Regulation of Signal Transduction at M₂ Muscarinic Receptor

A. KREJČÍ, P. MICHAL, J. JAKUBÍK, J. ŘÍČNÝ, V. DOLEŽAL

<u>Department of Neurochemistry</u>, <u>Institute of Physiology</u>, Czech Academy of Sciences, Prague, Czech Republic

Received December 15, 2003 Accepted March 1, 2004

Summary

Muscarinic acetylcholine receptors mediate transmission of an extracellular signal represented by released acetylcholine to neuronal or effector cells. There are five subtypes of closely homologous muscarinic receptors which are coupled by means of heterotrimeric G-proteins to a variety of signaling pathways resulting in a multitude of target cell effects. Endogenous agonist acetylcholine does not discriminate among individual subtypes and due to the close homology of the orthosteric binding site the same holds true for most of exogenous agonists. In addition to the classical binding site muscarinic receptors have one or more allosteric binding sites at extracellular domains. Binding of allosteric modulators induces conformational changes in the receptor that result in subtype-specific changes in orthosteric binding site affinity for both muscarinic agonists and antagonists. This overview summarizes our recent experimental effort in investigating certain aspects of M₂ muscarinic receptor functioning concerning i) the molecular determinants that contribute to the binding of allosteric modulators, ii) G-protein coupling specificity and subsequent cellular responses and iii) possible functional assays that exploit the unique properties of allosteric properties of muscarinic receptors is required to permit drug design that will modulate signal transmission strength of specific muscarinic receptor subtypes. Furthermore, allosteric modulator of signal transmission strength is determined by cooperativity rather than concentration of allosteric modulator and thus reduces the danger of overdose.

Key words

Cholinergic transmission • Allosteric modulation • Muscarinic receptor subtypes • G-proteins

Introduction

Muscarinic receptors belong to a family of GTP binding protein (G-protein) coupled receptors. A common feature of all G-protein coupled receptors (that together represent the largest family of plasma membrane receptors) is their general structure comprising seven transmembrane domains. Original classification of muscarinic receptors was based on binding and functional properties of different muscarinic ligands and discriminated three subtypes denoted M1, M2 and M3 receptors. Using advanced molecular biology techniques the existence of a maximum of five subtypes (M_1 - M_5 encoded by five different genes) has been reported (Bonner *et al.* 1987, 1988, Peralta *et al.* 1987, Bonner 1989 a,b). Muscarinic receptors are widely expressed in both the central nervous system and in the periphery. They mediate various physiological functions ranging from higher nervous functions such as arousal, memory and alertness to vegetative processes such as regulation of

PHYSIOLOGICAL RESEARCH

heart rate and cardiac output, blood pressure, temperature regulation, perspiration, secretion of exocrine and endocrine glands, and motility of the gastrointestinal tract.

The natural extracellular signal for muscarinic receptors is acetylcholine released from cholinergic nerve terminals or from non-neuronal cells (Kawashima et al. 1989, 1990, Wessler et al. 1998, 2001, Kawashima and Fuii 2000, 2003) that then causes the activation of heterotrimeric GTP-binding proteins (G-proteins). Conformational changes in muscarinic receptors are induced by ligand binding and interaction with an alpha subunit of a preferred G-protein. This interaction results in an exchange of alpha subunit bound GDP for GTP and dissociation of the alpha and beta/gamma subunits of the G-protein. Both subunits can then exert regulatory influence on different effector molecules. G-protein activation is terminated by intrinsic GTPase activity within the alpha subunit causing cleavage of bound GTP and reassociation of subunits.

Individual subtypes of muscarinic receptors can be classified into two major groups according to preferential interactions with specific G-proteins (Jones et al. 1991, Jones 1993). Odd numbered muscarinic receptors interact with alpha subunit of G_{a/11} class of G-proteins. This activates phosphatidylinositol-specific phospholipase C resulting in the production of the second messengers diacylglycerol and inositol phosphates. Even numbered muscarinic receptors are preferentially coupled, by means of alpha subunits of Gi/o class of G-proteins, to adenylyl cyclase and their activation results in a decrease of cAMP production. The liberated complex of beta/gamma subunits can directly (without involvement of diffusible second messengers) regulate the function of potassium and calcium channels by socalled "membrane delimited action" (Beech et al. 1992, Hille 1992, 1994, Herlitze et al. 1996).

Muscarinic receptors have classical а (orthosteric) binding site for natural or exogenous ligands that is located deep in a pocket created by the transmembrane segments of the protein, in addition to one or several allosteric binding sites (Lazareno et al. 2000, 2002, Birdsall et al. 2001) for exogenous allosteric ligands which are located on the extracellular loops of the receptor. The allosteric nature of the protein is already apparent during interaction with G-proteins. When interacting with G-proteins, the affinity of the classical (orthosteric) binding site for agonists is high, but it decreases when GTP replaces GDP at the alpha subunit of G-protein resulting in dissociation of the receptor/ G-protein complex.

