The Phosphate Pool of Isolated Dog Heart During Global Ischaemia: Comparison of Two Cardioplegic Solutions with ³¹P NMR Spectroscopy

A. HORSKÁ¹, H. VAVŘÍNKOVÁ², M. HÁJEK¹, M. TUTTEROVÁ², F. BÖHM², JKOLC², M. SUCHÁNEK³

¹Department of Magnetic Resonance, Experimental Department, Institute for Clinical and Experimental Medicine and ³Department of Analytical Chemistry, Institute of Chemical Technology, Prague

Received December 12, 1990 Accepted March 22, 1991

Summary

³¹⁹ PMR spectroscopy was used to study the time course of changes in the concentration of high-energy metabolities and intracellular pH in the dog myocardium during hypothermic ischaemia at 9°C in Bretschneider (HTK-B) and St. Thomas' Hospital (StTH) cardioplegic solutions. It was from data XTP and phosphoretraine degrade slowlier in HTK-B than in StTH, with hospital (StTH) cardioplegic solutions. It was from data XTP concentration to the solution of th

Key words:

³¹P NMR spectroscopy - Ischaemic heart - Cardioplegia

Introduction

One of the main problems in heart transplantation is the limited preservation time of myocardial tissue. The reported markers of myocardial viability are high energy phosphates, especially ATP which seems to be the determinant factor of tissue injury (Hearse et al. 1981). It is generally believed that the ATP content in the heart at the end of ischaemia makes it possible to predict the rate of mechanical function restoration during reperfusion of the heart (Flaherty et al. 1982, Whitman et al. 1989). The threshold of reversibility is considered as a decrease in the ATP

Part of the study was presented at the 10th Congress of Pathological and Clinical Physiology in Prague (Hájek et al. 1989). content to approximately 60 % of the initial concentration (Hearse et al. 1977, Preusse et al. 1982).

Depletion of cellular adenosine nucleotide pool and a decrease in high energy phosphates below a critical level during ischaemia can cause irreversible damage to cardiac cells. Some more recent studies indicate that while, under specially modified experimental conditions, the ATP content at the end of ischaemia may drop by more than 90 %, the recovery of ventricular function reached during reperfusion was 92 % (Rosenkranz et al. 1986, Neely et al. 1984). However, these conditions are not encountered in clinical situations. Depletion of high energy phosphate stores can be influenced to a great extent by temperature, employed cardioplegic solutions, and/or by multidose cardioplegia. The main reason for using cardioplegic solutions is to accelerate myocardium cooling. arrest cardiac activity and lower basal consumption of myocytic energy. The aim of this study was to compare the time changes in myocardial high energy phosphates and intracellular pH during hypothermic ischaemia after the administration of cardioplegic solutions with a very different ion composition and buffer capacity, i.e. Bretschneider (HTK-B) (Gebhard et al. 1984) and St. Thomas' Hospital (StTH) (Ledingham et al. 1987) cardioplegic solutions using ³¹P NMR spectroscopy. In the initial stages of ischaemia, concentration changes of ATP, glycogen and lactate were also followed by biochemical analysis. We wanted to determine the extent to which a change in the extracellular environment can alter the course of intracellular processes caused by ischaemia. The study was also designed to develop a methodology of measurement of ³¹P NMR spectra of organs using a surface coil in a whole-body magnet.

Material and Methods

a) Animal preparation

Experimental animals were dogs of either sex weighing 20-30 kg (2 experimental groups, each with 7 animals). Anæsthesia: thiopental i.v., controlled ventilation with a mixture of $\Omega_2 + N_2 O$ + halothane. Cardioplegia: 850 ml of HTK-B or StTH solutions. Monitoring: ECG, temperature of the left ventricular musculature.

b) Surgical technique

In apply begarin was administered is, After sternetomy a cardioplegic cannula was introduced from the brachicophalic trunk into the card out, with the subcharian artery and azygowa wina jugatod. Next, the superior and inferior wenae cavae were ligated and an opening was carb etween the ligatures to drain the cardioplegic sublicos. After clamping the descending aroat, acardioplegic awas start with as solution at 4°C flowing from a bottle with an overpressure equipment. 850 ml of solution flowed within 252-4 min and cardiom start and down to 7-112 Cardia cardio adiogeneed within 6-30. Thereafter the heart was removed by cutting the vassels at the origin and placed in a cool plogie solution. The composition of the used cardioplegic solutions in shown in Tab. 1.

