } \left.P_{e}, n\right)
\end{array}
$$

Shannon (1959), Gallager (1962-73), ..., Verdu, Polyanski (2010)

- Non-asymptotics: new relevant parameters
- Price to pay: delays, "complexity": $O\left(N^{2}\right), \ldots$
(Punekar et al., 2013: non-binary LDPC $\sim O(N)$ )


## Simple population model

- Single-comp $(\mathrm{HH}): I_{\text {syn }}(t)=g_{e}(t)\left(E_{e}-V\right)+g_{i}(t)\left(E_{i}-V\right)$
- $g_{e, i}(t) \sim$ OU process (Miura et al., 2007), $\Delta=50 \mathrm{~ms}$



## Simple population model

- Single-comp $(\mathrm{HH}): I_{\text {syn }}(t)=g_{e}(t)\left(E_{e}-V\right)+g_{i}(t)\left(E_{i}-V\right)$
- $g_{e, i}(t) \sim$ OU process (Miura et al., 2007), $\Delta=50 \mathrm{~ms}$


$$
\begin{gathered}
\text { manmwimundiMm } \quad \perp\|\|\|\|\|\| \\
x=\left\langle g_{e}\right\rangle_{\Delta} \quad y=\# \mathrm{AP} / \Delta
\end{gathered}
$$

## Useful preliminaries

- $Y$ : spike-count in a time window $\Rightarrow \exists$ max. $\Rightarrow$ discrete \& finite
- Let $Y \sim f(y \mid X=x)$ : max. $K$ points of support
- Witsenhausen, 1980 ( $\Leftarrow$ Dubin's theorem): capacity is achieved by discrete $\pi(X)$ supported at most $K$ points (finite dimensionality, almost no assumptions on $X$ !)
- Extendable to other convex optimization problems:
- 'Model' vs. DMC: applicable bounds on $R_{n}$
- Numerical methods: cutting-plane (linear programming), ...


## Decoding: maximum likelihood

- Set of $m$ stimulus 'patterns': $\mathbf{x}^{(j)}=\left\{x_{1}^{(j)}, \ldots, x_{n}^{(j)}\right\}, j=1, \ldots, m$
- For $\mathbf{X}=\mathbf{x}$ we observe $\mathbf{Y}=\mathbf{y}$, given by $f(\mathbf{y} \mid \mathbf{x})=\prod_{i=1}^{n} f\left(y_{i} \mid x_{i}\right)$
- ML decoder (optimality?, cf. ME decoding):

$$
\mathbf{x}^{(d)}: \quad d=\arg \max _{j} f\left(\mathbf{y} \mid \mathbf{x}^{(j)}\right)
$$

- Average probability of decoding error

$$
P_{e}=\sum_{j=1}^{m} \operatorname{Pr}\left(\mathbf{x}=\mathbf{x}^{(j)}\right) \int_{\mathcal{E}(j)} f\left(\mathbf{y} \mid \mathbf{x}^{(j)}\right) \mathrm{d} \mathbf{y}
$$

$\mathcal{E}(j)$ : set of $\mathbf{y}$ such that ML fails for $\mathbf{x}^{(j)}$

- How to obtain the inputs $\mathbf{x}$ ? $\left(\right.$ Assume $\operatorname{Pr}\left(\mathbf{x}=\mathbf{x}^{(j)}\right)=1 / m$.)

