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Summary
An attempt has been made to test for a reliable method of characterizing the isovolumic left ventricular pressure fall in
isolated ejecting hearts by one or two time constants, τ. Alternative nonlinear regression models (three- and four-
parametric exponential, logistic, and power function), based upon the common differential law dp(t)/dt = - [p(t)-P∞]/ τ(t)
are compared in isolated ejecting rat, guinea pig, and ferret hearts. Intraventricular pressure fall data are taken from an
isovolumic standard interval and from a subinterval of the latter, determined data-dependently by a statistical procedure.
Extending the three-parametric exponential fitting function to four-parametric models reduces regression errors by
about 20-30 %. No remarkable advantage of a particular four-parametric model over the other was revealed. Enhanced
relaxation, induced by isoprenaline, is more sensitively indicated by the asymptotic logistic time constant than by the
usual exponential. If early and late parts of the isovolumic pressure fall are discarded by selecting a subinterval of the
isovolumic phase, τ remains fairly constant in that central pressure fall region. Physiological considerations point to the
logistic model as an advantageous method to cover lusitropic changes by an early and a late τ. Alternatively, identifying
a central isovolumic relaxation interval facilitates the calculation of a single ("central") τ; there is no statistical
justification in this case to extend the three-parametric exponential further to reduce regression errors.
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Introduction

Impaired myocardial relaxation is a sensitive
indication of the beginning of ("diastolic") heart failure
(Lorell 1991, Leite-Moreira and Gillebert 1994) and
myocardial hypoxia (Gillebert and Glantz 1989, Simari et
al. 1992, Schäfer et al. 1996). It is therefore valuable to
ascertain a lusitropic index, i.e. a measure of ventricular
relaxation, especially from intraventricular pressure data
that are nowadays easily obtainable. The exponential time
constant τ of the isovolumic left ventricular pressure
(LVP) fall is frequently used as a lusitropic index. The
onset of isovolumic relaxation (t=0) is usually assumed to
be the time of peak negative pressure fall velocity, min

LVdP/dt; the time when the pressure fall crosses the end-
diastolic pressure (LVEDP) of the preceding diastole is
chosen as the end point of isovolumic relaxation
(Fig. 1A). It was shown, however, that this pressure fall
deviates from the exponential in animal experiments
(Raff and Glantz 1981) and in humans (Sugawara et al.
1997, Senzaki et al. 1999).

Some physical considerations have lead to
meaningful differential laws describing the pressure fall.
During relaxation, the LVP falls to a distinct asymptotic
equilibrium pressure, P∞, which depends on the actual left
ventricular residual volume (Yellin et al. 1986, Gilbert
and Glantz 1989). P∞ is usually negative because the end-
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systolic volume is below the equilibrium volume (Bloom
and Ferris 1956, Gilbert and Glantz 1989). Opening of
the mitral valve terminates the isovolumic pressure fall
prematurely; P∞ is therefore not directly observable in
ejecting hearts. The leading influence of the difference
between actual and equilibrium pressure on the pressure
fall velocity is expressed by the general differential law

(1)

where τ is a time-dependent function with the meaning of
a time "constant". This differential law is always valid
because τ is allowed to become an arbitrary function that
will be fixed later. Eq. 1 is solved by the general pressure
function

                p(t) =  P∞  +  (P0  - P∞) f(t)                            (2)

P0=p(0) is the initial pressure; f is a function with f(0)=1
that asymptotically falls to zero. The usual exponential
pressure fall function, f(t)=exp(-t/τ), emerges if τ is
constant.

Substituting empirical LVP curves for p in Eq. l
and differentiating it numerically yields empirical τ-
versus-t plots (Raff and Glantz 1981) or LVdP/dt-versus-
LVP phase diagrams (Sugawara et al. 1997), both
demonstrating a non-constant τ during isovolumic
pressure fall. The main objection is that numerical
differentiation severely aggravates the measuremental
error of the original data. Furthermore, the result depends
numerically on the data sampling rate and on the
differentiation procedure employed. It remains therefore
questionable whether changes in τ have to be attributed to
measuremental error. In order to profit by well designed
statistical regression methods, such as Gaussian least-
squares, p in Eqs. 1 and 2 must not be replaced by any
empirical LVP data sample but is to be estimated by
reliable statistics.

The present study investigates some four-
parametric realizations of the general model Eq. l in
isolated ejecting small animal hearts. Table 1 displays the
regression models considered. The study especially
addresses the following questions: Does goodness-of-fit
decide in favour of a distinct model to describe
isovolumic pressure fall data? Is it justified and

recommendable to discard early and late isovolumic
pressure data from the regression calculation?

Methods

Preparation
Intraperitoneal anesthesia was given to one

hundred guinea pigs, one hundred Sprague-Dawley rats,
and twelve ferrets, according to the Tierschutzgesetz
(German Animal Protection Act). Urethane was used for
the rodents, initial doses containing 193 mg per 100 g
body mass (guinea pig), or 108 mg per 100 g body mass
(rats). Pentobarbital (initially 3 mg per 100 g) was given
to the ferrets. Supplementary doses were added on
demand until paw-squeezing tests revealed full analgesia.