c) Biochemical analysis

Samples for biochemical analysis were excised from the left ventricle at the beginning of the ischaemic period and 180 min afterwards, approximately 1 g of wet weight in both cases. These samples were immediately freeze-clamped with Wollenberger tongs and stored under liquid nitrogen until assyed.

	НТК-В	StTH	
NaCl	15.0	110.0	
KCI	0.0	16.0	
Mach 6 HaO	40	16.0	
CaCh	4.0	12	
NaHCO3		10.0	
histidine.HCl . H2O	18.0		
histidine	180.0		
kaliumhydrogen-2-oxoglutarate	1.0		
tryptophan	2.0		
mannitol	30.0		
pH	7.2	7.8	
osmolarity	280	285-300	

Table 1 Composition of Bretschneider (HTK-B) and St. Thomas' Hospital (StTH) cardioplegic solutions (in mmol/l)

Glycogen was extracted with builing in 30 % KOH after the delipidation of the tissue by chloroform : methanol (2: 1) solution and assayed as glucose by the glucose-oxidase method. ATP and latate were measured in 0.6 mol/l perchloric acid extract using enzymatic techniques (Lamprecht and Trautschol 1963). The results were recalculated per dry weight obtained from heart tissue samples extracted by 6.6 mol/l perchloric acid and dehydrated thic constant weight at 105 %.

Fig. 1

Time course of relative concentration of ATP in the dog myocardium. The relative concentration of ATP was determined from β -ATP signal intensity. The dependence can be described as follows: (HTK-B group, line a) $c_{ATP} = -1.6 \times 10^{-4} (+ 0.18 (r = 0.77))$, (STH group, line b) $c_{ATP} = -2.4 \times 10^{-4} (+ 0.20 (r = 0.38))$.

d) Spectroscopic measurement

³¹P NMR spectra were obtained on a Magnetom 1.5 (Siemens) whole-body system. A surface coil of 8 cm diameter was used for transmission and signal detection. The measurements were carried out with the following parameters: flip angle 90°, pulse repetition time 2 s, spectral width 2000 Hz (Ik data points), number of scans 512.

Fig. 2

Time course of relative concentration of phosphomonoesters in the dog myocardium. The dependence can be described by following equations:

(HTK-B group, curve a) $CPME = -8.0 \times 10^{-7} t^2 + 9.9 \times 10^{-4} t + 2.9 \times 10^{-3}$, (StTH group, curve b) $CPME = -9.3 \times 10^{-7} t^2 + 1.4 \times 10^{-3} t - 1.1 \times 10^{-1}$.

The relative concentrations of metabolises (Fig. 1 and 2) are not corrected for saturation of resonance signals. To eliminate the effects of partial saturation each experimenty with R = 2 s are followed by measurement with R = 20 s. Concentration changes during measurement time (T rais and experimenty) were the main reacous for the failure to calculate the saturation factors with results about a the effect of the saturation of the saturation of the saturation of starting of the saturation of the saturation of the saturation of the saturation factors with results about not be effected in this respect on the assumption that there are no differences in saturation coefficient (and relaxion) time) in both cardiopsic solutions.

The FID was multiplied by an exponential function resulting in line broadening of 20 Hz. Smoothing function was used and baseline correction was applied to the spectra.

Intracellular pH was calculated from the equation (Dawson et al. 1977)

$$pH = 6.88 + \log \left[(\delta - 3.35) / (5.60 - \delta) \right]$$
(1)

where d is the chemical shift difference of inorganic phosphate and phosphocreatine.

