SHORT COMMUNICATION

Intracerebroventricular Endothelin Receptor-A Blockade in Rats Decreases Phase-II Ventricular Tachyarrhythmias During Acute Myocardial Infarction

P. LEKKAS¹², E. S. GEORGIOU¹, M. KONTONIKA¹, E.-T. MOUCHTOURI¹², I. MOUROUZIS³, C. PANTOS³, T. M. KOLETTIS¹²

¹Cardiovascular Research Institute, University of Ioannina, Ioannina, Greece, ²Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece, ³Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece

Received February 4, 2019
Accepted May 7, 2019
Epub Ahead of Print August 19, 2019

Summary
Endothelin alters central sympathetic responses, but the resultant effects on arrhythmogenesis are unknown. We examined ventricular tachyarrhythmias after endothelin receptor-A blockade in the brain of Wistar rats with acute myocardial infarction. For this aim, BQ-123 (n=6) or phosphate-buffered saline (n=6) were injected intracerebroventricularly. After 10 min, the left coronary artery was ligated, followed by implantation of telemetry transmitters. Electrocardiography and voluntary activity (as a surrogate of acute left ventricular failure) were continuously monitored for 24 h. Infarct-size was similar in the two groups. There were fewer episodes of ventricular tachyarrhythmias of shorter average duration in treated rats, leading to markedly shorter total duration (12.3±8.9 s), when compared to controls (546.2±130.3 s). Voluntary activity increased in treated rats during the last hours of recording, but bradyarrhythmic episodes were comparable between the two groups. Endothelin receptor-A blockade in the brain of rats decreases the incidence of ventricular tachyarrhythmias post-ligation, without affecting bradyarrhythmic episodes. These findings call for further research on the pathophysiologic role of endothelin during acute myocardial infarction.

Key words
Myocardial infarction • Brain • Endothelin • A-receptor • Ventricular tachyarrhythmias

Corresponding author
T. M. Kolettis, Cardiovascular Research Institute, University of Ioannina, 1 Stavrou Niarxou Avenue, 45500 Ioannina, Greece. Fax: +30(265)1007053. E-mail: theofilos.m.kolettis@gmail.com

Acute myocardial infarction (MI) is often complicated by ventricular tachyarrhythmias (VTs) that occur during the early stage of ischemia, or subsequently, during evolving MI (Kolettis 2013). The latter VTs, referred to as phase-II arrhythmogenesis, have an ominous prognosis not only in the out-of-hospital setting, but also in hospitalized patients (Piccini et al. 2008).

Central sympathetic activation, occurring frequently during acute MI, contributes to the genesis of phase-II VTs (Kolettis 2018). Despite continuing research on this topic, the underlying pathophysiology remains incompletely understood. Endothelin-1 (ET-1) has attracted considerable interest in this regard, with its actions as a mediator of central sympathetic responses reported shortly after its discovery (Ouchi et al. 1989). For instance, intracerebroventricular (i.c.v.) injections of ET-1 in rats were shown to alter heart rate (HR) and plasma catecholamines (Kuwaki et al. 1997). These actions are likely exerted via ETA-receptors, which are abundantly located in central neurons (Mosqueda-Garcia et al. 1993). The present study, performed in the rat-model of acute MI, explored the hypothesis that ETA-receptor blockade in the brain decreases the...
incidence of phase-II VTs.

The experiments were conducted on 12 Wistar rats (258±7 g), housed under optimal conditions. The study was approved by the institutional ethics’ committee and adheres to the European guidelines on laboratory animal care. The rats were mechanically ventilated at 85 breaths/min and anesthetized with 2.5 %-sevoflurane, a regimen not affecting autonomic responses (Kurosawa et al. 1989). They were placed on a stereotactic frame (David Kopf, CA, USA), and 10 μl of phosphate-buffered saline (PBS) was slowly (10 min) injected i.c.v. via a Hamilton-needle, according to previous guides (DeVos and Miller 2013). The following coordinates were used relative to the bregma: 1.08 mm anteroposteriorly, ±1.9 mm mediolaterally and -3.7 mm dorsoventrally. Based on previous data (Mosqueda-Garcia et al. 1993), the injections contained 10 nmol of (the selective ETA-receptor antagonist) BQ-123 (directly dissolved in PBS) in the treatment group, with only PBS in controls; 10 min thereafter, the left coronary artery was permanently ligated midway between its origin and the apex, with the induced MI validated by ST-segment elevation in a 6-lead ECG. After 30 min, telemetry-transmitters (TCA-F40, DSI, MN, USA) were implanted quickly (<10 min) in survivors. The opioid-analgesic buprenorphine (0.05 mg/kg) was injected intraperitoneally prior to extubation in both groups, thus eliminating pain as a confounding factor. The protocol, depicted in Fig. 1, (i.c.v. administration, anesthesia, analgesia) ensures the comparability between the two groups. The rats regained consciousness within 3 min after discontinuation of anesthesia, and were then placed on a receiver (RCA-1020, DSI), capturing the signal continuously for 24 h; this setting enables the assessment in the conscious, unrestrained state.

Premature ventricular contractions, couplets and triplets were counted in the treatment and control groups, each of n=6 animals. The number and duration of VT-episodes, as well as bradyarrhythmic events were also recorded. Lastly, voluntary motor-activity was assessed by the number of counts, generated by strength-variations in telemetry-signal, relative to animal location; these counts correlate with the incidence and severity of acute left ventricular (LV) failure (Howarth et al. 2006). Based on previous work in rats, showing voluntary activity to occur mainly after the 10th hour post-MI (Kolettis et al. 2014), values are given separately for the early (initial 10 h) and delayed periods (last 14 h of recording). Mean sinus HR was calculated separately for these periods and for the entire experiment. At the end, infarct-size was measured by planimetry (ImageJ, NIH, USA) after triphenyltetrazolium-chloride staining, as described previously (Oikonomidis et al. 2010).

