Instantaneous firing rate and counting statistics of spike trains

Lubomir Kostal

Institute of Physiology CAS, Prague, Czech Republic

Outline | Summary

- Spike train as a point process
- Instantaneous interspike intervals
- Results (work in progress)
 - 1. Estimation of firing rate
 - 2. Estimation of spike train variability
- Other possible applications...

Conclusions

- ISIs observed at given reference time have *different* statistics than *sequential* (standard) ISIs.
- Possibility to estimate classical characteristics (firing rate, variability) in a novel way.

Spike train as a point process

Spike train as a Point Process (PP)

Spike times S_i , interspike intervals (ISI) Y_i , counting process N(0, t)

- Assume time t = 0 is unrelated to spike times
- Equivalent description: $\{S_i \leq t\} = \{N(0, t) \geq i\}, i = 1, 2, ...$

Point process intensity and firing rate

 Conditional *intensity* depends on the PP history up to time t (instantaneous firing rate)

$$\lambda(t) = \lim_{arepsilon \downarrow 0} rac{\mathsf{E}[\mathsf{N}(t,t+arepsilon)]}{arepsilon}$$

• The mean *firing rate* in 'window' w

$$\nu(t,w) = \frac{\mathsf{E}[N(t,t+w)]}{w}$$

- Without detailed description of the PP: $\lambda(t) \stackrel{?}{\leftrightarrow} \nu(t, w)$
- Let's make additional assumptions ...

Renewal processes (ordinaryⁱ⁾ and in equilibrumⁱⁱ⁾)

i) Assume
$$\{Y_1, Y_2, ...\}$$
 is i.i.d., $Y \sim f_Y(y)$, then¹ for any t :
$$\frac{1}{\mathsf{E}(Y)} = \lim_{w \to \infty} \nu(t, w)$$

ii) For arbitrary t: $\{S_i - t, Y_{i+1}, Y_{i+2}\}$ is not stationary, but $\lambda = \lambda(t), \nu(w) = \nu(t, w)$ and for all w > 0

$$\lambda = \frac{1}{\mathsf{E}(Y)} = \nu(w)$$

¹Cox, D. R. & Lewis, P. A. W. (1966) *The statistical analysis of series of events*, Whistable: Latimer Trend and Co. Ltd.

Temporal and counting descriptions (renewal PP)

• Let
$$p_n(w) = \Pr(N(t, t + w) = n)$$
, $n = 0, 1, 2..., \text{ then}^2$

$$p_{0}(w) = \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{1 - \mathcal{L}[f_{Y}](s)}{s^{2} E(Y)} \right](w)$$
$$p_{n}(w) = \mathcal{L}^{-1} \left[\frac{(1 - \mathcal{L}[f_{Y}](s))^{2} (\mathcal{L}[f_{Y}](s))^{n-1}}{s^{2} E(Y)} \right](w), \quad n \ge 1$$

• Higher moments³ of N(t, t + w) and Y? (later: Fano factor)

$$\operatorname{Var}[N(t,t+w)] \stackrel{w \to \infty}{\approx} \frac{\operatorname{Var}(Y)}{\mathsf{E}(Y)^3} w + \frac{1}{2} \left(1 + \frac{\operatorname{Var}(Y)}{\mathsf{E}(Y)^2}\right)^2 - \frac{\mathsf{E}(Y^3)}{3 \,\mathsf{E}(Y)^3}$$

²Jewell, W. S. (1960) 'The properties of recurrent-event processes', *Operation Res.* 8, 446–472
 ³Cox, D. R. (1962) *Renewal Theory*, London: Methuen and Co. Ltd.

Instantaneous firing rate

- Calculating the true firing rate (PP *intensity*) from the general (non-stationary) temporal description is difficult
- Instantaneous⁴ firing rate: inverse ISI, 1/Y (correct dimension)

⁴Bessou, P., Laporte, Y. & Pagés, B. (1968) 'A method of analysing the responses of spindle primary endings to fusimotor stimulation', *J. Physiol.* 196, 37–75

Instantaneous firing rate

- Calculating the true firing rate (PP *intensity*) from the general (non-stationary) temporal description is difficult
- Instantaneous⁴ firing rate: inverse ISI, 1/Y (correct dimension)
- **However**⁵: *mean* instantaneous firing rate (renewal PP):

$$\mathsf{E}\left(\frac{1}{Y}\right) \geq \frac{1}{\mathsf{E}(Y)}$$

⁴Bessou, P., Laporte, Y. & Pagés, B. (1968) 'A method of analysing the responses of spindle primary endings to fusimotor stimulation', *J. Physiol.* 196, 37–75

⁵Lansky, P., Rodriguez, R. & Sacerdote, L. (2004) 'Mean Instantaneous Firing Frequency Is Always Higher Than the Firing Rate', *Neural Comput.* 16, 477–489

Instantaneous interspike intervals

- Observe single or parallel spike trains (at some time t_0).
- ISIs described by Y ~ f_Y(y): always from "spike to spike", i.e., t₀ corresponds to a spike!
- However, spike trains are often modulated by external stimulus
 - t_0 must be unrelated to spikes \Rightarrow *external/laboratory* time.

