In vitro **Receptor Autoradiography: a Map for Exploring the Hypothalamus**

K. MATSUMURA¹, Y. WATANABE², H. ONOE², Y. KOYAMA², Y. WATANABE²

¹Department of Biomedical Engineering. Suzuka University of Medical Science and Technology, Suzuka, Mie and ²Department of Neuroscience, Osaka Bioscience Institute, Suita, Osaka, Japan

Received November 11, 1991

Summary

In rabbits and guinea pigs, hypothalamic sites for prostaglandin E_2 (PGE₂) action were studied by means of *in vitro* receptor autoradiography. The density of PGE₂ binding sites (probably PGE₂ receptors) was the highest in the anterior wall of the third ventricle (A3V). This result is consistent in all mammalian species ever studied, suggesting a fundamental role of the A3V in the hypothalamic action of PGE₂, such as fever.

Key words

Prostaglandin receptors - Hypothalamus - Fever

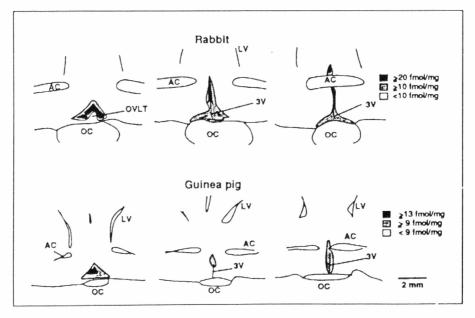
Introduction

There are two distinct approaches to neurophysiological the study of the hypothalamus. The first one, which is very attractive. is that number а of neuromodulators have been identified there. Some of these, when injected into the hypothalamus, evoke integrated autonomic and behavioural responses. The second one, which posses the greatest difficulties, is that the neuronal organization of the hypothalamus is complex. This complexity has prevented a clear understanding of neuronal mechanisms underlying the integrated responses to these neuromodulators.

Studies of neuronal mechanisms of prostaglandin E₂ (PGE₂) induced fever are not exceptional. It is well established that PGE₂, when injected into the hypothalamus or the cerebral ventricle near into the hypothalamus, evokes integrated responses that induce a rise in body temperature. Heat loss decreases and/or heat production increases. If the animals are allowed to select their environmental temperature, they would choose a higher temperature. The neuronal mechanism underlying this response, however, has not been well elucidated.

In vitro receptor autoradiography might provide a clue to this problem by mapping the exact action sites of the neuromodulators. We have applied this technique to answer the question: where does PGE₂ act in the hypothalamus? Results in rats and monkeys have already been reported elsewhere (Matsumura et al. 1990, Watanabe et al. 1988). In short, the density of PGE2 binding sites varies among the nuclei or the regions and is the highest in the anterior and midline portion of the preoptic area. Detailed analysis in rats further showed that this region with the highest PGE₂ binding corresponds to the anterior wall of the third ventricle (A3V). In the present study, we examined whether these observations are commom in other experimental animals which are often used in fever studies.

Methods


^{[3}H]PGE₂ binding was determined in rabbits guinea-pigs. They and were anesthetized with thiopental (6 mg/100 g) and perfused via the left ventricle with cold 10 mM sodium phosphate-buffered saline (pH 7.4). Frozen serial sections of $10 \,\mu$ M thickness were cut in a cryostat and mounted on glass slides. The sections were incubated with 20 nM $[^{3}H]PGE_{2}$ in a solution containing 50 mM Tris-HCI (pH 7.4) and 0.1 M NaCl at 4 °C for 30 min. Nonspecific binding was obtained using consecutive sections by the addition of 100 M unlabelled PGE₂ to the incubation medium. After being dried in a desiccator, the slides were tightly juxtaposed to tritiumsensitive films in cassettes. Standard microscales for tritium concentrations were included in each cassette. After 5 weeks' exposure, the films were developed and fixed. For quantification, the optical densities of the autoradiographic images were measured using rotating-drum scanning densitometer. а According to the standard scale, the specific PGE₂ binding was determined.

Results and Discussion

Detailed analysis of the distribution pattern of hypothalamic PGE₂ binding sites

revealed a great similarity between the species yet examined (rats, guinea-pigs, rabbits and monkeys) although there are some species differences in the absolute values of the density. The highest density of PGE₂ binding sites was found along the A3V in all of them. Fig. 1 shows the distribution of PGE₂ binding sites in the A3V region of the rabbit and guinea-pig. As in rats, the binding density was especially high in regions close to the third ventricle or surrounding the organum vasculosum laminae terminalis (OVLT) but was low within the OVLT itself. Moderate density of PGE₂ binding sites was also found in the posterior part of the hypothalamus, being similar to that in rats.

The great similarity of PGE₂ binding sites betweeen the species suggests its fundamental role in the mammalian central nervous system. The binding sites identified by autoradiographic technique an often correspond to functional receptors to the neurotransmitters or neuromodulators. If this is also the case in our PGE₂ binding study, the A3V seems to play an important role in the action of PGE₂ in the hypothalamus. Based on our autoradiographic data, we propose a working hypothesis that the A3V is important in the febrile action of PGE₂ and design detailed experiments to verify this hypothesis.

Fig. 1

PGE₂ binding sites in the coronal sections of rabbit (upper) and guinea-pig (lower) preoptic-hypothalamic region containing three different levels of A3V from rostral (left) to caudal (right). AC: anterior commissure, OVLT: organum vascolosum laminae terminalis, OC: optic chiasma, LV: lateral ventricle, 3V: third ventricle.

References

MATSUMURA K., WATANABE Y., ONOE H., WATANABE Y., HAYAISHI O.: Brain Res. 533: 147-151, 1990. WATANABE Y., WATANABE Y. HAYAISHI O.: J. Neurosci. 8: 2003-2010, 1988.

Reprint Requests

K. Matsumura, Department of Biomedical Engineering, Suzuka University of Medical Science and Technology, Suzuka, Mie 510 02, Japan.