The allosteric properties of exogenous ligands were originally observed and deduced from the unusual functional (Clark and Mitchelson 1976) and binding (Dunlap and Brown 1983, Stockton et al. 1983, Nedoma et al. 1985, 1986, Tuček et al. 1990) muscarinic properties of neuromuscular blocking agents (e.g. gallamine or alcuronium). Since then an increasing number of allosteric ligands that can decrease or increase in a subtype-specific manner classical muscarinic agonist and antagonist binding affinity has been described (Tuček et al. 1990, Proška and Tuček 1994, Dong et al. 1995, Jakubík et al. 1995, 1997, Lazareno and Birdsall 1995, Tuček et al. 1998). It has been demonstrated that the binding of allosteric ligands not only influences the binding characteristics of classical binding sites, but in the absence of classical agonists can also directly induce activation of G-proteins and this activation is not prevented by classical antagonists (Jakubík et al. 1996, 1998).

Specificity of M₂ receptor coupling to G-proteins

M₂ muscarinic receptors are linked to a modulation of cell function preferentially via Gi/o class of heterotrimeric G-proteins. Their stimulation leads to an inhibition of adenylyl cyclase by means of a liberated alpha subunit resulting in a decrease of cAMP accumulation and in this way attenuates cAMPdependent signaling. Other two well-known consequences of M₂ receptor stimulation are mediated by release of a complex of beta/gamma subunits which directly, without involvement of diffusible intermediates (membrane delimited action) activate or inhibit different potassium currents with resulting influence on excitability of different cells. This signaling pathway is characteristic for heart muscle where M₂ receptors represent the prevailing subtype of muscarinic receptors (Krejčí and Tuček 2002) and can also be found in some neurons of central and peripheral nervous system. In neuronal cells, mainly on synaptic terminals, liberated beta/gamma subunits interact directly with high voltageactivated calcium channels and inhibit calcium influx into nerve cells and terminals. This mechanism is responsible for presynaptic muscarinic autoinhibition of ACh release (Molenaar and Polak 1980) in both central and peripheral cholinergic neurons as well as for the presynaptic

inhibition of transmitter release by other presynaptic autoreceptors and heteroreceptors in various neuronal cells. All the above described effects can be inhibited by treatment with pertussis toxin (Tuček *et al.* 1987, Doležal *et al.* 1989, Michal *et al.* 2001) by a mechanism that catalyzes ADP-ribosylation of $G_{i/o}$ proteins, thereby

blocking the interaction with the receptor. Likewise the action of non-hydrolysable analogues of GTP that preclude G-protein subunit reassociation, pertussis toxin treatment converts M_2 muscarinic receptors to their low affinity state.

Fig. 1. Inhibitory and stimulatory effects of M2 receptor activation depend on time of incubation and on density of surface muscarinic receptors. **Upper** row: M_2 -CHO cells were incubated for indicated time with increasing concentrations of carbachol. Synthesis of cAMP is expressed in per cent of control incubation in the absence of carbachol. Note that the degree of inhibition increases with time of incubation (left). When the cells were pretreated with pertussis toxin to inactivate Gi/o proteins only stimulatory phase persists. Note that in this case the degree of activation decreases with time of incubation (right). **Middle** row: The stimulatory effect of M_2 receptors measured in isolation in cells pretreated with pertussis toxin decreases after inactivation of a proportion (to 30 % and 10 % of controls) of surface receptors both during 2 min (right) and 10 min (left) incubations. **Lower** row: Incubation of M_2 -CHO cells induces time- and concentration-dependent internalization of surface M_2 receptors. Left: cells were preincubated for indicated time in the presence of 1 mM carbachol and then the number of surface M_2 receptors was determined. Right: cells were preincubated for 5 min with indicated concentrations of carbachol before determination of surface M_2 receptors. Modified from Michal *et al.* (2001).

Studies in native tissues on the coupling of muscarinic receptors with appropriate G-proteins and effectors are difficult because they always express more than one subtype of muscarinic receptor and there is a lack of known selectively acting muscarinic agonists. Molecular cloning of muscarinic receptors has enabled the creation of genetically modified Chinese Hamster Ovary Cells (CHO) which stably express individual muscarinic receptor subtypes (Buckley *et al.* 1989). Such cells represent a reliable and convenient model system for studying the signaling pathways activated by the muscarinic receptor subtypes starting with the ligand binding and ending with the functional response.

