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Summary
The exercise-induced increase and post-exercise decrease of plasma hyaluronan concentration were studied in human
subjects. Six well trained men performed incremental exercise until exhaustion (MAX), intensive (submaximal, SUB)
and extensive exercise (moderate, MOD) on a bicycle ergometer, defined as work at 100, 77 and 50 % of maximal
oxygen consumption. Hyaluronan was analyzed using a high-sensitivity, proteoglycan-dependent time-resolved
immunoassay and hemoglobin, hematocrit and plasma protein levels were assessed using standard laboratory
procedures. Compared to resting control levels, the plasma hyaluronan concentration (pHA) increased (p<0.05) by 76 %
(65.0±6.1 vs. 37.0±1.0 µg/l) during 15 min MAX, by 44% (56.4±2.6 vs. 39.2±3.8 µg/l) during 30 min SUB and by 27
% (46.3±7.8 vs. 36.4±4.3 µg/l) during 90 min MOD. The increase with time averaged 4.03 %.min-1 during MAX,
1.35%.min-1 during SUB and 0.35 %.min-1 during MOD. After exercise (15 and 30 min), pHA decreased by 43 %
below resting levels after MAX (p<0.05) and by 36 % after SUB, respectively. In conclusion, pHA steadily rose with
time during physical exertion, with a non-linear increase of concentration/time slope with exercise intensity; second, the
magnitude of the post-exercise pHA decrease was proportional to the exercise-induced pHA increase, suggesting
elevated hyaluronan clearance with rising plasma levels after physical exertion.
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Introduction

Hyaluronan is a widely distributed extracellular
polysaccharide which serves in bone formation, cartilage
structural maintenance, lubrication, wound healing, tissue
transport, and is able to interact with the immune system
(Laurent et al. 1992, 1996). Extracellular hyaluronan
concentration far exceeds that in the bloodstream because

of rapid degradation by hepatic and other endothelium
after lymphatic discharge (Erikson et al. 1983, Tengblad
et al. 1986, Reed and Laurent 1992, Reed et al. 1994,
Laurent et al. 1996). Thus, the intravascular hyaluronan
pool is being constantly removed, whereas the
extravascular pool serves its physiological tissue
functions (Fraser and Laurent 1989, Levick 1996).
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Increased lymph propulsion during exercise
fosters hyaluronan transport into the circulation (Rowell
1993), and some effects of physical exercise on plasma
hyaluronan concentration (pHA) have been reported
(Engström-Laurent and Hällgren 1987, Tulamo et al.
1990, Piehl-Aulin et al. 1991). However, no clear dose-
response relations have been indicated, particularly not
those concerning in the decrease of pHA after muscular
activity. Previous studies have shown increases in pHA
with exercise; however, our study has shown a
regimented and incremental increase of pHA with the
workload at three levels of exercise.

The purpose of this study was to use exercise of
different intensity as a model for elevating pHA by
physiological means, and to quantitate the consecutive
decrease during recovery. We hypothesized that there is
indication of altered hyaluronan clearance from the
intravascular compartment after muscular activity of
different intensities. We present evidence of increased
hyaluronan removal from the macrocirculation after
higher exercise loads.

Methods

Subjects
Six healthy, non-smoking well trained men

(29±1 yr, 76±3 kg, 181±3 cm, maximal oxygen intake
63±1 ml/kg/min) participated in the study. They were free
from medication and gave their informed consent after
having been explained the experimental procedure. The
project was approved by the University Review Board.

Protocol and study design
Exercise was performed on a Monark Ergomed

(Sweden) bicycle ergometer. O2 intake/CO2 output was
determined using an Oxycon (Jaeger, Germany) open
system and the heart rate was assessed with a Sporttester
(Polar Electro, Finland). For MAX, an incremental test
was applied; the work load started at 40W and was
increased by 20W every minute until voluntary
exhaustion (average test duration approx. 15 min). Both
endurance loads started as the incremental test at 40 W
and the work load was increased by 20W per minute until
the target load (77 % maximum oxygen intake for SUB,
50 % for MOD) was reached. Exercise lasted 30 (SUB)
and 90 min (MOD), respectively, to achieve sufficient
increases in pHA. The tested persons were allowed to
drink 250 ml water during the final phases of MOD and
SUB, respectively. An interval of at least 4 days was
chosen in-between the tests. Six days before and during

the experimental period (total 2 weeks), the subjects
received an isocaloric diet consisting of 55 %
carbohydrate, 30 % fat, and 15 % protein. All
experiments were carried out at 22-24 °C room
temperature (40-70 % relative humidity).

