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Summary 
The objective of this study was to investigate the response of Na+/K+-ATPase of human erythrocytes to green laser 
irradiation. Effects of green laser light of fluences 9.5-63.3 J.cm-2 and merocyanine 540-mediated laser light treatment 
were studied. Isolated erythrocyte membranes (protein concentration of 1 mg/ml) were irradiated by Nd:YAG laser 
(532 nm, 30 mW) and then incubated in a medium with 2 mM ATP for 30 min. Activity of ATPase was determined 
colorimetrically by measuring the colored reaction product of liberated inorganic phosphate and malachite green at 
640 nm. Contribution of Na+/K+-ATPase to overall phosphate production was determined using ouabain. A positive 
effect of green laser light on Na+/K+-ATPase activity was observed. The dependence of enzymatically liberated 
inorganic phosphate on light fluence showed a linear correlation (R2=0.96, P=0.0005) for all fluences applied (9.5-63.3 
J.cm-2). On the other hand, MC 540-mediated phototreatment caused a suppression of enzyme activity.  
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Introduction 
 

Lasers, as highly stable sources of coherent and 
monochromatic light, have been used extensively in 
technical applications and for medical therapy. The effect 
of laser irradiation on biological objects depends on 
experimental conditions, such as the type of cells 
irradiated, wavelength and intensity of light, etc. High-
energy laser irradiation causes destruction and 
vaporization of tissues, which has been exploited in 
surgery. On the other hand, a positive effect of low-
energy laser irradiation with red light on regeneration has 

been found in various tissues, such as skin (Conlan et al. 
1996), bone (Yaakobi et al. 1996), nerves (Assia et al. 
1986) and skeletal muscles (Weiss and Oron 1992). 
However, the molecular mechanisms of laser-induced 
changes in cell structure and function remain unclear. 
Efforts have been focused on studies of light-dependent 
changes in various biological objects, such as fibroblasts, 
mitochondria and blood components (Conlan et al. 1996). 
Among the latter, erythrocytes are most prominent 
because of their simplicity, availability and physiological 
importance. Several studies reported significant 
hemolysis and osmotic fragility caused by He-Ne laser 
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irradiation (630, 670 nm) with powers over 200 mW/cm-2 
(Fisher et al. 1998, Siposan and Lukacs 2000, Zavodnik 
et al. 2002). Erythrocyte deformation and platelet 
aggregation as well as an approx. 50 % drop in membrane 
microviscosity were reported after irradiation with 633 
nm laser light (Makropoulou et al. 1995, Olban et al. 
1998). 

Enzymes are the natural focus in studies of laser 
light effects on biomembrane function and stability. 
Changes in enzyme activities can reflect shifts in the 
conditions both in and outside the cell.  

Three ATPases can be found in erythrocyte 
membranes (Ca2+-ATPase (EC 3.6.3.8), Mg2+-ATPase 
(EC 3.6.3.1) and Na+/K+-ATPase (EC 3.6.3.9)) in various 
amounts (Drickamer 1975). The Na+/K+-ATPase is 
considered the most important of the three. This enzyme 
consists predominantly of two types of subunits: the 
catalytic α subunit (110-115 kDa) that spans plasma 
membrane ten times, and the β subunit (35 kDa) with a 
single transmembrane segment regulating conformational 
stability and activity of the α subunit. In association with 
the αβ heterodimer, a third small polypeptide, the 
γ subunit (10 kDa), has been found. It does not seem to 
be necessary for the Na+/K+-ATPase to be functional and 
may play a regulatory role (Ziegelhöffer 2000, Yu 2003). 
All three subunits form a complex membrane-bound ion 
pump that transports 3 Na+ ions out and 2 K+ ions into the 
cell and thus keeps the transmembrane potential 
balanced. The importance of this transporter system is 
given by the fact that it has been identified in virtually all 
animal tissues (Schwinger et al. 2003). This fact makes 
the enzyme interesting for biostimulation studies. So far, 
the effect of laser light on ATPase activity has been 
studied using red and infrared laser light sources 
(Kilanczyk et al. 2002, Kujawa et al. 2004).  