The content of metabolites was expressed as the relative concentration (no external standard for absolute quantification was used) determined from the relative integral intensity of a given signal. ATP analysis was made by calculating the relative integral intensity of the β -ATP signal which corresponds only to ATP (Fig. 3). The data were statistically analyzed using Student's t-test (α = 0.95). Results are expressed as mean ± standard deviation. Hearts in the cardioplegic solution were placed in a polystyrene foam box the inside of which was cooled with ice. The temperature was maintained at 9 ± 1 °C. The surface coil was centered over the left myocardial ventricle.

Results

 ^{31}P NMR spectra (Fig. 3) illustrate the time changes of metabolite concentrations in the dog myocardium. The relative ATP concentration decreased linearly during the period of observation (Fig. 1). The decrease was faster in STH cardioplegic solution (slope -2.4×10^{-4} to $2.\times10^{-4}$ re =0.88) than in HTK-B (slope -1.5×10^{-4} ±0.2 $\times10^{-4}$ r = 0.77) with a higher concentration of ATP maintained in HTK-B. Although the experimental data seem to be rather scattered this difference is statistically significant.

Fig. 3

³P MMR spectra of the dog myocardium in S(TH cardioplegic solution at 1.5 T: a) cca 2 h after the soart of ischaemia, b) cca 8.5 h after the onset of ischaemia. Spectra were obtained with 512 explaintions and 2.5 pulse repetition time. A – phosphononosetters, B – inorganic phosphate, C – phospholiesters, D – phosphorensitine, E – γ -ATP, β -ADP, F – α -ATP, α -ADP, NADH, G – β -ATP. 432 Horská et al.

The results of biochemical analyses performed at the start and after 180 min of ischaemia also document the difference between both groups in the decreased ATP levels. In hearts perfused with HTK-B, the ATP content almost did not decline from the initial value of 24.6 \pm 0.7 µmO/g d.w. In the STH group, ATP content decreased significantly from 24.2 \pm 1.4 µmO/g d.w. b4 \uparrow 4 \pm 0.96 µmO/g d.w.

Precision of the determination of zero phosphocreatine concentration was limited especially by the duration of the experiment (17 min) and the signal to noise ratio at low phosphocreatine concentrations. Phosphocreatine is depleted significantly sooner in StTH (6.2 ± 1.4 h) than in HTK-B (7.9 ± 1.4 h).

The time dependence of the concentration of monoesters (glucose-cphosphate and fructose-6-phosphate prevail) (Fig. 2) was fitted with a quadratic function $a^{a} + bt + c$ (where i is time in min). Calculated parameters a, b, c for HTK-B are -8.0×10^{-7} , 9.9×10^{-3} (standard deviation of concentration 0.05), for STH -9.2×10^{-7} , 1.4×10^{-3} , -1.0×10^{-1} (standard deviation of concentration 0.06). The concentration of monoesters rises since the start of measurement and the increase is faster in HTK-B till 400 min. After 600–700 min the relative concentration of monoesters falls in both solutions. Our results are in good agreement with biochemical analysis. It was found that the depletion of greeter amount of monoesters, intermediates of glycogen utilization, is formed.

Fig. 4

Time course of intracellular myocardial pH. Following equations were calculated for pH decrease till 300 min since the onset of ischaemia: (HTK-B group, line a) pH = $-29 \times 10^{-3} t + 7.6 (r = 0.91)$,

(StTH group, line b) pH = -3.0 x 10⁻³ t + 7.7 (r = 0.93).

Biochemical analyses revealed that, at 180 min of ischaemia, glycogen decreased from 225.1 \pm 25.7 μ mol glucose/g d.w. by 80.0 \pm 5.0 μ mol glucose/g d.w. in the HTK-B group, and from 225.5 \pm 9.2 μ mol glucose/g d.w. by as little as 30.2 \pm 3.8 μ mol glucose/g d.w. in the STH group. The different rate of glycogen degradation is also documented by lactate increments in the heart. While, in the HTK-B group, the initial lactate content of 19.1 \pm 3.5 μ mol/g d.w. rose by 61.0 \pm 5.8 μ mol/g d.w. within the 180 min of ischaemia, the increase was as small as 35.7 \pm 5.8 μ mol/g d.w. in the SiTH group. The changes in the content of these metabolites were significantly different between both groups.