- Observe single or parallel spike trains (at some time t_0).
- ISIs described by Y ~ f_Y(y): always from "spike to spike", i.e., t₀ corresponds to a spike!
- However, spike trains are often modulated by external stimulus
 − t₀ must be unrelated to spikes ⇒ external/laboratory time.
- Longer ISIs occupy more time \Rightarrow more likely to be observed.

- Observe single or parallel spike trains (at some time t_0).
- ISIs described by Y ~ f_Y(y): always from "spike to spike", i.e., t₀ corresponds to a spike!
- However, spike trains are often modulated by external stimulus
 − t₀ must be unrelated to spikes ⇒ external/laboratory time.
- Longer ISIs occupy more time \Rightarrow more likely to be observed.
- The *instantaneous* ISIs X:

$$X \sim c \, x f_Y(x), \quad c = \lambda = 1/ \, \mathsf{E}(Y)$$

- Observe single or parallel spike trains (at some time t_0).
- ISIs described by Y ~ f_Y(y): always from "spike to spike", i.e., t₀ corresponds to a spike!
- However, spike trains are often modulated by external stimulus
 − t₀ must be unrelated to spikes ⇒ external/laboratory time.
- Longer ISIs occupy more time \Rightarrow more likely to be observed.
- The *instantaneous* ISIs X:

$$X \sim c \, x f_Y(x), \quad c = \lambda = 1/ \, \mathsf{E}(Y)$$

Therefore

$$\mathsf{E}\left(\frac{1}{X}\right) = \lambda = \frac{1}{\mathsf{E}(Y)}$$
8/27

Instantaneous interspike intervals⁶ (summary)

A Inspection t_0 synchronized with spike times **B** Inspection t_0 synchronized with reference time

⁶Kostal, L., Lansky, P. & Stiber, M. (2018) 'Statistics of inverse interspike intervals: the instantaneous firing rate revisited', *Chaos* 28, 106305

Estimation of firing rate from instantaneous ISIs

Non-parametric estimator based on instantaneous ISIs X_i

- Estimate the instantaneous firing rate λ (assume renewal PP)
- Immediate consequence of $\lambda = E(1/X)$: moment estimator

$$\widehat{\lambda}_m = \frac{1}{n} \sum_{i=1}^n \frac{1}{X_i}, \quad \mathsf{E}(\widehat{\lambda}_m) = \lambda, \quad \mathsf{MSE}(\widehat{\lambda}_m) = \frac{\lambda \,\mathsf{E}(1/Y) - \lambda^2}{n}$$

- Mom. est. not efficient⁷, e.g., $\lim_{n\to\infty} n \operatorname{MSE}(\widehat{\lambda}_m) > 1/I_F(\lambda)$
- Furthermore $E(1/Y) = \infty$ if $f_Y(0) > 0$ (e.g., Poisson⁸)

⁷Kostal, L. (2023) 'Estimation of firing rate from instantaneous interspike intervals', (in preparation)

⁸Lansky, P., Rodriguez, R. & Sacerdote, L. (2004) 'Mean Instantaneous Firing Frequency Is Always Higher Than the Firing Rate', *Neural Comput.* 16, 477–489

Maximum likelihood estimator (I)

- MLE efficient under mild conditions (→ mismatched est.)
- Let $X \sim f_X(x; \lambda) \equiv \lambda x f_Y(x)$, then

$$\widehat{\lambda}_{ML} = \arg \max_{\lambda} \sum_{i=1}^{n} \log f_X(x; \lambda)$$

- Poisson process ISIs Y: $f_Y(y) = \lambda \exp(-\lambda y)$
- MLE can be derived⁹ and un-biased $\forall n$, $\mathsf{E}(\widehat{\lambda}_{ML}) = \lambda$

$$\widehat{\lambda}_{ML} = \left(\frac{1}{2n-1}\sum_{i=1}^{n}X_{i}\right)^{-1}, \quad \mathsf{MSE}(\widehat{\lambda}_{ML}) = \frac{\lambda^{2}}{2n-2}, n \geq 2$$

⁹Kostal, L. (2023) 'Estimation of firing rate from instantaneous interspike intervals', (in preparation)

Maximum likelihood estimator (II)