The effect of other wavelengths and, in 
particular, of green light on the activity of the enzyme has 
not been studied yet. The main objective of our work was 
to study the effect of green laser light irradiation 
(532 nm) on the activity of Na+/K+-ATPase in erythrocyte 
membranes for fluences in the range 9.5-63.3 J.cm-2, 
corresponding to the expected biostimulation effects. As 
green laser light is prospective in combination with a 
photosensitizer merocyanine 540 (MC 540) in 
applications such as photosterilization of blood in 
transfusions from viruses (Sieber et al. 1992a), bacteria 
(Dune and Slater 1998, Bednarska et al. 2003) and cancer 
cells (Sieber et al. 1992b), we also examined combined 
effects of MC 540 and 532 nm laser light on the activity 

of Na+/K+-ATPase.  
 
Methods 
 
Reagents 

All standard reagents obtained from Polskie 
Odczynniki Chemiczne (Liwice, Poland) were of 
analytical grade (Tris, SDS, NaCl, HCl, Na2HPO4, 
NaH2PO4). TCA (trichloroacetic acid), ATP 
(adenosinetriphosphate) and EDTA were from Sigma-
Aldrich (St. Louis, MO, USA). Merocyanine 540 
(MC 540) was purchased from Fluka (Buchs, 
Switzerland). 
 
Membrane preparation 

Fresh human blood was collected under the 
guidelines of the Helsinki Declaration for human research 
at Central Blood Bank of Łódź from anonymous adult 
healthy donors. Erythrocytes were obtained by 
centrifugation at 916 x g for 10 min at 4 °C. Excess 
plasma and platelets were removed and erythrocytes were 
washed three times with ice cold PBS (10 mM phosphate 
buffer, 150 mM NaCl, pH 7.4). To obtain a suspension of 
isolated erythrocyte membranes (ghosts) in 5 mM Tris-
EDTA-HCl (pH 7.4) buffer, approximately one volume 
of erythrocytes was hemolyzed in five volumes of 20 mM 
Tris-EDTA-HCl buffer (pH 7.4) and centrifuged at 
19621 x g for 10 min at 4 °C. Double washing with 
20 mM, 10 mM and 5 mM Tris-EDTA-HCl buffer 
followed (Hanahan and Ekholm 1974). For unification, 
protein concentration in ghosts was estimated according 
to the standard method of Lowry et al. (1951) using 3 % 
sodium dodecyl sulfate (SDS), and bovine serum albumin 
(BSA) as a standard. For all experiments, ghosts were 
resuspended to a final concentration of 1 mg of protein 
per ml of (5 mM Tris-EDTA-HCl) buffer (pH 7.4). 
Adding EDTA as a calcium ion chelator caused 
inactivation of Ca2+-ATPase during preparation and 
incubation of membranes.  
 
Irradiation procedure 

Second Harmonic Generation of Nd:YAG laser 
(Raise Electronics, Taiwan) with a constant light power 
of 30 mW was used as a source of green light (532 nm). 
A volume of 110 µl of each sample was irradiated from 
100 to 680 seconds to attain fluence (i.e. light energy per 
unit area of sample surface received by irradiated sample) 
of 9.5, 19.0, 28.4, 38.0, 47.5, and 63.3 J.cm-2. In 
a separate experiment, the sample was incubated for 
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30 min with MC 540 (final concentration 1 µM) in the 
dark and irradiated with a fluence of 47.5 J.cm-2. Samples 
neither irradiated nor treated with MC 540 were used as 
controls.  

 
ATPase activity measurements 

Activity of ATPases in erythrocyte membranes 
was determined in terms of liberation of inorganic 
phosphate during enzymatic ATP hydrolysis, and was 
expressed in nmol phosphate per mg of protein released 
during 30 min incubation (Pi). Calibration was based on 
KH2PO4 as a standard (Bonting and Canady 1964). 
Briefly, 15 µl of ghost suspension was incubated with 
55 µl of medium (100 mM Tris-HCl, 10 mM MgCl2, 
15 mM KCl, 85 mM NaCl, 1 mM EDTA, 2 mM ATP, pH 
7.4) at 37 °C for 30 min to observe both non-enzymatic 
and enzymatic ATP hydrolysis. In parallel, 15 µl of the 
ghost suspension from the same samples were mixed with 
55 µl of medium and incubated at 4 °C for 30 min. These 
served as a control for non-enzymatic hydrolysis of ATP. 
Both reactions were stopped by adding an equal volume 
of 15 % TCA. Inorganic phosphate liberated during ATP 
hydrolysis formed a colored product with malachite green 
and absorbance values were estimated spectrophoto-
metrically at 640 nm as described by Baykov et al. (1988) 
using a Spekol 11 spectrophotometer (Carl Zeiss, Jena). 
Na+/K+-ATPase activity was evaluated from the 
difference between the total (Mg2+, Na+/K+) ATPase 
activity and Mg2+-ATPase activity (incubated in the 
presence of 0.2 mM ouabain to inhibit the 
sodium/potassium pump). Unless stated otherwise, all 
experiments were done at room temperature 22±2 °C. 
 