The time course of pH changes is depicted in Fig. 4. The dependence is linear with nearly equal slopes for both groups (HTK-B group: $-29 \times 10^{-3} \pm 24 \times 10^{-4} \text{ r} = 0.91$; STH group: $-30 \times 10^{-3} \pm 2.0 \times 10^{-4} \text{ r} = 0.93$) (iil 300 min from the beginning of ischaremia. Surprisingly higher average pH values were found in the STH solution in spite of the high concentration of the histidine buffer in HTK-B (STH) is nonbuffered.) The difference between the intercept is statistically significant (for t = 0 pHgrt_H = 7.7, pHgrt_K = 7.6). The difference between the intercept is statistically significant (for t = 0 pHgrt_H = 7.7, pHgrt_K = 7.6). The difference between the intercept is statistically significant (for t = 0 pHgrt_H = 7.7, pHgrt_K = 7.6). The difference between the intercept is statistically significant (for t = 0 pHgrt_H = 7.7, pHgrt_K = 7.6). The difference between the intercept is statistically apH between HTK-B and STH groups may, however, the within the error of determination of intracellular pH (0.1 pH units) (Roberts *et al.* 1981, Wilkie *et al.* 1984) by ³¹P NMR.

Discussion

Although a correlation of ATP concentration in the ischaemic myocardium with functional recovery has not been established yet, the limit of revival of the heart is practically represented by the critical ATP concentration. Some authors have experimentally determined the critical ATP concentration as that ATP value below which the content of ATP must not fall during ischaemia, if the heart function revival during reperfusion is to occur (Hearse et al. 1977, Preusse et al. 1982). This means that hearts with this ATP content by the end of ischaemia are capable to constantly maintain at least this critical ATP value during reperfusion. They must therefore be able to carry on the turnover rate of ATP at a sufficient level. Methods upholding the ATP levels in the heart during ischaemia as high as possible are evaluated as perspective for maintaining good functioning of the heart for transplantation. Bretschneider determined as critical that ATP value which is 60 % of initial ATP levels (Preusse et al. 1982). In their experiments with canine hearts in HTK-B during ischaemia at 15 °C this point was reached at about 600 min. In our experiments the decrease in ATP concentration under 60% of the initial concentration was reached 2 hours earlier (although at lower temperature, 9 °C) at 340 min in StTH and at 450 min in HTK-B. It is interesting that both values correspond to those of total phosphocreatine depletion (370 min in StTH and 470 min in HTK-B).

English et al. (1988) compared rabbit heart preservation at 0 °C in STH and Bretschneider HTP Solutions as well and found hut her ato (a AT) loss was higher in STH cardioplegic solution than in Bretschneider HTP. Van Echteld et al. (1989) also reported that ATP in human hearts was maintained at higher concentrations in HTK-B than in STH at 0°C. Cur tesults confirmed that high-energy phosphates in the dog myocardium during global ischaemia at 9°C are better preserved in HTK-B than in STH. Improved provision of ATT in HTK-B can abe explained by enhanced glycogen degradation and gain of ATP by anaerobic glycolysis which may be influenced by the buffering capacity of the cardioplegic solution (Gebhard et al. 1987). Lareau et al. 1989). Dennis et al. (1986) found that the higher is the concentration of the extracellular buffer, the more intenses is the lactae telimination from the heart at low-flow ischaemia (5 % of the initial flow rate). A more rapid rate of elimination of the product of anaerobic glycohysis from the intracellular space can thus have an effect even on the rate of glycogenohysis. Really faster depletion of glycogen and a higher lactate concentration in the hearts of the HTK-B group was found by biochemical analysis at the beginning of ischemia. Increased depletion of glycogen resulted in a higher relative concentration of monoesters in HTK-B found by JTK-MEM.