The hearts were excised after 25 IU heparin had
been given and mounted onto an artificial circulation
apparatus (see Langer and Schmidt 1998) perfused with
modified Krebs-Henseleit bicarbonate buffer containing
(in mmol l-1): NaCl 118, NaHCO3 25, KCl 4.8, KH2PO4

1.2, MgSO4 1.2, CaCl2 2.5, glucose 10, and sodium
pyruvate 2. The buffer was continuously equilibrated
with 95 % O2 and 5 % CO2 (pH 7.4). It was fed to the left
atrium by a roller pump, thus setting cardiac output at
40 ml min-1 (rat, guinea pig) and 60 ml min-1 (ferret). A
windkessel (13 ml air buffer) located above the aortic
cannula provided elasticity. Its outflow line contained a
hydraulic resistor that permits the regulation of the aortic
pressure to 75 mm Hg (rat, ferret) and 60 mm Hg (guinea
pig) flow-independently. LVP data were sampled by a
subminiature catheter tip pressure transducer, located in
the ventricular cavity (via the aortic valve), and digitized
at a rate 1000 s-1, resolution 0.075 mm Hg per bin.

The number of specimens was obtained in
relation to the high number of pairwise statistical
comparisons (see below). This was possible without
sacrifying the animals just for this purpose because the
preparations were subsequently used in further
experiments not mentioned here. On the other hand, the
number of ferret hearts was limited since the results were
seen to be comparable to those from the other species.

Another six guinea pig and six rat hearts were
prepared as before, but twenty-seven distinct
hemodynamic conditions were then established in each
heart by independently combining three levels of aortic
pressure (guinea pig: 60, 65, 70 mm Hg; rat: 70, 75, and
80 mm Hg), end-diastolic pressure (approximately 2 to
5 mm Hg below and above its individual value at control
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conditions, varied by different inflows to the left atrium),
and heart rate (atrial pacing, initial value slightly above

the intrinsic rate of the individual heart and then
increased in two steps of 25 beats per minute each).

Table 1. Variants of the general differential law of isovolumic pressure fall according to different settings of the time
"constant" function τ (t).

General differential law

General solution p(t) = P∞ + (P0 - P∞) f(t)

Model τ(t) f(t) Parameters

Exp3 τ = const. P0, P∞, τ

Power τ 0 + rτ t P 0, P ∞, τ0, rτ

Exp4 σ (σ0 + rσt)-1 P 0, P ∞, σ0, rσ

Exp4τ P 0, P ∞, τ0, rτ

Logis3 P 0, P ∞, τ∞

Logis4 P 0, P ∞, τ∞, γ

Data processing
LVP records of four seconds each were

partitioned into individual beat intervals. The median of
pressure values at min LVdP/dt and the median time the
pressure falls needed to cross the LVEDP level of the
respective preceding beat were calculated from all
individual beats in the four-second LVP record.
Relaxation subintervals of this median duration were
taken from each beat, beginning with the median pressure
at min LVdP/dt. The relaxation phases of all beats were
pooled by adjusting to zero abscissa (Fig. 1B). This
relaxation interval, sometimes denoted as the decelerative
phase of pressure fall (Leite-Moreira and Gillebert 1994),

is subsequently referred to as the standard interval of
isovolumic pressure fall, StdI. Nonlinear least-squares
regressions (simplex algorithm, Press et al. 1989, pp.
289-293) were then performed using each of the
regression functions displayed in Table 1.

Central subintervals of isovolumic pressure fall
were additionally calculated by a data-dependent interval
partition previously described in detail (Langer 1997). In
short, the standard interval StdI was extended by 5 ms
before the beginning of StdI and by 5 ms after StdI had
ended. These pooled extended intervals were partitioned
into three subintervals; all possible tripartitions were
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Fig. 1. Fitting left ventri-
cular isovolumic pressure
fall of an isolated ejecting
ferret heart at 37 °C, heart
rate 206 min-1, aortic
pressure 75 mmHg, cardiac
output 63 ml min-1. A:
Pressure curve (LVP) of the
second beat from a four-
second data record. Stan-
dard isovolumic rela-xation
interval (StdI) begins at min
LVdP/dt, after the pressure
notch that indicates aortic
valve closing. StdI ter-
minates when the end-
diastolic pressure of the
preceding cycle is re-
encountered. B: All 13 con-
secutive pressure falls from
the data record are
overlayed, adjusted to zero
abscissa. Pressure values
differ by less than 1 mm Hg
at early t; these differences
decrease further at later t.
CenI indicates the central
subinterval of isovolumic
relaxation, calculated by
regression error minimizing
interval partition of StdI

using method Exp4τ, see text. C: Plot of regression residua from the overlayed 13 consecutive pressure fall curves;
fitting of different pressure fall models (Table 1) to the standard isovolumic relaxation interval StdI. Double lines
indicate the range of residua obtained from model Exp3. Bold dots mark the residua obtained from model Exp4τ, tiny
dots those from Logis4. Many points are multiple due to the digital resolution. Residua of models Exp4σ and Power are
similar to Exp4τ. D: τ functions obtained from the different pressure fall models, each with best-fitted regression
parameters. The τ estimates coincide 10 to 25 ms after min LVdP/dt instead in the center of the regression interval
because the variance of the residua is greater at early t; the regression procedure therefore takes more attention to fit
the early part of data (this may be redressed by performing a χ2 minimizing regression instead of minimizing the usual
squared error sum).

considered successively. The model in question was fitted
separately to each subinterval. The central part of that
tripartition with the least total squared regression error
sum was selected. It was always a subinterval of StdI and
is referred to as the central subinterval of isovolumic
pressure fall, CenI, see Fig. 1B.

