
 
 
PHYSIOLOGICAL RESEARCH • ISSN 1802-9973 (online) - an open access article under the CC BY license 

 

 2023 by the authors. Published by the Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic  
Fax +420 241 062 164, e-mail: physres@fgu.cas.cz, www.biomed.cas.cz/physiolres  
 

Physiol. Res. 72 (Suppl. 2): S91-S112, 2023 https://doi.org/10.33549/physiolres.935151 

 
REVIEW 

 
Hypertension after the Menopause: What Can We Learn from 
Experimental Studies? 
 
 
Jan PIŤHA1,2, Ivana VANĚČKOVÁ3, Josef ZICHA3 
 

1Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, 
Czech Republic, 2 Second Medical Faculty, Motol Hospital, Prague, Czech Republic, 3Institute of 
Physiology, Czech Academy of Sciences, Prague, Czech Republic 
 

Received May 11, 2023 
Accepted June 7, 2023 
 
 
Summary 
Hypertension is the most prevalent cardiovascular disease of the 
adult population and is closely associated with serious 
cardiovascular events. The burden of hypertension with respect 
to vascular and other organ damage is greater in women. These 
sex differences are not fully understood. The unique feature in 
women is their transition to menopause accompanied by 
profound hormonal changes that affect the vasculature that are 
also associated with changes of blood pressure. Results from 
studies of hormone replacement therapy and its effects on the 
cardiovascular system are controversial, and the timing of 
treatment after menopause seems to be important. Therefore, 
revealing potential sex- and sex hormone-dependent 
pathophysiological mechanisms of hypertension in experimental 
studies could provide valuable information for better treatment of 
hypertension and vascular impairment, especially in 
postmenopausal women. The experimental rat models subjected 
to ovariectomy mimicking menopause could be useful tools for 
studying the mechanisms of blood pressure regulation after 
menopause and during subsequent therapy. 
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Introduction 
 

Hypertension is the most prevalent 
cardiovascular disease affecting 30–50 % of the adult 

population. It is closely associated with other major 
cardiovascular diseases such as stroke, coronary artery 
disease, heart and kidney failure and arrhythmias [1]. 
Moreover, the systematic analysis for the Global Burden 
of Disease Study 2017 identified hypertension as the 
leading risk factor responsible for the largest number of 
all-cause death [2]. The burden of hypertension is greater 
in women than in men because women are more prone to 
develop organ damage caused by elevated blood pressure. 
For example, women developing left ventricular 
hypertrophy due to hypertension are losing protection 
against cardiovascular events [3]. The mechanisms 
underlying these sex differences are not fully understood. 
Moreover, the interpretation of sex differences became 
even more complicated due to unique features in women, 
such as menarche, pregnancy and, mainly, the transition 
to menopause, which are accompanied by robust and 
rapid changes of sex hormones with less predictable 
impact on vascular system and blood pressure (BP). 
Therefore, the aim of this review is to highlight potential 
sex- and sex hormone-dependent pathophysiological 
mechanisms of hypertension in experimental studies 
focused on rat models, which could provide valuable 
information for a better strategy of hypertension 
treatment in women.  

 
Sex differences in experimental hypertension 
  

Sex differences in BP were described in several 
rat models in which male rats have higher BP. This has 
been reported in spontaneously hypertensive rats (SHR) 



S92   Piťha et al.  Vol. 72 
 
 
with genetic hypertension [4, for review see 5], in 
transgenic rats with murine renin gene with angiotensin 
II-dependent hypertension [6,7], in Dahl salt-sensitive 
(DS) rats with salt hypertension [8, for review see 9], in 
rats with deoxycortisterone acetate (DOCA)-salt 
hypertension [10] or NO-deficient hypertension induced 
by chronic L-NAME administration [11], and also in  
a model of prediabetes, i.e. hereditary 
hypertriglyceridemic (hHTG) rats with moderate 
hypertension but abnormal lipid and carbohydrate 
metabolism [12,13, for review see 14].  