In our experiments, we noted, in the time intervals studied, a lower intracellular pH in hearts perfused with HTK-B compared with those perfused with StTH. Considering the higher buffer capacity of HTK-B, just opposite results were anticipated. The value of intracellular pH obtained may be the result of the different ion composition of the cardioplegic solution employed, especially the difference in sodium content. In their experiments with Purkinje fibres of ovine hearts. Stinner et al. (1987) found that intracellular pH of fibres incubated under normoxic conditions in HTK-B was 7.01, and 7.25 in fibres incubated in StTH. At the same time, the intracellular contents of sodium (4.2 mmol/l Na⁺ in HTK-B and 110 mmol/l Na⁺ in StTH) reflected the sodium contents in the extracellular environment (15 mmol/l Na⁺ in HTK-B and 110 mmol/l Na⁺ in StTH). These findings suggest that intracellular pH is influenced by the extracellular concentration of sodium probably via $Na^+ - H^+$ exchange (Mahnensmith et al. 1985). As Na^+-H^+ exchange occurs without requiring energy, it is probable that the process affecting intracellular pH is also maintained during ischaemia. The steady decline in pH found in both experimental groups during ischaemia may be due to the additive effect of ischaemic acidification of intracellular space by products of anaerobic glycolysis.

¹⁰ Van Echteld et al. (1989) also compared the effect of cardioplegic solutions used by us on the changes of intracellular pH using measurement of NMR in the human heart. Using HTX-B, the values of intracellular pH after 12 hours of ischaemia was 6.98, and 6.04 when using STH. The difference may be attributible to the fact that the heart was kept at 0°C during ischaemia. Under these conditions, it is possible to assume that changes in membrane transport mechanisms, and that ion and proton balance may be gowrend by different principles.

It has been confirmed that NMR spectroscopy is a suitable method for following heart preservation in cardioplegic solutions. Use of a whole-body magnet made it possible to measure NMR spectra of organs in a transport box whose design can be adapted to the clinical needs of non-invasive measurements.

In agreement with biochemical analysis, use of HTK-B during preservation results in slower rates of depletion of high-energy phosphates in the heart compared with the sixualism in the SrHT group. The rise in monoseter content within the first hours of ischaemia in the hearts protected with HTK-B was consistent with the biochemically documented increase of glycogen degradation. Contrary to our anticipation, an intracellular pH lower than that in StTH was found in the same group of hearts, presumably as the result of a low concentration of Na⁺ ions.

Acknowledgements

The authors thank dr. J. Lizler for his technical assistance.