Statistical hypotheses
The global zero hypothesis claims that no

significant differences in regression errors occur among
the different fitting functions from Table 1. The
individual zero hypotheses of paired comparisons claim
that each two fitting models do not differ in regression
error. The preconditions of the usual parametric analysis
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of variance are not met by the present data because the
regression errors (input data) are small and unable to
cross below zero. A non-parametric analogon of the
analysis of variance, the weighting rankings test of
Quade, was therefore used to test the global zero
hypotheses. Multiple individual comparisons between the
six models were additionally performed. The calculation
is given in the Appendix B.

The influence of the hemodynamic parameters
LVEDP, max LVP, and beat interval length (BI) on

regression errors and on relaxation parameters was
checked in the variable hemodynamic experiments by a
stepwise regression using the SPSS statistics package
(Norusis 1988). Regression errors were logarithmized to
obtain a normal distribution. A quadratic regression
model, including squares and products of the
hemodynamic parameters, was applied because
nonlinearity had been previously detected.

Table 2. Basal data of one hundred isolated ejecting guinea pig, one hundred rat, and twelve ferret hearts at control
conditions: 37 °C, aortic pressure 60 mm Hg (guinea pig) and 75 mm Hg (rat, ferret), cardiac output about 40 ml min-1

(guinea pig, rat) and 60 ml min-1 (ferret). Data are medians ± median of absolute deviation from the median.

Guinea Pig Rat Ferret

Body Mass [g] 366±22 370±15 725±128
Left Ventricular Mass* [mg] 837±124 779±54 2386±81
Beat Interval [ms] 231±11 190±14 260±18
LVEDP [mmHg] 4.0±2.5 3.1±1.8 2.8±1.5
max LVP [mmHg] 84.3±4.5 109.9±6.2 104.8±3.3
max LVdP/dt [mmHg s-1] 2718±268 4833±455 3307±424
min LVdP/dt [-mmHg s-1] 1740±219 2367±156 1658±110
Aortic Flow [ml min-1] 23.5±3.7 22.1±2.6 28.1±7.9
Coronary Flow [ml min-1] 13.7±3.1 16.1±1.3 20.7±5.3

* inclusive intraventricular septum, wet.

Results

Comparisons under standard hemodynamic conditions
Table 2 summarizes apparent basal data of the

specimens used in the "standard hemodynamics" block.
Data-dependent interval partition, using method Exp4τ,
determined central subintervals CenI with median
quotient (± median absolute deviation from the median)
CenI/StdI being 42.9 % ± 2.0 % (guinea pig),
48.5 % ± 1.5% (rat), and 48.4 % ± 4.8 % (ferret). These
ratios are similar when methods Logis4 and Power are
used, whereas method Exp4σ yields shorter CenI, about
60% of the previously given figures.

Figure 1C,D demonstrates a typical example of
the fitting process on StdI in a single ferret heart; its
lower heart rate provides high resolution of the relaxation
phase. The plot of regression residua (Fig. 1C) reveals
two characteristic phenomena: 1.) The variance of the
pressure data from consecutive beats at the same abscissa
decreases with t. 2.) The pressure fall contains a damped

oscillatory component of about 20 s-1. Both observations
were also constantly found in the guinea pig and rat
hearts (but higher oscillatory frequency, about 50 s-1).
Figure 1D depicts the time course of τ according to the
parameters estimated by different fitting methods.

The values of the fitted relaxation parameters are
listed in Table 3. The respective initial time constant
τ0=τ(0) and the time constant τ* from the center of the
standard relaxation interval [i.e.  τ*=τ(t*), t* denoting
half the length of the respective StdI] are calculated to
compare models with different parameters. It should be
noted that the commonly adopted model Exp3 yields
remarkably low estimates for the pressure asymptote P∞

but too high estimates for the central time constant τ*.
Figure 2 shows the concomitant standard errors of
regression obtained from StdI and also from CenI.

The differences between these residual errors,
concerning StdI, are found to be significant (p<0.01) in
each of the species by the Quade tests, FQ values were



6   Langer Vol. 51

Table 3. Estimated parameters from different pressure fall models (Table 1) in one hundred guinea pig, one hundred rat,
and twelve ferret hearts, working under standard conditions (see Table 2).

P0 P∞∞∞∞ τ0 τ* Other parameters

Guinea Pig
Exp3 40.7±5.5 -3.0±5.1 21.0±5.2 = τ0
Logis3 39.7±5.4 1.2±2.9 24.3±4.6 14.1±3.4 τ ∞=12.2±2.3
Exp4τ 39.9±5.1 1.0±3.1 21.7±4.1 14.7±3.4 rτ = -0.180±0.148
Exp4σ 39.9±5.2 -0.4±3.0 21.9±4.8 16.6±3.5 rσ=0.43⋅10-3±0.57⋅10-3

Logis4 39.8±5.1 -0.9±3.0 22.6±5.3 17.5±3.6 τ ∞=15.6±3.1; γ=0.342±0.204
Power 40.0±5.2 2.0±2.8 21.1±3.3 13.6±3.1 rτ = -0.347±0.206
Rat
Exp3 47.5±5.2 -3.9±5.2 16.8±3.2 = τ0
Logis3 46.2±5.0 0.2±3.8 19.3±2.8 11.2±1.7 τ ∞ = 9.7±1.4
Exp4τ 46.9±5.2 0.2±3.7 16.6±2.8 11.0±2.1 rτ = -0.147±0.134
Exp4σ 46.7±5.1 -0.9±3.6 17.9±3.5 11.9±2.3 rσ = 1.12⋅10-3±0.86⋅10-3