Statistical analysis 

Results were expressed as mean ± S.E.M. of 7-8 
independent experiments. Data were examined for normal 
distribution by the Shapiro-Wilks W test. Statistical 
significance was evaluated by two tailed t-test and the 
level of statistical significance was set to P<0.05. Linear 
regression was used to prove the trend of the 
measurements. 
 
Results 
 

In this study, the effect of laser light (532 nm) on 
the activity of the Na+/K+-ATPase in the human 
erythrocyte membranes was assessed by the quantity of Pi 
released in the process of enzymatic hydrolysis of ATP. 
Figure 1 shows a significant increase in the concentration 

of Pi produced by Na+/K+-ATPase in all irradiated 
samples. The increase is directly proportional to radiation 
energy used. The least-squares fit through the 
experimental points (concentration of Pi vs energy 
fluence, Fig. 1) showed linearity (R2=0.96, P=0.005) with 
a slope of 2.3 within the range of fluence values of  
0- 63.3 J cm-2. Thus, we observed a biostimulating effect 
of green light on ATPase activity, proportional to the 
energy of irradiation (9.5-63.3 J.cm-2). 

 
 

 
Fig. 1. Activity of Na+/K+-ATPase of red blood cells irradiated 
with Nd:YAG laser of various fluences. Results are presented as 
mean ± S.E.M. of the concentration of inorganic phosphate 
(n=8). Equation of the trend line and coefficient of determination 
(R2) are shown.  
 
 

 
Fig. 2. Activity of Na+/K+-ATPase of red blood cells in the 
presence and in absence of MC 540 and irradiated with green 
laser light with fluence of 47.5 J.cm-2. C - control; MC 540 - non-
irradiated sample in the presence of MC 540 (1 µM); MC 540 + L 
- sample exposed to the combined action of MC 540 (1 µM) and 
light fluence of 47.5 J.cm-2; L - sample irradiated by light fluence 
47.5 J.cm-2. Results are presented as mean ± SEM (n=7) of the 
concentration of inorganic phosphate.  
 
 
  In the second part of our experiments, incubation 
of ghost suspension with the photosensitizer MC 540 was 
followed by irradiation with 532 nm laser light of fluence 
47.5 J.cm-2 and activity of Na+/K+-ATPase was 
determined as described above. Our findings show a 
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dramatic decrease of the Na+/K+-ATPase activity due to 
the combined action of MC 540 and 532 nm laser light, 
opposite to the biostimulating effect of laser light itself. 
Incubation of ghosts with MC 540 alone showed no 
significant changes in Na+/K+-ATPase activity (Fig. 2).  
 
Discussion 
 

The experiments presented here show a positive 
biostimulation of human erythrocyte membrane Na+/K+-
ATPase activity by green light irradiation within the 
fluences in the range of 9-63 J.cm-2, and a negative effect 
of irradiation on enzyme activity in the presence of the 
photosensitizer MC 540. We would like to stress that (i) 
due to the time scale of our experiments, these effects are 
long-lived or permanent, (ii) the range of light fluences 
used is well below those expected to produce significant 
photodamage. 