- MLE can be derived also for, e.g., γ p.d.f. of Y
- Useful case: Poisson process with refractory period au_r (< $1/\lambda$)

$$\widehat{\lambda}_{ML} = rac{\mu + 2 au_r - \sqrt{\mu^2 + 4\mu au_r - 4 au_r^2}}{2 au_r^2}, \quad \mu = rac{1}{n} \sum_{i=1}^n X_i$$

- Biased, no closed form for $Var(\widehat{\lambda}_{ML})$
- From data: $\hat{\tau}_r = \min X_i$ (mismatched if $\tau_r = 0$)

Maximum likelihood estimator (II)

- MLE can be derived also for, e.g., γ p.d.f. of Y
- Useful case: Poisson process with refractory period au_r (< $1/\lambda$)

$$\widehat{\lambda}_{ML} = rac{\mu + 2 au_r - \sqrt{\mu^2 + 4\mu au_r - 4 au_r^2}}{2 au_r^2}, \quad \mu = rac{1}{n} \sum_{i=1}^n X_i$$

- Biased, no closed form for $Var(\widehat{\lambda}_{ML})$
- From data: $\hat{\tau}_r = \min X_i$ (mismatched if $\tau_r = 0$)

Renewal PP vs. non-stationary spike trains
 Can we use estimators based on X_i?

Estimation under time-dependent $\lambda(t)$

• Estimate $\lambda(t)$ at $t = t_0$

• Eqs. derived under renewal $PP \rightarrow$ can be used more generally?

- $\widehat{\lambda}_{ML}$ is "self-adaptive" (time scale automatically given by $\langle X_i \rangle$)
 - no optimization, no additional parameters

Preliminary comparison of different estimators

- Most methods pool spike train data (across trials)
 - Binning, kernel ... binwidth guess (20ms, 50ms, ...)
 - Optimized¹⁰ binwidth: *global* and *local*
 - Bayesian local adaptive binwidth (BAKS)¹¹
- The kernel choice does not matter that much¹²

• The estimators based on X_i operate differently – **no pooling**! ¹⁰Shimazaki, H. & Shinomoto, S. (2010) 'Kernel bandwidth optimization in spike rate estimation', *J. Comput. Neurosci.* 29, 171–182 ¹¹Ahmadi, N., Constandinou, T. G. & Bouganis, C-S. (2018) 'Estimation of neuronal firing rate using Bayesian Adaptive Kernel Smoother (BAKS)', *PLoS ONE* 13, e0206794 ¹²Nawrot, M., Aertsen, A. & Rotter, S. (1999) 'Single-trial estimation of neuronal firing rates: from single-neuron spike trains to population activity', *J. Neurosci. Meth.* 94, 81–92

Example: simulated data (Pois, τ_r), rapid switching of $\lambda(t)$

Simulated data: comparison, different $\lambda(t)$ profiles

Example: experimental data (moth ORN) – 'biased' $\hat{\lambda}_{ML}$

Tentative summary (firing rate estimation from X_i)

- Apparently, there is no single *universally* optimal firing rate estimator under all circumstances
- Standard methods: *pooling* of parallel spike trains
- Estimation based on *instantaneous* ISIs X:
 - Computationally efficient (simple)
 - MLE (and MSE!) can be derived for many cases of interest under the renewal assumption
 - No pooling
 - Non-parametric vs. mismatched estimation: a real problem?
 - Usage for more general situations (non-stationarity)
 - Upward-bias in non-stationary case: different "solutions"?

Estimation of local (instantaneous) spike train variability

Estimation of local spike train variability

• N.B.: assume *n* parallel spike trains, {*X_i*} realizations of *X*

- Recall: $X \sim \lambda x f_Y(x)$, $Y \sim f_Y(y)$ and $\lambda = 1/E(Y)$.
- Local spike train variability around t_0 (renewal or not).

Fano factor

• The relation between X and Y yields the moment equation:

$$\mathsf{E}(X^k) = \lambda \, \mathsf{E}(Y^{k+1}), \quad k \in \mathbb{Z}$$

Classical measure of variability based on counts (N_i in i-th trial)

$$FF(w) = \frac{\text{Var}[N(t, t+w)]}{\text{E}[N(t, t+w)]} \quad \Rightarrow \widehat{FF}_N = \frac{\sigma^2(N_i)}{\langle N_i \rangle}$$

- Renewal PP: often $w \to \infty$ thus¹³ $FF = C_V^2 = \operatorname{Var}(Y) / E(Y)^2$
- Therefore:

$$FF = E\left(rac{1}{X}
ight)E(X) - 1$$

¹³Cox, D. R. (1962) *Renewal Theory*, London: Methuen and Co. Ltd.