Logis4 46.6±5.1 -1.6±3.4 17.8±3.5 12.8±2.2 τ ∞=11.6±2.4; γ = 0.341±0.211
Power 47.1±5.3 0.4±3.6 16.0±2.5 10.5±2.2 rτ = -0.323±0.225
Ferret
Exp3 43.7±5.4 -4.0±5.3 24.4±1.7 = τ0
Logis3 42.2±5.5 1.2±4.2 29.6±2.7 16.9±1.4 τ ∞ = 14.8±1.3
Exp4τ 43.2±5.7 -1.4±5.2 26.6±3.9 13.4±1.7 rτ = -0.225±0.083
Exp4σ 43.1±5.5 0.4±5.0 26.2±3.1 14.9±1.4 rσ = 0.94⋅10-3±0.21⋅10-3

Logis4 43.0±5.3 -3.2±4.2 27.9±4.5 15.9±1.0 τ ∞=14.4±0.8; γ=0.478±0.143
Power 43.2±5.7 -1.0±5.2 25.4±2.9 13.0±1.7 rτ = -0.383±0.090

Data are medians ± median of absolute deviation from the median. τ* is the local time constant obtained from the
center of StdI. Units: P [mm Hg]; τ [ms]; rτ , rσ , γ [1].

greater than: 68 in guinea pigs, 69 in rats, and 11 in
ferrets. Comparing the four-parametric models on CenI,
the Quade statistic also indicates significance (FQ > 14,
19, and 4.6 respectively). Results of the paired
comparisons, already converted to error probabilities, are
shown in Table 4A. A clear advantage of the four-
parametric models over the three-parametric ones is
proved: regression errors are about 20 to 30 per cent less
in the latter. On StdI, Exp4τ is best fitted in rat and ferret
hearts; model Power is insignificantly better in guinea pig
hearts. However, most of the paired comparisons between
the four-parametric models do not reveal significant
differences. On CenI, models Exp4σ and Logis4 are
superior to Exp4τ.

Comparisons under variable hemodynamic conditions
As expected, standard errors of regression and

median absolute deviation of all models increased (by
about 50-80 %) when the hemodynamic conditions were
variable instead of remaining constant (see Fig. 2). No
systematic influence of distinct hemodynamic variables
on the (logarithmized) standard errors is revealed by the
quadratic regression analysis. Rat hearts exhibit no
significant hemodynamic influence on standard errors at
StdI as well as CenI (r2≈0.06). In guinea pig hearts, eight
of the nine factors and their products are included in the
regression (reaching r2≈0.5), again indicating that none of
them preponderates. However, the standard regression
errors in this species tend to decrease with the heart rate.
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Fig. 2. Median of standard
errors of regression (columns)
and median of absolute
deviation from the median
(error bars) of different
pressure fall models (Table 1).
Lower columns refer to data
from one hundred guinea pig,
one hundred rat, and twelve
ferret hearts, working at
standard conditions (notice that
mean aortic pressure is less in
guinea pig preparations).
Fitting calculations were
performed using the standard
relaxation interval StdI and the
central subinterval CenI. The
three-parametric models Exp3
and Logis3 are not suitable for
data-dependent interval parti-
tion; the respective data shown

for CenI were obtained by applying these models to the CenI calculated by a piecewise fit of method Exp4τ. Higher
light columns show additional data from six guinea pig and six rat hearts, each working under 27 different
hemodynamic conditions (see text).

These results are the same among all of the four-
parametric models.

The Quade test reveals significant (p<0.01)
differences of goodness-of-fit between the four-
parametric models applied to StdI in guinea pig hearts
(FQ=22) but not in the rat hearts (FQ=2.2, p>0.09).
Comparisons on CenI yield significant differences in both
species (FQ=12 in the guinea pig, FQ=5.4 in the rat).
However, most paired comparisons do not reach
significance (Tab. 4B).

The quadratic regression analysis, considering
initial τ0 and central time constant τ*, does not reveal a
noteworthy hemodynamic influence on the τ estimates
(typically r2<0.25). Factor LVEDP⋅BI on the StdI and
factor EDP2 on CenI tended to increase τ0 and τ*.

Discussion

The reliability of the model fitted to the
empirical data is crucial in calculating parameters to

describe physiological facts. Such parameters are mainly
relevant in correlation to other physiological phenomena
to infer scientific conclusions. An inadequately chosen
model leads to parameter values that are biased in an
obscure way; thus, well designed experiments may yield
unclear results. For example, Perlini et al. (1988)
obtained contradictory results by investigating the
influence of changing preload on the relaxation time
constant τ by two models, Exp3 (with empirically
estimated P∞, as presently), and the same model with a
fixed asymptote P∞=0.

The present study gives a physical motivation
only of the general differential law of pressure fall, Eq. l.
Suitable models for the hitherto undetermined function
τ(t) are heuristically proposed and tested purely
empirically. The discussion focusses on these two points
and finally demonstrates the different behavior of early
and late relaxation constants in a physiological example.
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Table 4. Results of Quade tests and error probabilities of paired comparisons between different pressure fall regression
functions (see Table 1). Most negative S values indicate best fits. Upper left-hand triangles present data obtained from
the standard intervals StdI, lower right-hand ones those from central subintervals CenI (using only four-parametric
models). Table entries are error probabilities of the zero hypotheses "no difference in goodness-of-fit".