References

- DAWSON M.J., GADIAN D.G., WILKIE D.R.: Contraction and recovery of living muscles studied by ³¹P nuclear magnetic resonance. J. Physiol. Lond. 267: 703-735, 1977.
- DENNIS S.C., McCARTHY J., KEDING B., OPIE L.H.: Lactate efflux from the ischemic myocardium: The influence of pH.J. Mol. Cell. Cardiol. 18 (Suppl. 1): 346, 1986.
- ENGLISH T.A., FOREMAN J., GADIAN D.G., PEGG D.E., WHEELDON D., WILLIAMS S.R.: Three solutions for preservation of the rabbit heart at 0 °C. J. Thorac. Cardiovasc. Surg. 96: 54-051, 1988.
- FLAHERTY J.T., WEISFELDT M.L., BULKLEY B.H., GARDNER T.J., GOTT V.L., JACOBUS W.E.: Mechanisms of ischaemic myocardial cell damage assessed by phosphorus-31 nuclear magnetic resonance. *Circulation* 65: 561–571, 1982.
- GEBHARD M.M., PREUSSE C.J., SCHNABEL P.A., BRETSCHNEIDER H.J.: Different effects of cardioplegic solution HTK during single or intermittent administration. Thorac. Cardiovasc. Surg. 32: 271-276, 1984.
- GEBHARD M.M., BRETSCHNEIDER H.J., GERSING E., SCHNABEL P.A., PREUSSE C.J.: Bretschneider's histidine-buffered cardioplegic solution: concept, application and efficiency. In: Myocardial Protection in Cardiac Surgery, AJ. ROBERTS (ed.), Marcel Dekker, New York, 1987, p. 101.
- HÁJEK M., VAVŘÍNKOVÁ H., HORSKÁ A., TUTFEROVÁ M., BÖHM F., KOLC J., BELÁN A., VF ÁNA M.: Proc. 10th Congr. "Contemporary Trends in Pathological Physiology", Prague 1989, pp. 95 – 96.
- HEARSE D.J., GARLICK P.B., HUMPHREY S.M.: Ischaemic contracture of the myocardium: mechanisms and prevention. Am. J. Cardiol. 39: 986-993, 1977.
- HEARSE D.J., BRAIMBRIDGE M.V., JYNGE P.: Protection of the Ischemic Myocardium: Cardioplegia. Raven Press, New York, 1981.
- LAMPRECHT W, TRAUTSCHOLD J.: Adenosine-5-triphosphate determination with hexokinase and glucose-6-phosphate dehydrogenase. In: Methods of Enzymatic Analysis, H.U. BERGMEYER (ed.), Academic Press, New York, 1963, pp. 543–551.
- LAREAU S., WALLACE J.C., MAINWOOD G.W., KEON WJ., DESLAUNERS R.: Effect of temperature and buffer concentration on the preservation of human myocardial tissue: ³¹P and ¹⁴H NMR studies. Abstr. 8th Annu. Mtg Society of Magnetic Resonance in Medicine, Vol. 1, Amsterdam, 1989, p. 112.
- LEDINGHAM S.J.M., BRAIMBRIDGE M.V., HEARSE D.J.: The St. Thomas' Hospital cardioplegic solution. A comparison of the efficacy of two formulations. J. Thorac. Cardiovasc. Surg. 93: 240-246, 1987.
- MAHNENSMITH R.L., ARONSON P.S.: The plasma membrane sodium hydrogen exchanger and its role in physiological and pathophysiological processes. Circ. Res. 56: 773-788, 1985.
- NEELY J.R., GROTYOHANN L.W.: Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ. Res. 55: 816–824, 1984.
- PREUSSE C.J., GEBHARD M.M., BRETSCHNEIDER H.J.: Interstitial pH value in the myocardium as indicator of ischemic stress of cardioplegically arrested hearts. *Basic Res. Cardiol.* 77: 372-387, 1982.
- ROBERTS J.K.M., WADE-JARDETZKY N., JARDETZKY O.: Intracellular pH measurements by ³¹P nuclear magnetic resonance. Influence of factors other than pH on ³¹P chemical shifts. *Biochemistry* 20: 5399-5394, 1981.
- ROSENKRANZ E.K., OKAMOTO F., BUCKBERG G.D., VINTEN-JOHANSON J., ALLEN B.S., LEAF J., BUGYI H., YOUNG H., BARNARD R.J.: Studies of controlled reperfusion after ischemia II. Biochemical studies: failure of issue adenosine triphosphate levels to predict recovery of contractile function after controlled reperfusion. J. Thorae. Cardiovase. Surg. 92: e88–501, 1986.

- STINNER B., GEBHARD M.M., KROHN E., SCHUMACHER T.H., BRETSCHNEIDER H.J.: The influence of cardioplegic solutions on intracellular pH and sodium activity in mammalian heart muscle. Z. Kardiol. 76 (Suppl.) 19, 79, 1987.
- VAN ECHTELD C.J.A., KIRKELS J.H., JAMBROES G., KODDE J.H., LAHPOR J.R., RUIGROK T J.C.: Human donor heart preservation assessed by ³¹P NMR spectroscopy. Abstr. 8th Annu. Mg Society of Magnetic Resonance in Medicine, Vol. 1, Amsterdam, 1989, p. 512.
- WILKIE D.R., DAWSON M.J., EDWARDS R.H.T., GORDON R.E.: ³¹P NMR studies of resting muscle in normal human subjects. Adv. Exp. Med. Biol. 170: 333-346, 1984.
- WHITMAN G.J.R., KIEVAL R.S., BROWN J., BANERJEE A., GROSSO M.A., HARKEN A.H.: Optimal hypothermic preservation of arrested myocardium in isolated perfused rabbit hearts. A ³¹P NMR study. Surgery 105: 100–108, 1989.

Reprint Requests

Dr. A. Horská, Department of Magnetic Resonance, Institute for Clinical and Experimental Medicine, CS - 140 00 Prague 4, Vídeňská 800.