Estimator of FF based on instantaneous ISIs

• \Rightarrow estimator (note that $E(\widehat{FF}_X) = FF$)

$$\widehat{FF}_X = \frac{1}{(n-1)n} \sum_{i=1}^n \frac{1}{X_i} \sum_{i=1}^n X_i - 1$$

- $Var(\widehat{FF}_X)$ can be derived¹⁴ in a closed form: contains E(1/Y)
- $E(1/Y) < \infty$ if¹⁵ f_Y continuous, $f_Y(0) = 0$ and finite $f'_Y(0)$.
- The important role of refractory period τ_r!

¹⁴Rajdl, K. & Kostal, L. (2023) 'Estimation of the instantaneous spike train variability', (submitted)
 ¹⁵Piegorsch, W. & Casella, G. (1985) 'The Existence of the First Negative Moment', *Am. Stat.* 39, 60–62

Additional estimators

• "Remove" E(1/Y): combine X and N(t - w/2, t + w/2):

$$\widehat{FF}_{XN}(w) = \frac{1}{wn^2} \sum_{i=1}^n N_i \sum_{i=1}^n X_i - 1$$

• \widehat{FF}_{XN} is also unbiased, *curious* case $w_0 = \langle X_i \rangle$:

$$\widehat{FF}_{XN}(w_0) \equiv \widehat{FF}_{XN} = \langle \#APs \text{ in } w_0 \rangle - 1$$

Additional estimators

• "Remove" E(1/Y): combine X and N(t - w/2, t + w/2):

$$\widehat{FF}_{XN}(w) = \frac{1}{wn^2} \sum_{i=1}^n N_i \sum_{i=1}^n X_i - 1$$

• \widehat{FF}_{XN} is also unbiased, *curious* case $w_0 = \langle X_i \rangle$:

$$\widehat{FF}_{XN}(w_0) \equiv \widehat{FF}_{XN} = \langle \#APs \text{ in } w_0 \rangle - 1$$

- MLE available for many models of Y $(\gamma, \text{ logn}, \text{ iG: } \widehat{FF}_X)$
- Poisson with $\tau_r > 0$

$$\widehat{FF}_{ML} = \left(\frac{\langle X_i \rangle}{\langle X_i \rangle + 2\min(X_i)} \right)^2$$

• For completeness (C_V^2) : \widehat{FF}_Y based on Y_i (not *local* w.r.t. t_0)

Example results, average values, $\lambda = 1, \tau_r = 0.1$

Estimation of $FF = C_V^2$ under renewal PP

- No *universally optimal* estimator ... **but**:
- Compare $\widehat{FF}_N(w)$ with $\widehat{FF}_{XN}(w)$ at $w = w_0$ or " $w = \infty$ "
 - Surprisingly, $\widehat{FF}_N(\infty)$ is rarely optimal (*bias?*)
 - Almost always: $MSE[\widehat{FF}_N(w_0)] > MSE[\widehat{FF}_{XN}(w_0)]$
 - (Using exact λ in \widehat{FF}_{XN} does not help!)
- MSE of \widehat{FF}_X grows with theoretical FF
- MLE: not as good as expected?
- **Conclusion**: on "average" $\widehat{FF}_{XN}(w_0)$ is the most accurate

Example results: change-point with respect to C_V^2

 $\text{Estimator:} \ \twoheadrightarrow \ \widehat{\mathsf{FF}}_{\mathsf{N}(1)} \ \twoheadrightarrow \ \widehat{\mathsf{FF}}_{\mathsf{N}(5)} \ \twoheadrightarrow \ \widehat{\mathsf{FF}}_{\mathsf{N}(10)} \ \clubsuit \ \widehat{\mathsf{FF}}_{\mathsf{CV}} \ \clubsuit \ \widehat{\mathsf{FF}}_{\mathsf{X}} \ \bigstar \ \widehat{\mathsf{FF}}_{\mathsf{XN}}$

Estimation of FF in "non-stationary" situations

- Change-point¹⁶ with respect to: variability vs. rate
 - Variability: again, \overrightarrow{FF}_{XN} seems like a good option
 - (Quickly captures the correct *FF after* the change point)
 - Rate: "standard" estimators perform better, however, we can employ the operational time¹⁷
- Extension to more general non-stationary cases? → combine firing rate estimation and time re-scaling.

 16 Rajdl, K. & Kostal, L. (2023) 'Estimation of the instantaneous spike train variability', (submitted)

¹⁷Rajdl, K., Lansky, P. & Kostal, L. (2020) 'Fano factor: a potentially useful information', *Front. Comput. Neurosci.* 14, 569049

Summary

Conclusions

- The key difference between "standard" ISIs *Y_i* and "instantaneous" ISIs *X_i*
- The distributions of Y and X differ: length-bias
- If we wish to estimate firing rate (at some time t) then
 - It is *inevitable* to employ X_i
 - Using Y_i is contradictory (spike at time t)
- Simple and potentially useful estimators
 - Firing rate
 - Fano factor
 - • •

Thanks to

Kamil Rajdl, Petr Lansky