A. Standard hemodynamic conditions

Guinea Pig SStdI Power Logis4 Exp4σ Exp4τ Logis3
Exp3 9472 <10-3 <10-3 <10-3 <10-3 0.128
Logis3 7658 <10-3 <10-3 <10-3 <10-3

SCenI

Exp4τ -5890 0.329 0.002 0.001 1406
Exp4σ -1960 <10-3 0.823 <10-3 -2744
Logis4 -2227 <10-3 0.270 0.003 -1640
Power -7053 <10-3 <10-3 0.117 2978
Rat SStdI Power Logis4 Exp4σ Exp4τ Logis3
Exp3 9798 <10-3 <10-3 <10-3 <10-3 0.120
Logis3 7951 <10-3 <10-3 <10-3 <10-3

SCenI

Exp4τ -6237 0.170 0.003 0.084 937
Exp4σ -4181 0.719 0.219 <10-3 -2395
Logis4 -2723 0.113 0.977 <10-3 -2423
Power -4608 <10-3 <10-3 0.003 3881
Ferret SStdI Power Logis4 Exp4σ Exp4τ Logis3
Exp3 164 <10-3 <10-3 <10-3 <10-3 0.344
Logis3 117 <10-3 0.012 <10-3 <10-3

SCenI

Exp4τ -149 0.085 0.007 0.069 24
Exp4σ -58 0.919 0.343 0.013 -83
Logis4 -11 0.294 0.064 0.482 -5
Power -63 0.100 0.001 0.334 64

B. Variable hemodynamic conditions

Guinea Pig SStdI Power Logis4 Exp4σ Exp4τ SCenI

Exp4τ -543 <10-3 0.208 <10-3 2401
Exp4σ 10112 <10-3 0.015 <10-3 -9466
Logis4 3077 <10-3 0.004 0.253 -959
Power -12646 0.003 <10-3 0.056 8024
Rat SStdI Power Logis4 Exp4σ Exp4τ SCenI

Exp4τ 286 0.592 0.245 0.200 3084
Exp4σ 3801 0.070 0.015 0.002 -5586
Logis4 -2904 0.530 0.135 0.091 -1520
Power -1183 0.042 <10-3 0.730 4022
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The basal differential law of isovolumic pressure fall
Calculating a time constant from the isovolumic

left ventricular pressure fall during normal cardiac action
was introduced and is understood as being a purely
empirical index (Raff and Glantz 1981, Thompson et al.
1983, Yellin et al. 1986). The basal differential law
(Eq. l) is, however, physically motivated by the Law of
Laplace and elementary linear viscoelasticity (see
Appendix A with Fig. 5). Especially the pressure
asymptote P∞ must be estimated from the data instead of
preset to zero for reasons also discussed in Appendix A.

The models compared in the present study
(Table 1) extend the general differential law heuristically
by allowing τ to become a non-constant function of time.
This was motivated by observing that, compared with the
exponential, pressure always falls faster than expected
late in isovolumic relaxation (Raff and Glantz 1981).
Model Exp4σ considers a linear change of the
exponential constant, i.e. the inverse of τ, in the pressure
function p during the relaxation period. A linear change
of τ itself in p is chosen for model Exp4τ. A time-linear
change of τ in the differential law (instead in pressure
function p) leads to the Power model. The logistic model
Logis3 (Matsubara et al. 1995) is characterized by the
property that τ can be expressed as a function of the
actual pressure, τ=τ(p(t)); in fact, τ-1 depends linearly on
p, see Table 1. The linear factor is fixed at γ=0.5 in model
Logis3; Logis4 overcomes this unmotivated restriction by
estimating γ empirically. Table 3 confirms γ<0.5 in the
small hearts of guinea pig and rat, whereas the larger
hearts of ferrets allow for γ≈0.5.

Proper fit of isovolumic pressure fall
The quality of fit is often discussed in passing, if

at all, in the physiological literature that uses the index τ.
Although many different mathematical methods have
been proposed and employed (see six methods compared
by Senzaki et al. 1999), literature concerning isovolumic
pressure fall has not yet focused the fundamental
scientific concept of goodness-of-fit in defining
meaningful parameters to describe real phenomena. For
instance, only a very few residual plots (or equivalent
graphics) are found out of more than two hundred papers
on the topic, though inspecting the residuals is a well-
known and important suggestion in any regression
procedure. Neglecting this prerequisite may easily lead to
misleading conclusions.

Establishing a method to fit isovolumic pressure
decay therefore involves three formal steps before a
physiological interpretation may be started: 1.) defining
and identifying the time interval to be fitted, 2.) selecting
the mathematical pressure decay model (purely numerical
execution is not discussed here) and 3.) comparing the
regression residua or other indices of goodness-of-fit.

Fig. 3. Effect of late violations of monoexponentiality on
the estimates of the regression variables. A function F
(partly shown in panel B) is defined by smooth
concatenation of F(0≤t≤30)=40⋅exp(-t/15) and
F(30<t≤50) = F(30)+ •

F (30)⋅(t-30) = 5.41-0.36(t-30). F
resembles empirical pressure fall data which become
properly fittable to linear rather than exponential
regression in the late part (arrows mark concatenation
point). A: Parameters were estimated by model Exp3
from intervals each beginning at t=0 and ending at the
respective abscissa. Deviations ∆τ=τ-15 and  ∆P0=P0-40
remain moderate in the relative sense, whereas the
variable asymptote P∞ falls remarkably from zero to
negativity. B: Parameters were estimated by model
Exp4τ from gliding intervals of length 21, centered
around each abscissa t±10. Transition from exponential
to linear part changes the parameter estimates
considerably. The common three-parametric model Exp3
is numerically unstable in this situation; the τ estimate, in
particular, becomes unpredictable.