Considering the biological action of laser light 
irradiation, it should be noted that only absorbed light 
energy can affect a biological object. Consequently, the 
primary question is, which molecules in the investigated 
sample have the potential to absorb the 532 nm light. In 
human erythrocytes, green light (532 nm) may be 
absorbed by heme-containing compounds, in particular 
hemoglobin, but also by the enzymes catalase and 
peroxidase. Actually, in the human erythrocyte ghosts 
prepared by the isolation method (Hanahan and Ekholm 
1974), the residual hemoglobin content has been reported 
to be high enough (Dimitrov and Sowers 1990), to be 
responsible for absorption of green light. In general, after 
photon absorption and promotion of electrically excited 
states, energy transfer and energy transformation may 
initiate a cascade of biochemical reactions and signaling 
pathways that can lead to a measurable biological effect. 
Unfortunately, these processes are not yet understood, 
although some mechanisms of light action on cells and on 
cellular signaling have been discussed recently (Karu 
1998). The proposed mechanisms are mostly related to 
specific mitochondrial structures, particularly to 
components of the respiratory chain (cytochrome c 
oxidase, flavins, dehydrogenases, cytochromes). As 
mitochondria are absent in red cells, direct activation via 
light absorption by components of the cellular respiratory 
chain in mitochondria cannot be considered. 

In case of photostimulation of erythrocytes, we 
must take into account the “transient local heating 
hypothesis” (Karu et al. 1994, Karu 1998): Generally, a 
substantial fraction of absorbed light energy is inevitably 

converted to heat, which causes a local transient increase 
in the temperature of absorbing chromophores (Karu et 
al. 1995, Karu 1998). It should be noted that the local 
transient heating of absorbing molecules is quite different 
from average heating of the whole cell, tissue and 
organism. The local transient increase in temperature may 
cause structural (e.g. conformational) changes, and 
trigger biochemical activity. Changes in Na+/K+-ATPase 
activity may arise from conformational alterations, 
involving a rearrangement in the active site of the protein 
(Lumry 1959). In the membrane, Na+/K+-ATPase is 
surrounded by a ring of lipids, which can affect its 
function due to lipid-protein interactions (Brotheus et al. 
1980). Thus, activity of the enzyme may be influenced by 
changes in the enzyme surroundings, which could be 
modified by absorbed light energy. 

Another mechanism to be considered is related 
to the generation of reactive oxygen species (ROS) or 
free radicals as a result of absorption of light quanta by a 
photoacceptor molecule. ROS and free radicals can, in 
turn, initiate peroxidation of membrane phospholipids 
(Girotti 1998, 2001). However, lipid peroxidation has 
been shown to be responsible for a decrease of Na+/K+-
ATPase activity (Rauchová et al. 1995) and we do not 
know how it could account for the reported positive 
biostimulating effect of green light in the range of 
fluences used in this study (9-63 J cm-2). For higher light 
energies, oxidation followed by suppression of ATPase 
activity can occur. Besides this, laser light might affect 
several reactions involved in the signaling pathway. 

Along with the positive biostimulating effect of 
irradiation alone, quite different results were obtained 
when we applied the 532 nm laser light (47.5 J. cm-2) in 
combination with the membrane-directed photo-
sensitising dye MC 540, which intensively absorbs green 
light. The combination of MC540 and green light has a 
clear photodynamic effect, which has been described 
extensively in the literature (Lagerberg et al. 1996, 
Girotti 1998, 2001). Therefore, it is not surprising that the 
activity of erythrocyte membrane Na+/K+-ATPase is 
drastically reduced (Fig. 2), while incubation of isolated 
erythrocyte membranes with MC 540 in the dark did not 
affect the enzyme activity. However, this has not yet been 
shown on membrane systems such as erythrocyte ghosts. 
Similar results were obtained by Feix et al. (1991). They 
found that irradiation of MC 540-sensitized erythrocyte 
membranes with white light had a negative effect on the 
enzyme activity. To elucidate the mechanism of this 
effect, the results of the well-documented experiments 
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showing that MC 540 activated with white or green light 
causes peroxidation of unsaturated membrane lipids may 
help (Kalyanaraman et al. 1987, Singh et al. 1992, 
Šikurová et al. 2001). This was reported to be a factor 
responsible for a decrease of enzyme activity (Rauchová 
et al. 1995). Feix et al. (1991) also found that MC 540-
photomediated treatment resulted in a marked increase in 
protein rotational freedom, intermolecular cross-linking 
of proteins, and a loss of SH-groups. Thus MC540+light-

induced structural perturbations in membranes may also 
cause a loss of Na+/K+-ATPase activity.  
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