Blood sampling and analysis
15 ml of blood were withdrawn from an

antecubital vein at each sampling time with a 20-gauge
teflon catheter. Blood was taken every 5 min during
MAX, every 10 min during SUB and every 30 min
during MOD; plus 15 and 45 min after MAX, and 30 and
60 min after SUB and MOD, respectively. Samples were
drawn into vacutainer tubes containing dry disodium
EDTA (1 mg/ml) and cooled in ice. After centrifugation
at 3000 rpm for 10 min, plasma was stored at –20 °C.

pHA was determined using a proteoglycan
dependent time resolved immunoassay of high sensitivity
(Rössler 1998). Duplicate measurements were made to
determine hemoglobin concentrations (Hb) using the
cyanohemoglobin method, and fractional hematocrit
(Hct) by microcentrifugation without correcting for
trapped plasma. Total plasma protein concentration was
assessed using the Biuret method (Merck). Initial plasma
volume was estimated according to Sawka et al. (1992).
Since microvascular fluid filtration influences
macromolecular plasma concentrations per se, pHA was
corrected for hemoglobin/hematocrit changes on a
sample-to-sample basis during and after exercise.

Statistics
Results are presented as means ± S.E.M. A

repeated-measures ANOVA was applied to test for
overall significance of pHA changes with time, and
Tukey’s honest significant difference test to compare
between points in time. The null hypothesis was rejected
if p<0.05.

Results

MAX elevated pHA by 76 % from 37±1 to 65±6
µg/l in 15 min, corresponding to a 4.03 %.min-1 rise
according to a linear best-fit. 15 and 45 min after
finishing the exercise, pHA was below pre-exercise
control values (-43±5 and -32±9 %, respectively). With
SUB, the values were +43 % (from 39±4 to 56±3 µg/l) in
30 min, corresponding to 1.35 %.min-1; 30 and 60 min
after exercise, pHA was 35±9 and 30±2 % below control
values, respectively. The 27 % pHA rise with 90 min
MOD (from 37±4 to 42±8 µg/l) corresponded to a 0.35
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%.min-1 increase in time (Table 1). Figure 1 depicts the
average pHA time course, Fig. 2a the linear fits of pHA
increase with time during exercise, and Fig. 2b the

resulting slopes as a function of exercise load. Table 1
also shows changes in total plasma protein concentration,
hemoglobin and hematocrit.

Table 1. pHA, plasma TP, hemoglobin concentration, and hematocrit values (mean±S.E.M.) before and at end of
exercise, and during recovery.

Rest End of exercise Recovery
0 min 30 min 60 min

15 min (MAX) 45 min (MAX)

Plasma hyaluronan concentration (µg/l)
Max 37.0±1.0 65.0±6.1* 21.2±2.3* 25.6±3.7
Sub 39.2±3.8 56.4±2.5* 25.0±3.4* 27.6±0.8
Mod 36.4±3.3 46.3±7.0 34.6±3.2 35.0±3.2

Plasma total protein concentration (g/l)
Max 66.9±1.1 73.0±1.5* 68.0±0.6 67.5±0.7
Sub 67.1±1.1 71.3±0.8* 67.5±0.9 67.7±0.9
Mod 66.9±0.9 70.3±1.3* 68.2±0.7 67.8±0.4

Hemoglobin(g/dl)
Max 15.6±0.4 16.8±0.5* 15.5±0.3 15.4±0.4*
Sub 14.6±0.4 15.6±0.4* 14.3±0.4 14.4±0.3
Mod 15.0±0.4 15.4±0.4* 14.8±0.4 15.6±0.5

Hematocrit (Vol %)
Max 46.4±0.8 50.4±0.8* 45.9±0.6 45.7±0.6*
Sub 44.6±1.2 47.3±0.8* 43.6±0.8 43.7±0.8
Mod 45.2±0.9 46.7±0.8* 44.7±0.9 45.9±0.8

*P<0.05 compared to their respective resting control level.

Discussion

In adults aged 20-60 years, pHA normally
ranges from 10 to 100 µg/l with a mean between 30-40
µg/l (Eriksson et al. 1991, Fraser et al. 1981) as seen in
our subjects. The average molecular weight in human
plasma is in the range of 140 kD, making it all but
impermeable to most capillary walls (Tengblad et al.
1986). Factors like the diet, posture, activity, or clinical
deviations influence pHA to a different extent (Engström-
Laurent and Hällgren 1987, Gegout et al. 1991, Onarheim
et al. 1991, Rössler et al. 1998). Animal experiments
suggested a salient role of physical exercise for
promoting hyaluronan turnover between tissue matrix and
the circulatory system (Schad and Berchtelsbauer 1977,
Tulamo et al. 1990).

Hyaluronan influx to the circulatory system.
Interstitial hyaluronan concentration is usually

one to two orders of magnitude higher than pHA, with
considerable interindividual differences (Laurent and
Laurent 1981, Laurent and Fraser 1992, Laurent et al.
1996). Therefore, increased lymphatic propulsion can be
expected to increase pHA. Hyaluronan output from the
tissue spaces via the lymphatics is assisted by muscular
activity, which also elevates interstitial pressure (Guyton
et al. 1976, Laurent and Laurent 1981, Fraser and Laurent
1989, Rowell 1993. Lymph flow is particularly enhanced
when large muscle groups exercise >65% of their
maximal capacity, e.g. a 300W work load was found to
double pHA (Engström-Laurent and Hällgren 1987).
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Fig. 1. Plasma hyaluronan concentration (HYA mean ±
S.E.M.) in 6 subjects at the beginning (time=0), during
and after exercise of maximal (MAX; 15 min),
submaximal (SUB; 30 min) and moderate (MOD; 90 min)
intensity. Asterisks indicate significant differences to
compared pre-exercise values.