Effect of different starting and end-points on τ estimation
Different choices of the end-point of the fitted

interval in the literature (to LVEDP of the preceding beat
or some mm Hg above) are not expected to bias the
relative τ estimate substantially (contrary to P∞): Fig. 3A
shows the effect in a model calculation. Such
considerations led to the inclusion of StdI in the present
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study. Similarly, changing the lower pressure cut-off
point in normal human pressure fall curves, Senzaki et al.
(1999) have obtained an insignificant change of τ (model
Exp3) but this effect has been markedly increased in
cardiomyopathic patients.

In contrast, Fig. 3B reveals considerable changes
in the parameter estimates when a subinterval of fixed
duration is moved (changing starting point) through a
data set that imitates the time interval of isovolumic
pressure decay. This phenomenon was also seen in
LVdP/dt-versus-LVP diagrams from open-chest dogs
(Sugawara et al. 1997). Violations of the regression
model in the vicinity of the time of min LVdP/dt, i. e. the
transition from accelerating to decelerating pressure fall,
severely distort the relaxation index. It is therefore
necessary either to take the pressure data from a later
subinterval or to adopt an extended model capable of
considering the differences between relaxation at the time
of min LVdP/dt and at later times.

Interval tripartition
The example below (τ0 in Fig. 4) demonstrates

that the immediate pressure data after min LVdP/dt may
not provide information about the lusitropic state of the
heart in terms of a time constant if the shape of the
pressure curve is changed by other means, e.g.
pharmacological intervention. It is therefore acceptable to
perform a data-dependent tripartition (Langer 1997),
using only the central subinterval CenI to calculate the
lusitropic time constant. Figure 2 shows that CenI, in
contrast to StdI, already fits the three-parametric models
Exp3 and Logis3 properly. So it is justifiable to choose
these models in fitting CenI. Early and last parts of the
tripartition must nevertheless be fitted by four-parametric
models to avoid numerical instability. The results of these
parts should be discarded; only τ estimated from CenI is
retained as the lusitropic index searched for. The loss of
possibly valuable information from the early and the late
pressure data may be a drawback of this method; the
computational effort is another. As a special advantage,
this method is insensitive to possible early volume (and
therefore P∞) changes, mentioned in Appendix A.

Four-parametric models
Another method of attenuating unwelcome

effects of model violations at early and late pressure falls
is to adopt a four-parametric model to StdI and calculate
the central time constant τ∗ or the initial and asymptotic
time constants, τ0, τ∞. Differences in goodness-of-fit

between the four four-parametric models investigated are
relatively small in StdI (Fig. 2). Figure 1C shows that
further improvement has to consider a mechanical
oscillation that appears in the pressure fall data, initiated
most probably by the retrograde blood momentum
suddenly stopped at aortic valve closure; this is beyond
the topic of lusitropy. Furthermore, this oscillatory
amplitude is very small compared to the total pressure fall
range. Hence, it is justified to assume an exponential
main component of the isovolumic pressure fall.

Table 4 and Fig. 2 show that Exp4τ provides the
best fit of StdI in most cases, but its statistical benefit
over the other four-parametric models is rather small. It is
therefore reasonable to consider two disadvantages: 1.)
Exp4τ assumes a falling τ (Fig. 1D) until a singularity
occurs (Table 1), which is physically impossible. Logis4
reasonably proposes an asymptotic τ∞ instead; the local
τ(t) does not differ substantially from τ∞ in the whole
second half of the isovolumic pressure decay. 2.) Exp4τ
estimates a considerably higher asymptotic pressure P∞

than Logis4 does. This may counteract the numerical
effect of supposing τ falling to zero. Although P∞ must
not be assumed to equalize the empirical pressure
minimum even in a non-filling heart (Appendix A), a
considerably negative P∞ is nevertheless expected at
small end-systolic residual volume by the concept of the
difference between residual and equilibrium volume
(Bloom and Ferris 1956).

By these considerations, Logis4 appears to be,
theoretically and practically, the most satisfactory model.
Goodness-of-fit studies in canine (Matsubara et al. 1995)
and human hearts (Senzaki et al. 1999) have already
shown the advantage of Logis3 among other three-
parametric models. However, Logis3 is not an alternative
to the four-parametric models that all do fit better the
pressure fall in small animal hearts (Table 4).

Effect of isoprenaline on early and late relaxation
Administering catecholamines is a common

standard method to enhance lusitropy. This effect was
first described by an increase in min LVdP/dt but it also
appears in τ (Blaustein and Gaasch 1983, Martin et al.
1984, Burwash et al. 1993, Schäfer et al. 1996, Langer
and Schmidt 1998). A recommendable method for
obtaining τ must therefore provide a high sensitivity to
catecholamine-induced changes.