 
Spontaneously hypertensive rats – genetic hypertension 

SHR are the most widely used model of 
experimental hypertension. Female SHR are 
characterized by lower BP compared to males [4, 15-18]. 
Males show an increased rate of vascular smooth muscle 
cells (VSMC) proliferation, as well as greater growth 
response and enhanced cytosolic calcium response to 
angiotensin II as compared to VSMC from female SHR 
[19,20]. Numerous sex differences in presynaptic and 
postsynaptic adrenergic mechanisms [21-23], the renin-
angiotensin system (RAS) [24-26], nitric oxide 
bioavailability and oxidative stress [27-29] and immune 
system [30-32] have been described in this model. The 
potential role of SHR in the investigation of sex 
differences was recently summarized by Elmarakby and 
Sulivan [5], who stated that the sexual dimorphism in BP 
is based directly or indirectly upon different regulation of 
the sympathetic nervous system (SNS), the RAS, 
oxidative stress, NO bioavailability and immune cells. 

 
mRen2 transgenic rats – angiotensin II-dependent 
hypertension 

Another model in which sexual dimorphism has 
been described is the (mRen2-27 transgenic rat (TGR). 
This is a monogenic form of hypertension established 
through the insertion of murine Ren-2 gene into the 
genome of normotensive Sprague-Dawley rats [33].  
Lee et al. [34] demonstrated a sexual dimorphism in BP, 
which was higher in males than in females, and this was 
true in both homozygous and heterozygous animals. Both 
males and females had the highest BP at the age  
of 4 months, thereafter BP gradually decreased in both 
sexes, but from the age of 5 months this decrease was 
significant only in females. The cause of this BP decrease 
is still not fully understood, although the RAS has been 
suggested as a major player. Another piece of evidence 
was provided by Vaněčková et al. [35], who not only 

confirmed a sexual dimorphism in BP levels between 
male and female TGR, but also observed that 
hypertension and cardiac hypertrophy were attenuated by 
castration only in males but not in females. In addition, 
castration partially decreased BP and had a profound 
antiproteinuric effect in males, whereas ovariectomy had 
no effect on BP in female TGR. Since there were no 
differences in plasma and tissue angiotensin II levels at 
the end of the experiments, the role of the RAS in the 
sex-dependent BP regulation seems to be negligible in 
aging TGR. Rauchová et al. [36,37] demonstrated similar 
elevations of BP in 3-month-old male and female 
heterozygous TGR, but this was not true for animals aged 
6 and 9 months, in which BP spontaneously decreased in 
females with age. This sexual BP dimorphism (at 6 and  
9 months) was not associated with differences in 
oxidative stress or abnormal cholesterol metabolism 
[36,37]. Sex differences in salt sensitivity were analyzed 
in TGR rats by Husková et al. [38], who showed that the 
salt-sensitive component of hypertension is more 
pronounced in females than in males and that females 
develop hypertension more rapidly.  

 
Salt-dependent hypertension - Dahl rats 

Other examples of sex dimorphism are salt-
dependent forms of experimental hypertension in which 
BP rises more rapidly and BP increase is usually more 
pronounced in male than female rats. This is true for 
DOCA-salt hypertension [10,39] as well as for salt 
hypertension in Dahl salt-sensitive (DS) rats [8,40], 
although these sex differences in BP were not always 
very pronounced [41,42]. Salt hypertension in DS rats is 
caused by the enhanced sympathetic vasoconstriction not 
only in males [9] but also in females [43,44]. DS females 
fed a high-salt diet (HS) had smaller total and renal 
vascular resistance than males [40]. Small resistance 
arteries from DS females fed a HS diet showed smaller 
vasoconstriction and greater vasodilation compared to 
those from DS-HS males [45]. This is in line with smaller 
vascular norepinephrine release and higher levels of 
vasodilatory prostaglandins [40]. In addition, a more 
severe salt hypertension in DS males was associated with 
more pronounced glomerulosclerosis [46].  

 
Salt intake and sex as factors modifying 
blood pressure 
 
Human perspective 

One potential mechanism for the different 
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development of hypertension in men and women is 
association between salt sensitivity and BP changes. This 
topic was recently reviewed by Barris et al. [47] with  
a conclusion that women of all ethnicities and ages are 
more salt-sensitive than men, yet the exact mechanisms 
are not well understood. Nevertheless, it is known that 
menopause further enhances salt sensitivity regarding  
BP increase and/or female sex chromosomes and sex 
hormones may be important in moderating the 
relationship between salt intake and hypertension. To 
better understand all these mechanisms, this topic should 
be addressed in experimental studies.  