Using these CHO cells it has been found that a degree of inhibition of cAMP synthesis evoked by activation of M2 or M4 muscarinic receptors decreases at high concentrations of the agonist. After treatment with pertussis toxin (that selectively eliminates inhibitory transduction via $G_{i/o}$ proteins) the activation of M_2 or M_4 receptors leads to the stimulation of cAMP synthesis (Jones et al. 1991, Migeon and Nathanson 1994, Vogel et al. 1995, Jakubík et al. 1996). Analogous observations report that receptor coupling to more than one specific G-protein exists in both native tissues and genetically modified cells (Fraser et al. 1989, Eason et al. 1992, Pepperl and Regan 1993, Eason and Liggett 1995, Nasman et al. 1997, Sautel and Milligan 1998, Carruthers et al. 1999). A model permitting concentration-response curve prediction for a receptor interacting with two different G-proteins has been proposed by Tuček et al. (2001, 2002).

A detailed study by Michal et al. (2001) into the dual effect of M₂ receptor stimulation on cAMP synthesis pointed to a capability of the M₂ receptor to activate more than a unique G-protein and has revealed certain aspects of these interactions. A stimulatory effect of M₂ muscarinic receptor expressed in CHO cells on cAMP synthesis depends on the agonist used, duration of the stimulation, and also on the density of M₂ receptors present in plasma membrane. Results indicate that M_2 receptors expressed in CHO cells interact with high affinity with G_{i/o} proteins, but also activate with lower affinity $G_{\mbox{\tiny s}}$ proteins and cAMP synthesis. A decrease in EC₅₀ for the stimulating effect of carbachol in M₂ cells pretreated with pertussis toxin (Fig. 1) supports this notion because more liganded receptors become available for interaction with G_s proteins. The inhibitory effect of carbachol, a non-hydrolysable analogue of acetylcholine, on forskolin-stimulated synthesis of cAMP increases with

incubation time up to 15 min, whereas the activatory effect is most prominent after two minutes and then subsides in both control and pertussis toxin-treated cells. This difference in stimulatory and inhibitory effects is most likely due to a decrease in receptor density following the receptor internalization that, in the case of 1 mM carbachol, represents a decrease of plasma membrane receptor density of almost 50 % in five minutes. Experiments aimed at determining the effect on the inhibition and activation observed, caused by M₂ receptor density at the plasma membrane are also consistent with the notion that when liganded receptors are in excess, they do couple to G_s proteins. A coupling of M₂ receptors with G_s proteins and the resulting increase of cAMP production could explain the atypical positive inotropic effect of muscarinic receptor stimulation observed in native cardiac tissue (Imai and Ohta 1982, Eglen et al. 1988, Kenakin and Boselli 1990, Webb and Pappano 1995).

M₄ receptor mediates inhibition of acetylcholine release in striatum

The autoinhibition of transmitter release is a mechanism common to many different neurotransmitter systems (Illes 1986, Starke et al. 1989). The inhibition of transmitter release by a stimulation of presynaptic G-protein coupled receptors is elicited by a restriction of calcium influx through the specific high voltage-activated calcium channels that triggers transmitter release (Perney et al. 1986, Miller 1987, Dolphin 1990, Turner et al. 1993, Doležal and Tuček 1999). The inhibition of calcium channels is achieved by a shift in voltage dependence that can be removed by strong depolarizing prepulses (Bean 1989) and that is mediated by beta/gamma subunit of G_i/G_o class of G-proteins (Herlitze et al. 1996). Experiments with universal irreversible activator of G-proteins GTP-gamma-S has also indicated that other beta/gamma subunits can interact, in a transmitter receptor-independent manner, with calcium channels to modulate calcium currents (Mirotznik et al. 2000).

In rat striatal cholinergic neurons, influx of calcium triggering acetylcholine release is mediated by N- and P/Q-type calcium channels and the stimulation of presynaptic muscarinic receptors inhibits acetylcholine release by inhibiting both channel types (Doležal and Tuček 1999). The subtype nature of the muscarinic receptor which mediates this inhibition was determined in

functional experiments (Fig. 2) that took advantage of the selective action of allosteric ligands. In an elaborate study Jakubík et al. (1997) have characterized the influence of several allosteric muscarinic modulators on the affinity of individual muscarinic receptor subtypes expressed in CHO cells for a number of orthosteric muscarinic agonists. It has been established that the allosteric modulator alcuronium decreases the affinity of furmethide binding on both M2 and M4 receptors. In contrast to alcuronium, another allosteric modulator brucine enhances the affinity of furmethide for the M₄ receptor, but largely decreases its affinity at M₂ receptors. Brucine also increases affinity for oxotremorine-M at M₄ receptor and decreases its affinity at M₂ receptor. Concentration-response curves for the inhibition of acetylcholine release (from rat striatal slices evoked by electrical stimulation) for oxotremorine-M and methylfurmethide in control medium or in medium containing allosteric modulators, display changes that implicate the involvement of M₄ receptor in the muscarinic receptor-mediated inhibition of acetylcholine release. In the presence of brucine both furmethide and oxotremorine-M concentration-response curves display leftward shift which corresponds to the increase of affinity at M₄ receptor and contrasts with a large decrease of affinity at M₂ receptor. In the presence of the allosteric modulator alcuronium (that decreases affinity for furmethide at M₄ as well as at M₂ receptor and thus does not discriminate between these subtypes) the predicted rightward shift of concentration-response relationship confirms apparently the functionality of the regulation in the opposite direction.