Lower bound on info rate (achievable \& general)

- Ensemble: generate patterns i.i.d. according to some $X \sim \pi(x)$
- Prob. of particular set of $m$ inputs, each of length $n$ :

$$
\begin{equation*}
\prod_{j=1}^{m} \pi\left(\mathbf{x}^{(j)}\right)=\prod_{j=1}^{m} \pi\left(x_{1}^{(j)}\right) \cdots \pi\left(x_{n}^{(j)}\right) \tag{1}
\end{equation*}
$$

- Use the random-coding bound (Gallager, 1968) \& invert
- Optimize over $\pi(x)$ to get a tighter result (convex):

$$
\begin{aligned}
R_{n} & \geq \frac{n}{\Delta} E_{r}^{-1}\left(-\frac{\log P_{e}}{n}\right), \\
E_{r}(\Delta R) & =\max _{0 \leq \rho \leq 1}\left[\max _{\pi(x)} E_{0}(\rho, \pi(x))-\rho \Delta R\right], \\
E_{0}(\rho, \pi(x)) & =-\log \int\left(\int f(y \mid x)^{1 /(1+\rho)} \pi(x) \mathrm{d} x\right)^{1+\rho} \mathrm{d} y
\end{aligned}
$$

- Note: optimal $\pi^{*}(X): R \neq I\left(\pi^{*}(X), Y\right)$;'good' codes? (not iid)


## Upper bound on info rate

- Technical assumptions, validity ... (BSC, Polyanski, 2014)
- Cf.: sphere-packing and straight-line bounds (Gallager, 1968)
- Strassen, 1962; Tomamichel, 2013, assume $P_{e} \leq 1 / 2$

$$
\begin{aligned}
R_{n} & \leq n C-\frac{1}{\Delta}\left[\sqrt{n V\left(P_{e}\right)} Q^{-1}\left(P_{e}\right)+\frac{\log n}{2}\right]+O(1) \\
V\left(P_{e}\right) & =\min _{\pi \in \mathcal{C}}\left[\mathbb{E}\left(\log \frac{f(Y \mid X)}{p(Y)}\right)^{2}-\Delta^{2} C^{2}\right]
\end{aligned}
$$

$Q(z)=\int_{z}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} \mathrm{~d} t$, n.b. (Cramér-Esseen, 1937, 1945,)
CLT vs. AEP (Feinstein, 1958; Wolfowitz, 1961, $n C+O(\sqrt{n})$ )

- Note the const. term (cf. Feller, 1972; Tyurin, 2010)


## Transition to asymptotic regime

- Heuristic: what we expect

- 'no information' (small $n$ ), 'threshold' (supra-linear in $n$ ) and 'asymptotic' regimes


## Transition to asymptotic regime

- 'no information' (small $n$ ), 'threshold' (supra-linear in $n$ ) and 'asymptotic' regimes
- Critical population size $n_{c}$ marks the transition towards the asymptotic regime

$$
\begin{aligned}
E_{0}(\rho, \pi(x)) & =-\log \int\left(\int f(y \mid x)^{1 /(1+\rho)} p(x) \mathrm{d} x\right)^{1+\rho} \mathrm{d} y \\
R_{c} & =\left.\frac{1}{\Delta} \frac{\mathrm{~d}}{\mathrm{~d} \rho} \max _{\pi(x)} E_{0}(\rho, p(x))\right|_{\rho=1} \\
n_{c} & =\left\lceil-\left(\log P_{e}\right) / E_{r}\left(\Delta R_{c}\right)\right\rceil
\end{aligned}
$$

## Gaussian approximation

- Gaussian approx. (AWGN: $\operatorname{Var}(X) \leq P)$

$$
C_{G}=\frac{1}{\Delta} \ln \left(1+\frac{P}{\sigma^{2}}\right)
$$

- Effective SNR: $S=P / \sigma^{2}$
- Let $S=\left(e^{2 \Delta C}-1\right)$ (where $C$ is the single neuron capacity), then since $C \propto \log (1+$ SNR $)$

$$
\begin{aligned}
\tilde{R}_{c} & =\frac{1}{2 \Delta} \log \left(\frac{1}{2}+\frac{S}{4}+\frac{1}{2} \sqrt{1+\frac{S^{2}}{4}}\right), \\
\tilde{n}_{c} & =\left\lceil-4\left[2+S-\sqrt{4+S^{2}}-4 \log 2+2\right.\right. \\
& \left.\left.+\log \left(2-S+\sqrt{4+S^{2}}\right)\right]^{-1} \log P_{e}\right\rceil
\end{aligned}
$$