Since exercise promotes fluid loss in the
microcirculation, the concentration of macromolecules
left behind in the bloodstream increases. From the
changes in hematocrit and hemoglobin (3) and plasma
protein concentration (van Beaumont et al. 1973), an
average plasma volume decrease of 12 and 10 % can be
estimated for the end of the MAX and SUB experiments
of this study. Consequently, only a small increase of pHA
would be expected; indeed, plasma protein concentration
only rose by 9 and 6 %, respectively, during MAX and
SUB. The much larger rise of pHA (76 and 43 %) must
therefore have been mainly due to an increased
distribution into the bloodstream; capillary fluid loss
contributed much less to this effect, perhaps by 10-15 %.

Besides increased lymphatic output, there is
another possible reason for the rise of pHA during
exercise. Pulmonary microvessels contain transitorily
immobilized hyaluronan (Lebel et al. 1988); with
increased cardiac output, vascular recruitment within
previously underperfused areas ensues (Coates et al.
1993), and more hyaluronan could thus enter the
macrocirculation. Despite probably unaltered pulmonary
lymph flow during exercise-induced hyperventilation or
tachypnea (Bland et al. 1977, Martin et al. 1983), this
mechanism could increase pHA during exercise.

Hyaluronan clearance from the circulation.
Intravenously administered labeled hyaluronan

is rapidly cleared from the bloodstream (t/2=2-6 min;
Reed et al. 1990, Reed and Laurent 1992). The increase

of pHA seems to boost its elimination by hepatic, kidney
and splenic endothelial hyaluronidase (Tengblad et al.
1986, Fraser and Laurent 1989, Kreil 1995, Laurent et al.
1996, Natowicz and Wang 1996). Accelerated clearance
of hyaluronan from a tissue might serve an important
function as an edema safety factor (Lebel et al. 1988).
Uptake in the reticuloendothelial system is carried out by
a receptor mechanism and cellular metabolization; an
increase of this degradation may be involved in the
observed post exercise fall of pHA.
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Fig. 2. (a) Linear best fit of plasma hyaluronan
concentration with exercise duration (in % of pre-
exercise control values) in MAX, SUB and MOD. The
pHA increase is probably a mixed effect of the
incremental work load and test duration. See text for
details. (b) Slope of linear pHA (=HYA) increase (from
Fig. 2a) as a function of work intensity.

Our results support the view that elevated pHA
as induced by physical exercise increases the elimination
of plasma hyaluronan from the (macro)circulation.
Although lymph protein concentration decreases during
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exercise by up to 80 % (Schad and Berchtelsbauer 1977),
a mere ‘washout’ effect cannot explain the magnitude of
the observed pHA decrease after exercise. Only greater
hyaluronan degradation and/or removal, proportional to
the amount that reaches the circulation, seems to explain
our observations: intensified hyaluronan input is followed
by increased clearance. The hepatic saturation limit for
hyaluronan degradation was not reached in this study
since this would require about a 10-fold value of the
steady state level (Fraser and Laurent 1989). This would
be way beyond the levels seen in our test subjects.
Enhanced hepatic clearance may occur because of
preferential uptake of high molecular weight hyaluronan
(Laurent et al. 1986) that might escape degradation in the
lymph nodes due to increased lymph flow. If exercise-
induced tissue heating is able to fasten receptor-mediated
endocytosis in hepatic endothelial cells is unknown.

Although blood contains hyaluronidase (as well
as hyaluronidase inhibitors), since the enzyme is not
active except at very low pH (Roden et al. 1989),
hyaluronan is not degraded in the plasma (Tengblad et al.
1986). According to the findings of molecular weight
limitations in renal hyaluronan clearance (Fraser et al.
1981), variations of renal perfusion are also unlikely to
contribute to the observed effects in pHA.

The lungs could cause, or at least contribute to,
the post-exercise fall of pHA below pre-exercise control
levels. If pulmonary microvessels discharge an extra
amount of ‘trapped’ hyaluronan with increased cardiac

output (Lebel et al. 1988, Coates et al. 1993), the reverse
could occur after exercise: hyaluronan redistribution back
to an immobilized pool. With promoted degradation at
the same time, this could well lower pHA below pre-
exercise levels.

This study has limitations because the urinary
output of hyaluronan is unknown, the group of subjects
was small, and no women were included. However, our
results not only indicate increased hyaluronan turnover
during exercise – confirming previous findings – but also
after exercise had been discontinued. We could show that
the amount of hyaluronan turnover increases with
exercise intensity in a non-linear fashion. It remains to be
investigated if these observations have clinical
implications, particularly in cases of compromised
hyaluronan regulation. Further studies need to be
conducted to clarify the relative contribution of lymphatic
output, mobilization/redistribution within stationary
microvascular hyaluronan pools, and breakdown kinetics,
to rapid changes in plasma hyaluronan concentration
during and after muscular exercise as observed in this
study.
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