Involvement of the third extracellular loop in allosteric properties of M₂ receptor

In common with other G-protein coupled receptors, muscarinic receptors are formed by a protein that crosses the plasma membrane seven times. The membrane spanning domains are connected by three extracellular and three intracellular loops with a long C-terminus in the cytoplasma and shorter N-terminus orientated to the extracellular space. The C-termini contain conserved cysteine residues to which palmitate is covalently attached thus anchoring the receptors in the plasma membrane and creating the fourth intracellular loop. The C-termini together with the third intracellular loop determine the specificity of G-proteins interaction. The extracellular glycosylated N-terminus has a role in

Agonist	Allosteric modulator	Change of Kd at M ₂ (fold increase)	Change of Kd at M ₄ (fold increase)	
Furmethide	alcuronium	8.4	9.3	
Furmethide	brucine	71	0.2	
Oxotremorine-M	brucine	3.3	0.2	

Fig. 2. Influence of allosteric modulators alcuronium and brucine on the inhibitory effect of orthosteric agonists furmethide and oxotremorine-M on acetylcholine release from rat striatal slices. Upper panel: changes of affinity of orthosteric agonists furmethide and oxotremorine-M elicited at M_2 and M_4 muscarinic receptors by allosteric modulators alcuronium and brucine as determined in CHO cells (modified from Jakubík et al. 1997). Middle panel: brucine enhances whereas alcuronium attenuates inhibitory action of the classical agonist furmethide on evoked release of acetylcholine. Lower panel: brucine enhances inhibitory action of oxotremorine-M on evoked acetylcholine release. Observed effects of allosteric modulators alcuronium and brucine on the concentration-response relationship of orthosteric agonists furmethide and oxotremorine-M are in concert with involvement of M₄ receptor (see upper part) in the presynaptic autoinhibition of acetylcholine release from rat striatal cholinergic neurons. Modified from Doležal and Tuček (1998).

protein targeting to plasma membrane and does not influence binding properties. Two cysteine residues in the first and the second extracellular loops create a disulfide bridge which is important for the affinity of classical ligands.

The affinity for allosteric modulators gallamine and alcuronium is considerably higher for the M_2 than for the M_3 receptor. Gallamine exerts a weaker degree of negative cooperativity with the orthosteric antagonists N-methyl scopolamine (NMS) at M_3 than M_2 receptors. Moreover, cooperativity of binding between alcuronium and NMS is positive at M_2 but negative at M_3 receptors (Table 1). Mutation studies in which the extracellular loops of M_3 receptor were modified to resemble the extracellular loops of M_2 receptor have revealed that certain amino acids play a role in the observed cooperativity and the higher affinity of gallamine and alcuronium binding to allosteric sites of the M_2 receptor.

Table 1. Amino acid sequences of individual extracellular loops of M_3 muscarinic receptor are shown. Mutated amino acids are shown in bold italics.

1st extracellular loop (o1)						
(126)T-T-Y-I-I-M-N- R -W-A-L-G-N-L-A-C-D(142)						
2nd extracellular loop (o2)						
(208)Q-Y-F-V-G-K-R-T-V- <i>P-P</i> -G-E-C-F-I-Q-F-L-S-E-P(229)						
3rd extracellular loop (03)						
(514)N-T-F-C- D -S-C-I-P- K -T- F -W- N (527)						

	Gallamine		Alcuronium			
	pK _{diss} (M)	рК _А (М)	α	pK _{diss} (M)	рК _А (М)	α
Native M ₃ receptor	3.91 ± 0.02	4.7 ± 0.08	4.3 ± 0.6	3.70 ± 0.04	3.9 ± 0.09	2.6 ± 0.3
Native M ₂ receptor	$4.80\pm0.19*$	$6.4\pm0.03*$	$11 \pm 0.4*$	$6.90\pm0.10*$	$6.1\pm0.2*$	$0.3\pm0.05\texttt{*}$
Modifications in o1 of M_3						
R133G	$4.44\pm0.08*$	NM	close to $1^{\#}$	3.71 ± 0.18	3.9 ± 0.03	1.8 ± 0.2
Modifications in $o2$ of M_3						
P217D+P218E	$4.23\pm0.06*$	4.6 ± 0.06	4.0 ± 0.8	$3.95\pm0.02*$	4.2 ± 0.03	2.1 ± 0.4
Entire o2 M_2	$4.75\pm0.04*$	$5.8\pm0.05*$	4.8 ± 0.5	$4.72\pm0.01*$	$4.8\pm0.04\texttt{*}$	3.1 ± 0.8
Modifications in $o3$ of M_3						
K523N	$4.54\pm0.003*$	$6.1\pm0.06*$	$16.0\pm1.9*$	$4.69\pm0.04*$	$4.7\pm0.20*$	1.8 ± 0.3
DSKFN	$4.21\pm0.04*$	$6.3\pm0.11*$	$25.1 \pm 3.8*$	$4.67\pm0.07*$	$4.4\pm0.12*$	$0.3\pm0.03*$