Figure 4 shows the effect of isoprenaline
obtained from a rat heart using methods Exp3 and Logis4
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on StdI. Notably, the initial time constant τ0 (Logis4)
does not change. This is not unexpected because the

Fig. 4. Effect of isoprenaline on left ventricular
relaxation, determined by methods Exp3 and Logis4 from
the standard relaxation interval StdI. Isolated ejecting rat
heart, left ventricular mass 689 mg, mean aortic pressure
75 mmHg, cardiac flow 41 ml min-1, heart rate 240 to 256
min-1, 37 °C. Method Exp3 indicates a decrease in time
constant τ(Exp3) by about 35 %. Method Logis4 reveals a
constant initial pressure fall time constant τ0, but a
decrease in the terminal (asymptotic) time constant τ∞ by
more than 60 %. The local time constant τ∗  from the
center of the relaxation interval is already the same as
τ∞. This demonstrates that the positive lusitropic effect of
isoprenaline is related to an accelerated decrease in τ
during the isovolumic period rather than to an initially
decreased myocardial viscosity. The increase in the
factor γ along with isoprenaline administration directly
reflects this effect. The positive inotropic effect of
isoprenaline causes the residual volume (not measured)
to decrease because the cardiac inflow was held
constant. This is detected by considerably decreasing
pressure asymptote P∞ (Martin et al. 1984) which
demonstrates that estimating P∞ rather than fixing it at
zero is necessary to obtain reliable results.

myocardium is not yet fully relaxed at t=0 (when min
LVdP/dt occurs); this condition appears to remain true
during β-adrenergic stimulation. The latter increases max
LVP even if the mean aortic pressure is held constant,
thus the lusitropic effect of isoprenaline may be
outweighed in the initial time constant τ0 by stronger
residually contracted myocardium. Therefore, the very
early pressure data do not contribute to a useful lusitropic

index in this situation. In contrast, τ∞ reacts with a large
decrease from 13 down to 5 ms. It is considerably more
sensitive than τ calculated from Exp3 (16 to 9 ms);
furthermore, τ from Exp3 increases again at higher doses.
The central time constant τ∗ , calculated from Logis4, is
almost equal to τ∞; this was to be expected from Fig. 1D.
Isoprenaline administered to open-chest dogs only caused
a decrease in τ (Exp3) from 23 to 18 ms (Blaustein and
Gaasch 1983). Another study reports a decrease in τ from
40 to 15 ms in decentralized canine hearts (Burwash et al.
1993). However, τ was calculated with P∞ preset to zero
in that study. Additionally, τ is an inverse index of
lusitropy; ratios of any changes are only comparable from
the same starting-value.

Calculating the central time constant τ∗  from
model Exp4τ results in values very similar to those
obtained from Logis4.

Limitations and Conclusions
The present study is limited to three species of

small animals. The pressure fall curve of greater hearts,
and therefore the adequacy of the compared models, may
differ with respect to heart size. The studied conditions
were also restricted to a "laboratory standard" and some
simple (but multivariate) hemodynamic changes.
Especially the effect of pharmacological interventions
(except the example in Fig. 4) and pathologic conditions
on the τ models remain uncovered. It is thus possible to
conclude that:

1) Isolated hearts allow the overlaying of
multiple consecutive pressure fall intervals with great
accuracy to enhance the statistical basis of the nonlinear
regression procedure. A statistically well-founded
procedure (Gaussian error minimization) to fit the
original pressure fall data is preferred to biasing data
transformations (e. g. logarithmizing or differentiating).
Two effective ways of preventing the lusitropic index τ
from being biased by improperly fittable very early and
late parts of the isovolumic pressure fall are demonstrated
in this study; further experience is necessary to decide
finally on the alternatives.

2) Isolating a central subinterval of pressure fall
by data-dependent interval partition supplies a reasonable
and non-arbitrary way of identifying a scarcely biased
central subinterval of isovolumic pressure fall. Fitting the
common, unextended monoexponential Exp3 to that
subinterval is justified and sufficient in terms of the
goodness-of-fit.
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Fig. 5. Motivating differential
laws of isovolumic pressure fall.
A: By the Law of Laplace, static
wall stress σ and transmural
pressure P are proportional in
an elastic hollow sphere (left
hand side). This remains valid
in an elliptic paraboloid if σ
means the perpendicular wall
stress and d<<r holds (right
hand side). B: The theory of
linear viscoelasticity provides a
simple three-element elastic
model to describe the behavior
of a muscle fiber (Bland 1960,
Gilbert and Glantz 1989). The
two representations given in the
figure are equivalent. The time
course of force during isometric
relaxation at elongation a is
given by the "relaxation fun-
ction" F. Force declines expo-
nentially by a time constant,
which is a ratio of viscosity and
elasticity [notice that E2/η and
(E1�+E2�)/ η�, respectively, are
the inverse time constants].

3) Fitting a four-parametrically extended model
(allowing τ becoming a time-variant function) to the
standard isovolumic pressure fall is another way how to
effectively overcome the empirical deviations from
mono-exponentiality. More complicated models are not
expected to provide essentially better goodness-of-fit

(unless an overlying damped oscillation with small
amplitude is taken into account). The exact formulation
of such four-parametric extensions is of minor
importance although significant differences are seen in
sufficiently large samples. On the basis of some
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physiological considerations, the logistic model seems to
be the most rewarding.
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Appendix

A. Motivating the differential law of isovolumic
pressure fall

Time constant as ratio of viscosity by elasticity
First, intraventricular pressure is, at static

equilibrium, a proportional measure of perpendicular
intramural wall tension (Fig. 5A). Employing the linear
viscoelasticity theory (Bland 1960) in order to understand
the behavior of such perpendicularly stressed ventricular
wall elements yields a monoexponential tension fall (Fig.
5B) and thus, by combining the results, the differential
pressure fall law Eq. l with τ(t)=const.