+ complete closed-form for the error exponents


## Results

HH model + balanced input (Wehr and Zador, 2003; Berg et al., 2007)

A

'Critical' rate $R_{c}\left(\approx\right.$ bounds eq.) $P_{e}=10^{-10}$ (rel. 'noise'), note $I\left(X_{c} ; Y\right) \neq R_{c}$,

## Results

## Spike response model (Pfister, Toyoizumi, Barber, Gerstner, 2006)

A

B
Capacity (input)

Input intensity, $\mathrm{x}(\mathrm{mS} / \mathrm{cr}$


## Summary \& Outlooks

- Test robustness of bounds w.r.t. models, data, $\ldots(\checkmark)$
- Decoding: assoc. memory in NNs?

McEliece et. al, 1987: Hopfield, $m \approx n /(4 \log n)$ Jankowski et. al, 1996: non-binary, $m \approx n$ Karbasi et. al, 2014; Hillar \& Tran, 2018: conv. NN: $m \approx e^{c n}$

- Extensions
- Rate $R_{n}$ : upper bound (X) vs. achievability ( $\checkmark$ )
- 'Pattern' ensemble optimization, expurgation, convexity?
- Non-asymptotic optimality: uncoded transmission

Postdoc position: Computational Neuroscience Group


Institute of Physiology, Prague
kostal@biomed.cas.cz
http://comput.biomed.cas.cz

## Postdoc position: Computational Neuroscience Group



Institute of Physiology, Prague
kostal@biomed.cas.cz
http://comput.biomed.cas.cz

## Mutual information: discussion

- Information theory: fundamental limits on the efficacy of: i) representation and ii) reliable communication

- Representation: compression (source entropy, $H(U)$ )
- Reliability: probability of channel decoding error, $P_{e}$


## Mutual information: discussion

- Two types of results: achievability and converse theorems

1. Converse: if $H(U)>I(X ; Y)$, arbitrarily small $P_{e}$ is not possible, no matter the communication setup
More broadly: Arbitrarily reliable information transfer greater than $I(W ; Z)$ is impossible between any two random variables $W, Z$, no matter what "mechanism" connects them.

## Mutual information: discussion

- Two types of results: achievability and converse theorems

1. Converse: if $H(U)>I(X ; Y)$, arbitrarily small $P_{e}$ is not possible, no matter the communication setup
More broadly: Arbitrarily reliable information transfer greater than $I(W ; Z)$ is impossible between any two random variables $W, Z$, no matter what "mechanism" connects them.
2. Achievability: if $H(U)<I(X ; Y)$, arbitrarily small $P_{e}$ is possible under the separation setup (discussion)

- Note: i) arbitrarily reliable, ii) neither 1. nor 2. says what is the actual information transfer in the system if we calculate the mutual information only
- Interpretation of results, is the converse satisfactory? How "difficult" is achievability? Additional constraint to consider?


## Information theory: setup

- Fundamental limits on the efficacy of: i) representation and ii) reliable communication of information

- Separation: traditional, flexible (applications)
- The bounds "asymptoticaly" achievable by separation cannot be improved by any other approach.


## Information theory: setup

- Fundamental limits on the efficacy of: i) representation and ii) reliable communication of information

- Even though the fundamental limits cannot be improved, there are benefits (coding complexity, networks, ...)
- JSCC: no global theory, ad hoc approaches


## Source-channel matching: rates vs. measures

Source $U \rightarrow V(1 \mathrm{symb} / \mathrm{s}): U \sim N\left(0, \sigma_{U}^{2}\right), \quad \mathbb{E}(U-V)^{2} \leq D$
Channel $X \rightarrow Y(1 \mathrm{symb} / \mathrm{s}): Y=X+Z, Z \sim N\left(0, \sigma_{Z}^{2}\right), \quad \mathbb{E} X^{2} \leq P$
Separation (traditional)
a) lossy compression of $U$ with distortion $D$ : min. $R(D)$ bit/s
b) reliable transfer of information: max. $C(P)$ bit/s