Data are derived from binding experiments with ³H-NMS. pK_{diss} values indicate the negative logarithm of the molar concentration of the allosteric modulator which causes a 50 % decrease in the k_{off} of ³H-NMS determined in the absence of the allosteric modulator and reflects affinity of occupied receptor. pK_A values indicate negative logarithm of equilibrium dissociation constant for the binding of the allosteric ligand to free receptors. α , factor of cooperativity between allosteric ligand and ³H-NMS. Data are means ± S.E.M. of 3-9 experiments. NM, not measurable because the binding curves were flat; *, significantly different from wild-type M₃; [#], although clearly different from wild-type M₃, significance could not be evaluated numerically because of flat binding curves. Modified from Krejčí and Tuček (2001).

Substitution of a single amino acid in the first extracellular loop (R133G) of M_3 receptor has no influence on either the affinity of alcuronium or its cooperativity. However, it augments the affinity for gallamine derived from deceleration of NMS dissociation, but the cooperativity with NMS derived from equilibrium binding experiments becomes neutral. These findings point to an involvement of the first extracellular loop in the affinity for gallamine.

Replacement of the entire second extracellular loop of the M_3 receptor by that of the M_2 receptor substantially increases the affinity of both allosteric ligands, but has no effect on their cooperativity. Double mutation P217D and P218E has similar, although a slightly smaller, effect on gallamine and alcuronium affinity and again no effect on their cooperativity. These observations indicate a role for the second extracellular loop in the binding affinity of these allosteric ligands but not in their cooperativity.

The exchange of a single amino acid in the third extracellular loop of the M3 receptor for its counterpart in the M₂ receptor (K523N) significantly increases the affinity for both allosteric modulators, but results in a change of cooperativity corresponding to M₂ receptor only in the case of gallamine. Substitution of five amino acids (DSKFN) for the appropriate counterparts in the third extracellular loop of M₃ receptor introduces the appearance of the positive cooperativity of alcuronium typical for M₂ receptor and the further decrease of cooperativity of gallamine which even exceeds that at native M₂ receptor, in addition to the increase in affinity. Taken together these results demonstrate the importance of the third extracellular loop in the binding of allosteric modulators gallamine and alcuronium and in particular in the positive cooperativity of alcuronium regarding NMS binding at M₂ receptor.

Conclusions

An investigation of the allosteric properties of muscarinic receptors (but not only of them) is of utmost importance for several reasons. From an experimental point of view the subtype specificity of allosteric modulators for classical ligands can be exploited for the identification of muscarinic receptor subtype in isolated tissues. This approach was successfully used to identify the role of the M_4 subtype in inhibiting acetylcholine release in the rat striatum (Doležal and Tuček 1998). These findings fully agree with data obtained using a knock-out approach (Zhang *et al.* 2002) and thus justify the applicability and usefulness of allosteric ligands in

determining subtype physiological functions in tissues isolated from intact animals. Another future practical application of muscarinic allosteric ligands is their potential use in human medicine. Their strict subtype selectivity is likely to enable the development of drugs that will increase or decrease the affinity of specific subtypes of muscarinic receptors for both the endogenous mediator acetylcholine and exogenously applied orthosteric ligands. Additional advantages of allosteric ligands reside in that both stimulatory and inhibitory muscarinic effects depend primarily on cooperativity and not so much on concentration. Unlike an application of exogenous orthosteric ligands, provided that cholinergic innervation is at least partially preserved and operating, allosteric modulation of acetylcholine binding should maintain both temporal and spatial pattern of cholinergic signaling. Even when exogenous application of classical muscarinic drug is required, allosteric modulators should permit a lower dosage thus reducing muscarinic side effects elicited by the non-selective influence of exogenous drugs on individual muscarinic receptor subtypes.

Acknowledgement

The authors would like to appreciate the essential contribution of deceased Prof. h.c. Stanislav Tuček and the most valuable and indispensable help of Prof. E.E. El-Fakahany and Prof. N.J. Buckley. Our work was supported by Research Project AVOZ 5011922 as well as by grants of GA ČR 305/01/0283 and 309/02/1331, and GA AVČR A5011206 and A5011306.