Values are reported as mean ± standard error of the mean; after examination for normality with the Kolmogolov-Smirnov test, the variables displaying skewed distribution were transformed according to Box-Cox analysis. Subsequently, differences between the two groups were assessed with the Student’s t-test, whereas
changes over time were assessed with analysis of variance for repeated measures, followed by post hoc Duncan’s test. Statistical significance was set at p<0.05.

Infarct-size (as % of LV area) was similar between treated rats (28.7±1.9) and controls (27.3±1.6). HR remained stable in controls throughout the 24 h-period, but it increased during the delayed stage in the treatment group (Fig. 2A). The total number of bradyarrhythmic episodes was comparable, namely 52±23 in treated rats and 32±11 in controls; likewise, the total duration of these episodes did not differ, being 28.8±12.3 s and 17.1±5.6 s, respectively. The total number of premature ventricular contractions was also similar, at 125±63 in the treatment group and 207±52 in controls, but fewer couplets were observed in the treatment group (6±3) than in controls (13±2).

There were fewer VT-episodes in treated rats (8±5) than in controls (68±25, Fig. 2B); moreover, the average duration of each episode was shorter in treated animals (0.7±0.4 s) than in controls (11.3±3.6 s). As a result, the total duration of VTs was markedly shorter in the treatment group (12.3±8.9 s) than in controls (546.2±130.3 s, Fig. 2C). Compared to the early phase, voluntary activity increased in both groups during the delayed time-period, but such increase was more pronounced in treated rats (Fig. 2D).

Acute MI is often complicated by VTs, with highest incidence during the initial 24 h. Here, we investigated the antiarrhythmic potential of ETA-receptor blockade in the brain of rats; this model is considered particularly useful, as the rat displays multiple VT-episodes in response to coronary ligation (Opitz et al. 1995), thereby maximizing the yield of each experiment. Central ETA-receptor blockade was achieved by i.c.v. injections in the lateral ventricles, with this route favored over systemic administration, based on the absence of firm data on the blood-brain barrier permeability of ETA-receptor blockers. This setting is commonly used in the assessment of compounds with potential central cardiovascular activity, as they can act on many structures after spreading throughout the brain (Dashwood and Loesch 2010). However, its major drawback lies within the inability to accurately identify the responsible nuclei, thus necessitating additional studies. The 24 h-period in our protocol encompassed phase-II arrhythmogenesis, which remains an important therapeutic target, as such VTs coincide with evolving MI and terminate after the completion of the necrosis wavefront (Janse and Wit 1989). As in previous work (Opitz et al. 1995), we observed multiple VT-episodes in the control group, ceasing after the 10th h post-MI.

The main finding of the present study was the markedly lower incidence of VTs in treated rats. Interestingly, this difference resulted from fewer episodes of shorter duration, supporting the hypothesis of ameliorated central sympathetic activation as the underlying mechanism. Indeed, central sympathetic responses, evident invariably after the 1st h post-MI (Jardine et al. 2005), are implicated in the genesis of phase-II VTs (Kolettis et al. 2018), mediated by
enhanced focal automaticity and delayed afterdepolarizations (Di Diego and Antzelevitch 2011). Additionally, sympathetic stimulation shortens the effective refractory period in the non-ischemic zone, which is simultaneously prolonged in the ischemic area (Ophof et al. 1993); these opposite effects may enhance myocardial inhomogeneity, favoring reentry.

The observed antiarrhythmic effect of central ETA-receptor blockade during phase-II is in concert with previous findings, demonstrating ET-1 as an important modulator of sympathetic activity at the myocardial and adrenal levels (Kolettis et al. 2013). Our findings, in the absence of the confounding effects of anesthesia and pain, reinforce previous suggestions on ET-1 as a regulator of central sympathetic responses (Dashwood and Loesch 2010). This intriguing hypothesis merits further investigation that could shed light to the function of ET-1 as a neurotransmitter and/or as a vasoconstrictor of cerebral arteries. Moreover, the pathophysiologic role of ETB-receptors during acute MI deserves particular attention, as these are widely distributed in high density across glial-cells of rats and humans (Morton and Davenport 1992).

Further to VTs, our analysis included bradyarrhythmic episodes, based on previously reported atrioventricular-block, counterbalancing the antiarrhythmic effect of decreased central sympathetic activity (Kolettis et al. 2015). Such episodes reflect not only conduction properties, but they are considered also indicative of acute LV failure in the rat-model (Optiz et al. 1995). In our experiments, bradyarrhythmic episodes did not differ between treated rats and controls, suggesting absence of treatment-effects on atrioventricular-conduction. This finding may reflect enhanced voluntary activity in the treated group, a statement supported by the higher activity counts and HR in this cohort during the delayed post-MI phase. Thus, the effects of central ETA-receptor blockade on the incidence of LV failure may constitute target for future research.

In summary, our study shows that ETA-receptor blockade in the brain decreases delayed VTs during acute MI in rats, without concurrent bradyarrhythmia. These preliminary findings justify further research on the effects of ET-1 on autonomic responses during acute MI.

Conflict of Interest
There is no conflict of interest.

References


