Physiol. Res. 53: 675-682, 2004


Caffeic Acid Phenethyl Ester Improves Oxidative Organ Damage in Rat Model of Thermal Trauma

A. GUREL1, F. ARMUTCU1, M. HOSNUTER2, M. UNALACAK3,
E. KARGI2, C. ALTINYAZAR4

Zonguldak Karaelmas University Faculty of Medicine, 1Department of Biochemistry and Clinical Biochemistry, 2Department of Plastic and Reconstructive Surgery, 3Department of Family Medicine and 4Department of Dermatology, Zonguldak, Turkey

Received August 15, 2003
Accepted January 12, 2004


Summary
Severe burn injuries cause functional impairment in distant internal organs. Although this mechanism is not clear, it is possible that free radical toxicity plays an important role. Research in animals and clinical studies have shown that there is a close relationship between a lipid peroxidative reaction and secondary pathological changes following thermal injury. It has been demonstrated that antioxidant treatment prevents oxidative tissue damage associated with thermal trauma. This study was designed to determine the possible protective effect of caffeic acid phenethyl ester (CAPE) treatment against oxidative damage in the kidney and lung induced by thermal injury. Rats were decapitated either 1, 3 or 7 days after burn injury. CAPE was administered intraperitoneally immediately after thermal injury. Kidney and lung tissues were taken for the determination of malondialdehyde (MDA) level, myeloperoxidase (MPO), catalase (CAT), superoxide dismutase (SOD) and xanthine oxidase (XO) activities. Severe skin thermal injury caused a significant decrease in SOD and CAT activities, as well as significant increases in MDA level, XO and MPO activities in tissues during the postburn period. Treatment of rats with CAPE (10 mol/kg) significantly elevated the decreased SOD and CAT activities, while it decreased MDA levels and MPO as well as XO activity.


Key words
Burn • Oxidative damage • Lung • Kidney • CAPE • Honeybee extracts


© 2004 by the Institute of Physiology, Czech Academy of Sciences