References

- BEAN BP: Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. *Nature* **340**: 153-156, 1989.
- BEECH DJ, BERNHEIM L, HILLE B: Pertussis toxin and voltage dependence distinguish multiple pathways modulating calcium channels of rat sympathetic neurons. *Neuron* **8**: 97-106, 1992.
- BIRDSALL NJ, LAZARENO S, POPHAM A, SALDANHA J: Multiple allosteric sites on muscarinic receptors. *Life Sci* 68: 2517-2524, 2001.
- BONNER TI: New subtypes of muscarinic acetylcholine receptors. Trends Pharmacol Sci Suppl: 11-15, 1989a.
- BONNER TI: The molecular basis of muscarinic receptor diversity. Trends Neurosci 12: 148-151, 1989b.
- BONNER TI, BUCKLEY NJ, YOUNG AC, BRANN MR: Identification of a family of muscarinic acetylcholine receptor genes. *Science* 237: 527-532, 1987.
- BONNER TI, YOUNG AC, BRANN MR, BUCKLEY NJ: Cloning and expression of the human and rat M₅ muscarinic acetylcholine receptor genes. *Neuron* 1: 403-410, 1988.
- BUCKLEY NJ, BONNER TI, BUCKLEY CM, BRANN MR: Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. *Mol Pharmacol* **35**: 469-476, 1989.

- CARRUTHERS AM, WARNER AJ, MICHEL AD, FENIUK W, HUMPHREY PPA: Activation of adenylate cyclase by human recombinant sst₅ receptors expressed in CHO-K1 cells and involvement of $G_{\alpha s}$ proteins. *Br J Pharmacol* **126**: 1221-1229, 1999.
- CLARK AL, MITCHELSON F: The inhibitory effect of gallamine on muscarinic receptors. *Br J Pharmacol* 58: 323-331, 1976.
- DOLEŽAL V, TUČEK S: The effects of brucine and alcuronium on the inhibition of [³H]acetylcholine release from rat striatum by muscarinic receptor agonists. *Br J Pharmacol* **124**: 1213-1218, 1998.
- DOLEŽAL V, TUČEK S: Calcium channels involved in the inhibition of acetylcholine release by presynaptic muscarinic receptors in rat striatum. *Br J Pharmacol* **127**: 1627-1632, 1999.
- DOLEŽAL V, TUČEK S, HYNIE S: Effects of pertussis toxin suggest a role for G-proteins in the inhibition of acetylcholine release from rat myenteric plexus by opioid and presynaptic muscarinic receptors. *Eur J Neurosci* **1**: 127-131, 1989.
- DOLPHIN AC: G protein modulation of calcium currents in neurons. Annu Rev Physiol 52: 243-255, 1990.
- DUNLAP J, BROWN JH: Heterogeneity of binding sites on cardiac muscarinic receptors induced by the neuromuscular blocking agents gallamine and pancuronium. *Mol Pharmacol* 24: 15-22, 1983.
- EASON MG, LIGGETT SB: Identification of a G_s coupling domain in the amino terminus of the third intracellular loop of the alpha_{2A}-adrenergic receptor. *J Biol Chem* **270**: 24753-24760, 1995.
- EASON MG, KUROSE H, HOLT BD, RAYMOND JR, LIGGETT SB: Simultaneous coupling of alpha₂-adrenergic receptors to two G-proteins with opposing effects. *J Biol Chem* **267**: 15795-15801, 1992.
- EGLEN RM, MONTGOMERY WW, WHITING RL: Negative and positive inotropic responses to muscarinic agonists in guinea pig atria in vitro. *J Pharmacol Exp Ther* **247**: 911-917, 1988.
- FRASER CM, ARAKAWA S, MCCOMBIE WR, VENTER JC: Cloning, sequence analysis, and permanent expression of a human alpha₂-adrenergic receptor in Chinese hamster ovary cells. *J Biol Chem* **264**: 11754-11761, 1989.
- DONG GZ, KAMEYAMA K, RINKEN A, HAGA T: Ligand binding properties of muscarinic acetylcholine receptor subtypes (M₁-M₅) expressed in baculovirus-infected insect cells. *J Pharmacol Exp Ther* **274**: 378-384, 1995.
- HERLITZE S, GARCIA DE, MACKIE K, HILLE B, SCHEUER T, CATTERALL WA: Modulation of Ca²⁺ channels by G-protein beta gamma subunits. *Nature* **380**: 258-162, 1996.
- HILLE B: G protein-coupled mechanisms and nervous signaling. Neuron 9: 187-195, 1992.
- HILLE B: Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 17: 531-536, 1994.
- ILLES P: Mechanisms of receptor-mediated modulation of transmitter release in noradrenergic, cholinergic and sensory neurones. *Neuroscience* 17: 909-928, 1986.
- IMAI S, OHTA H: Positive inotropic effects induced by carbachol in rat atria treated with islet-activating protein (IAP) – association with phosphatidylinositol breakdown. *Br J Pharmacol* 94: 347-354, 1982.
- JAKUBÍK J, BAČÁKOVÁ L, EL-FAKAHANY EE, TUČEK S: Subtype selectivity of the positive allosteric action of alcuronium at cloned M₁-M₅ muscarinic acetylcholine receptors. *J Pharmacol Exp Ther* **274**: 1077-1083, 1995.
- JAKUBÍK J, BAČÁKOVÁ L, LISÁ V, EL-FAKAHANY EE, TUČEK S: Activation of muscarinic acetylcholine receptors via their allosteric binding sites. *Proc Natl Acad Sci USA* **93**: 8705-8709, 1996.
- JAKUBÍK J, BAČÁKOVÁ L, EL-FAKAHANY EE, TUČEK S: Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. *Mol Pharmacol* **52**: 172-179, 1997.
- JAKUBÍK J, HAGA T, TUČEK S: Effects of an agonist, allosteric modulator, and antagonist on guanosine-gamma-[³⁵S]thiotriphosphate binding to liposomes with varying muscarinic receptor/G_o protein stoichiometry. *Mol Pharmacol* **54**: 899-906, 1998.
- JONES SV: Muscarinic receptor subtypes: modulation of ion channels. Life Sci 52: 457-464, 1993.
- JONES SV, HEILMAN CJ, BRANN MR: Functional responses of cloned muscarinic receptors expressed in CHO-K1 cells. *Mol Pharmacol* 40: 242-247, 1991.
- KAWASHIMA K, FUJII T: Extraneuronal cholinergic system in lymphocytes. Pharmacol Ther 86: 29-48, 2000.
- KAWASHIMA K, FUJII T: The lymphocytic cholinergic system and its contribution to the regulation of immune activity. *Life Sci* 74: 675-696, 2003.