Optimum: $R(D)=C(P)$ and thus

$$
D=\frac{\sigma_{U}^{2} \sigma_{Z}^{2}}{P+\sigma_{U}^{2}}
$$

Block coding, complexity of decoding, ...
Achievability of $R(D)$ and $C(P)$ ? Only asymptoticaly ...
The mapping $U \rightarrow V$ is "deterministic".

## Source-channel matching: rates vs. measures

Source $U \rightarrow V(1 \mathrm{symb} / \mathrm{s}): U \sim N\left(0, \sigma_{U}^{2}\right), \quad \mathbb{E}(U-V)^{2} \leq D$
Channel $X \rightarrow Y(1 \mathrm{symb} / \mathrm{s}): Y=X+Z, Z \sim N\left(0, \sigma_{Z}^{2}\right), \quad \mathbb{E} X^{2} \leq P$
Joint source-channel "coding"
By scaling the inputs and outputs (symbol-per-symbol):

$$
X=\sqrt{\frac{P}{\sigma_{U}^{2}}} U, \quad V=\sqrt{\frac{\sigma_{U}^{2}}{P}} \frac{P}{P+\sigma_{Z}^{2}} Y, \quad D=\mathbb{E}(U-V)^{2}=\frac{\sigma_{U}^{2} \sigma_{Z}^{2}}{P+\sigma_{U}^{2}}
$$

The optimality (separation) is achieved without coding!
The mapping $U \rightarrow V$ is stochastic.

## Cramér-Rao bound and Fisher information

- Electrophysiological experiment: stimulus, $\theta \rightarrow$ response, $r$
- Repeated trials (single neuron $\times$ population): response variability
- Stimulus-response model: $R \sim f(r ; \theta) \quad(\theta$ continuously varying)
- How precisely can we estimate the fixed $\theta$ from the observed $r$ ?
- The estimator $\hat{\theta}(R)$ with mean $m(\theta)=\mathbb{E}_{\theta} \hat{\theta}(R)$

Cramér-Rao bound: $\quad \operatorname{Var} \hat{\theta}(R) \geq \frac{m^{\prime}(\theta)^{2}}{J(\theta)}$
Fisher information: $\quad J(\theta)=\int\left[\frac{\partial \log f(r ; \theta)}{\partial \theta}\right]^{2} f(r ; \theta) \mathrm{d} r$

- Conditions on $f(r ; \theta)$ ? $J(\theta)$ easy to calculate, but $m(\theta)$ ?


## Asymptotic theory

- Problem: CR bound achievability and bias $b(\theta)=m(\theta)-\theta$
- Restrict to mean squared error $\operatorname{MSE}(\theta)$ of unbiased estimators

$$
\operatorname{MSE}(\theta) \geq \frac{1}{J(\theta)} \quad \text { since } \operatorname{MSE}(\theta)=\operatorname{Var} \hat{\theta}(R)+b^{2}(\theta)
$$

- Assume i.i.d. case: $f\left(r_{1}, \ldots, r_{n} ; \theta\right)=\prod_{i=1}^{n} f\left(r_{i} ; \theta\right)$
- As $n \rightarrow \infty$ there exists $\hat{\theta}_{n}: \sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \rightarrow N(0,1 / J(\theta))$

$$
\operatorname{MSE}_{n}(\theta) \geq \frac{1}{n J(\theta)} \quad \text { tight for large } n
$$

- More general $f\left(r_{1}, \ldots, r_{n} ; \theta\right)$ : CR bound vs. asymptotics of $\hat{\theta}_{n}$ ? LAN: Greenwood et al., Phys. Rev. E 60 (1999)