There are undeniably many objections. The
shape, wall thickness, and sarcomere orientation of the
ventricle are not as simple as assumed. Relaxation is a
successive process spreading from apex to the base.
Isovolumicity does not mean isometric relaxation of
individual fibers. Different fiber properties may lead to a
spectrum of time constants (Bland 1960) instead of a
single one obtained by Fig. 5B. Nonlinearity of relaxation
may be caused by non-isovolumic conditions (Ruttley et
al. 1974), blood momenta (Sugawara et al. 1997),
ventricular interaction (Gilbert and Glantz 1989),
additional effects of early intrafibrillar restoring force
(Parsons and Porter 1966), the bending of previously
relaxed fibers at the end of the isovolumic change of the
ventricular shape (Ruttley et al. 1974), changes in oxygen
supply (Schäfer et al. 1996), or vascular engorgement
(Salisbury et al. 1960, Gilbert and Glantz 1989).
However, the very multitude of such objections would
suggest that none of them can be taken too seriously.
There are in fact two possibilities to be decided
empirically: Either Eq. l is useless, or the effects of the
different model violations more or less compensate each
other. Wide experience in different studies (Thompson et
al. 1983, Martin et al. 1984, Yellin et al. 1986, Langer
and Schmidt 1998) and the results of the present study
clearly speak in favor of the latter because of the

excellent goodness-of-fit. This in turn permits the above
consideration to be applied and to conclude that the time
constant of isovolumic pressure fall is the quotient of
some kind of average viscosity and elasticity of the
ventricle during the relaxation phase.

The ventricular viscosity changes, of course,
during the cardiac cycle because the contracted
myocardium is stiffer. However, only the present
statistical comparisons by pairs between three- and four-
parametric models prove that a completely constant
viscosity of the ventricle cannot be assumed even during
the isovolumic relaxation phase. It is surmised that
partially contracted fibers still exist in the early
isovolumic relaxation phase: the myofibrils do not relax
synchronously throughout the whole ventricle, and the
intracellular Ca2+ handling, responsible for the relaxation
of individual fibers, is also a time-consuming multi-
compartmental process.

Role of pressure asymptote
P∞, the asymptotic pressure, reflects the

difference between the residual and equilibrium volume
of the ventricle (Bloom and Ferris 1956, Gilbert and
Glantz 1989); the more the residual volume of the
individual beat diminishes, the more negative it becomes.
The former is variable and usually not equal to the
equilibrium volume, that means P∞≠0 (see example
Fig. 4). Therefore, the pressure asymptote must be
estimated from the data (Thompson et al. 1983, Langer
and Schmidt 1998).

Nevertheless, many authors have performed a
two-parametric fit by model Exp3 with a preset
asymptote P∞=0, sometimes explicitly in spite of
acknowledging the superior goodness-of-fit obtained by
empirically estimating P∞ (Martin et al. 1984, Yellin et
al. 1986, Gillebert and Lew 1989, Simari et al. 1992).
This has been motivated by the finding that minimum
ventricular pressure reached by isovolumically beating
dog hearts is considerably higher than the estimated P∞

(Yellin et al. 1986). Figure 4A demonstrates a methodical
explanation of this effect. The exponentiality of the
pressure fall is barely detectable from the late relaxation
interval where low pressure is considerably affected by
measurement error or violations of the exponential
model. The fitting procedure estimates P∞ as more
negative as later pressure data are included in the fitted
relaxation interval. Table 3 confirms that method Exp3
always estimates the most negative P∞, but also shows
that the four-parametric models overcome this drawback.
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Furthermore, P∞ is extrapolated from the ventricular
properties during the normal relaxation period, and one
must not expect it to describe the pressure in the fully
relaxed non filling ventricle. For these reasons, no models
with fixed P∞ =0 were investigated in the present study .
It is to be pointed out that the τ estimate is biased by
varying hemodynamic conditions in an unclear way when
P∞ is fixed at a preset value, see Perlini et al. (1988).

B. Weighting rankings test of Quade
Calculations were performed according to

Conover (1980). Let N=100 (rat, guinea pig) or N=12
(ferret) be the number of hearts, and k=6 the number of
different fitting models. The k standard regression errors
of each individual heart were ranked, yielding individual
ranks Rij, i=1 to N, j=1 to k. The spans of the standard
errors obtained from the individual hearts were also
ranked from 1 to N; Qi may denote the rank of heart i.
Indices Sij were then calculated as the Qi-weighted
deviation of an individual rank Rij from the mean rank:
Sij=Qi[Rij-(k+1)/2]. These indices were summed for each
fitting model, Sj=Σ N

i=1 Sij, j=1, …,k. Finally the test index

(3)

was compared with the critical limits of the F-distribution
with k-1 degrees of freedom (numerator) and (N-1)(k-1)
degrees of freedom (denominator) using an error
probability of 0.01. This approximative test is valid if
Nk>40; this condition was met throughout the study.

Multiple individual comparisons (with adjusted
error probability) between the six models were performed
by formula

(4)

where ∆S is the difference of Sj values of the compared
models (Conover 1980). The error probability p of
hypothesis ∆S=0 was determined by equalizing t to the
theoretical t-distribution, t=t[(N-1)(k-1); p/2], and calculating p
with the incomplete beta function (Press et al. 1989,
p. 189).
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