- KAWASHIMA K, OOHATA H, FUJIMOTO K, SUZUKI T: Extraneuronal localization of acetylcholine and its release upon nicotinic stimulation in rabbits. *Neurosci Lett* **104**: 336-339, 1989.
- KAWASHIMA K, WATANABE N, OOHATA H, FUJIMOTO K, SUZUKI T, ISHIZAKI Y, MORITA I, MUROTA S: Synthesis and release of acetylcholine by cultured bovine arterial endothelial cells. *Neurosci Lett* 119: 156-158, 1990.
- KENAKIN TP, BOSELLI C: Promiscuous or heterogeneous muscarinic receptors in rat atria? I. Schild analysis with simple competitive antagonists. *Eur J Pharmacol* **191**: 39-48, 1990.
- KREJČÍ A, TUČEK S: Changes of cooperativity between N-methylscopolamine and allosteric modulators alcuronium and gallamine induced by mutations of external loops of muscarinic M₃ receptors. *Mol Pharmacol* **60**: 761-767, 2001.
- KREJČÍ A, TUČEK S: Quantitation of mRNAs for M₁ to M₅ subtypes of muscarinic receptors in rat heart and brain cortex. *Mol Pharmacol* **61**: 1267-1272, 2002.
- LAZARENO S, BIRDSALL NJ: Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. *Mol Pharmacol* **48**: 362-378, 1995.
- LAZARENO S, POPHAM A, BIRDSALL NJ: Allosteric interactions of staurosporine and other indolocarbazoles with N-[methyl-³H]scopolamine and acetylcholine at muscarinic receptor subtypes: identification of a second allosteric site. *Mol Pharmacol* **58**: 194-207, 2000.
- LAZARENO S, POPHAM A, BIRDSALL NJ: Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. *Mol Pharmacol* 62: 1492-1505, 2002.
- MICHAL P, LYSÍKOVÁ M, TUČEK S: Dual effects of muscarinic M₂ acetylcholine receptors on the synthesis of cyclic AMP in CHO cells: dependence on time, receptor density and receptor agonists. *Br J Pharmacol* **132**: 1217-1228, 2001.
- MIGEON JC, NATHANSON NM: Differential regulation of cAMP-mediated gene transcription by M_1 and M_4 muscarinic acetylcholine receptors. Preferential coupling of M_4 receptors to $G_i \alpha_{-2}$. J Biol Chem **269**: 9767-9773, 1994.
- MILLER RJ: Multiple calcium channels and neuronal function. Science 235: 46-52, 1987.
- MIROTZNIK RR, ZHENG X, STANLEY EF: G-Protein types involved in calcium channel inhibition at a presynaptic nerve terminal. *J Neurosci* 20: 7614-7621, 2000.
- MOLENAAR P, POLAK RL: Inhibition of acetylcholine release by activation of acetylcholine receptors. *Prog Pharmacol* **3**/**4**: 39-44, 1980.
- NASMAN J, JANSSON CC, AKERMAN KEO: The second intracellular loop of the α_2 -adrenergic receptors determines subtypes-specific coupling to cAMP production. *J Biol Chem* **272**: 9703-9708, 1997.
- NEDOMA J, DOROFEEVA NA, TUČEK S, SHELKOVNIKOV SA, DANILOV AF: Interaction of the neuromuscular blocking drugs alcuronium, decamethonium, gallamine, pancuronium, ritebronium, tercuronium and d-tubocurarine with muscarinic acetylcholine receptors in the heart and ileum. *Naunyn Schmiedebergs Arch Pharmacol* **329**:176-181, 1985.
- NEDOMA J, TUČEK S, DANILOV AF, SHELKOVNIKOV SA: Stabilization of antagonist binding to cardiac muscarinic acetylcholine receptors by gallamine and other neuromuscular blocking drugs. *J Pharmacol Exp Ther* **236**: 219-223, 1986.
- PEPPERL DJ, REGAN JW: Selective coupling of alpha₂-adrenergic receptor subtypes to cyclic AMP-dependent reporter gene expression in transiently transfected JEG-3 cells. *Mol Pharmacol* **44**: 802-809, 1993.
- PERALTA EG, ASHKENAZI A, WINSLOW JW, SMITH DH, RAMACHANDRAN J, CAPON DJ: Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. *EMBO J* **9**: 3923-3929, 1987.
- PERNEY TM, HIRNING LD, LEEMAN SE, MILLER RJ: Multiple calcium channels mediate neurotransmitter release from peripheral neurons. *Proc Natl Acad Sci USA* 83: 6656-6659, 1986.
- PROŠKA J, TUČEK S: Mechanisms of steric and cooperative actions of alcuronium on cardiac muscarinic acetylcholine receptors. *Mol Pharmacol* 45: 709-717, 1994.

- SAUTEL M, MILLIGAN G: Loss of activation of G_s but not G_i following expression of an α_{2A} -adrenoceptor- $G_{il}\alpha$ fusion protein. *FEBS Lett* **436**: 46-50, 1998.
- STARKE K, GÖTHERT M, KILBINGER H: Modulation of neurotransmitter release by presynaptic autoreceptors. *Physiol Rev* **69**: 864-989, 1989.
- STOCKTON JM, BIRDSALL NJ, BURGEN AS, HULME EC: Modification of the binding properties of muscarinic receptors by gallamine. *Mol Pharmacol* 23: 551-557, 1983.
- TUČEK S, DOLEŽAL V, FOLBERGROVÁ J, HYNIE S, KOLÁŘ F, OŠŤÁDAL B: Pertussis toxin inhibits negative inotropic and negative chronotropic muscarinic cholinergic effects on the heart. *Pflugers Arch* **408**: 167-172, 1987.
- TUČEK S, MUSÍLKOVÁ J, NEDOMA J, PROŠKA J, SHELKOVNIKOV S, VORLÍČEK J: Positive cooperativity in the binding of alcuronium and N-methylscopolamine to muscarinic acetylcholine receptors. *Mol Pharmacol* 38: 674-680, 1990.
- TUČEK S, JAKUBÍK J, DOLEŽAL V, EL-FAKAHANY EE: Positive effects of allosteric modulators on the binding properties and the function of muscarinic acetylcholine receptors. *J Physiol Paris* **92**: 241-243, 1998.
- TUČEK S, MICHAL P, VLACHOVÁ V: Dual effects of muscarinic M₂ receptors on the synthesis of cyclic AMP in CHO cells: background and model. *Life Sci* 68: 2501-2510, 2001.
- TUČEK S, MICHAL P, VLACHOVÁ V: Modelling the consequences of receptor-G-protein promiscuity. *Trends Pharmacol Sci* 23: 171-176, 2002.
- TURNER TJ, ADAMS ME, DUNLAP K: Multiple Ca²⁺ channel types coexist to regulate synaptosomal neurotransmitter release. *Proc Natl Acad Sci USA* **90**: 9518-9522, 1993.
- VOGEL WK, MOSSER VA, BULSECO DA, SCHIMERLIK MI: Porcine M₂ muscarinic acetylcholine receptoreffector coupling in Chinese hamster ovary cells. *J Biol Chem* **270**: 15485-15493, 1995.
- WEBB WW, PAPPANO AJ: Muscarinic agonist-induced positive inotropic response in chick atria. *Life Sci* 57: 2365-2376, 1995.
- WESSLER I, KIRKPATRICK CJ, RACKE K: Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. *Pharmacol Ther* **77**: 59-79, 1998.
- WESSLER I, KILBINGER H, BITTINGER F, KIRKPATRICK CJ: The biological role of non-neuronal acetylcholine in plants and humans. *Jpn J Pharmacol* 85: 2-10, 2001.
- ZHANG W, BASILE AS, GOMEZA J, VOLPICELLI LA, LEVEY AI, WESS J: Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. *J Neurosci* 22: 1709-1717, 2002.

Reprint requests

Vladimír Doležal, Department of Neurochemistry, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague 4, Czech Republic. E-mail: dolezal@biomed.cas.cz