 
Experimental perspective 

A possible pathophysiological explanation for 
the sex dimorphism in salt sensitivity for BP comes from 
experimental models in rodents (rats and mice) and points 
to an inappropriately enhanced activation of the 
aldosterone-mineralocorticoid receptor axis in endothelial 
cells, which promotes impaired vascular function only in 
females. The increased response of adrenal tissue to 
angiotensin II, associated with higher mineralocorticoid 
receptor expression and activation of epithelial sodium 
channels in endothelial cells of females than males, may 
be of critical importance [47]. In addition, the effect of 
estrogen on the central nervous system plays a protective 
role in the development of aldosterone/NaCl-induced 
hypertension, which may result from reduced sympathetic 
outflow [48]. Endothelial mineralocorticoid receptors are 
sex-specifically upregulated in the vasculature of females. 
This sex difference, which is driven by endothelial 
progesterone receptor activation and increased activity of 
endothelial mineralocorticoid receptors, is an important 
mediator of endothelial dysfunction and potentially 
hypertension, in female models of experimental obesity 
[49]. Nevertheless, it should be kept in mind that the salt 
sensitivity depends not only on sex, but also strain, age of 
rats and other factors (Table 1). 

 
Menopause/ovariectomy and timing of 
treatment on blood pressure and vascular 
physiology 

 
In addition to sex dimorphism, the changes of 

reproductive status in females are of primary importance 
in understanding the mechanisms underlying changes in 
BP and associated vascular changes. Regarding 
experimental approach, it was suggested that the rise in 
BP associated with the cessation of ovarian function 

induced by ovariectomy in rodents, particularly rat 
models of hypertension might mimick menopausal 
hypertension in women. 
 
Human perspective 

Menopause is clinically diagnosed when  
a woman has not menstruated for 12 months, which 
usually occurs around the age of 45-55 years [50,51]. In 
general, postmenopausal women have a higher 
prevalence of hypertension than age-matched men 
[52,53]. This is not the case in premenopausal women in 
which the prevalence of hypertension is lower than in 
age-matched men. However, the mechanisms and 
sufficient evidence supporting causative association 
between menopause and hypertension are not clear. One 
study that followed women prospectively for 5 years 
found that peri- and postmenopausal women had a rise in 
systolic BP compared to premenopausal women and men. 
Importantly, postmenopausal women had higher systolic 
BP at baseline and these women experienced significant 
increase of systolic SBP throughout the 5-year follow-up 
[54]. Although the above study used body mass index-
matched women, other studies have shown that the 
development of hypertension with menopause can be 
mostly explained by body mass index and age [55]. 
Similarly, in our cross-sectional population study in 
middle aged women around the age of menopause, the 
rise in BP after the menopause appeared to be due to 
increased body mass index rather than ovarian failure  
per se [56]. 

However, these controversial findings do not 
mean that sex hormones and the changes seen in the 
menopausal period cannot affect BP and other 
cardiovascular factors; these effects have been detected 
even on the level of cell membranes [57]. It has been also 
repeatedly demonstrated that a decrease in estradiol and 
an increase in testosterone after the menopause alter the 
estrogen/androgen ratio and this has been proposed as 
one of the mechanisms responsible for BP increase in this 
period [58]. It has been hypothesized that a continuation 
of androgen production in postmenopausal women may 
result in increased arterial stiffness and vascular 
inflammation, leading to endothelial dysfunction and 
resultant hypertension [59]. However, this association 
between menopause and subsequent hormonal changes 
with endothelial dysfunction leading to hypertension is 
far from definitive. In addition, menopause itself appears 
to activate a cluster of genes that lead to hypertension 
[60]. The decline in sex hormones, particularly estrogens, 



S94   Piťha et al.  Vol. 72 
 
 
is also associated with vascular endothelial dysfunction 
[61] very probably leading to increased BP after the 
menopause. These hormonal changes also result in 
upregulation of the RAS, leading to increased 
vasoconstriction [62] and increased salt sensitivity [63]. 

Another piece of evidence comes from studies in 
which menopausal transition was considered as the 
critical period for the progression of atherosclerosis [64]. 
One of the main limitations in obtaining a reliable picture 
is very fast and mostly unpredictable "rollercoaster" 
fluctuations of sex hormones during this period. This 
makes it extremely difficult to interpret reliably the actual 
impact of hormonal status on the progression of 
atherosclerosis and vascular impairment, including the 
development of hypertension. One of the proposed 
mechanisms could be epigenetic factors, including 
miRNA and methylation processes of DNA [65], which 
are also under the control of sex hormones [66]. In 
addition to clinical and epidemiological data, the 
experimental studies could help to clarify these 
mechanisms regarding the treatment in the "window of 
opportunity" based on the "timing hypothesis" which 
stressed the importance of early treatment starting soon 
after menopause [67,68]. For example, when women used 
hormone replacement therapy (HRT) soon after 
menopause (for up to 10 years), the overall mortality 
decreased by 30 % and the incidence of coronary heart 
disease by 48 % (relative risk) [69]. The sooner after the 
onset of menopause the HRT was administered, the 
greater was the benefit [70-72]. Unfortunately, there are 
no data regarding the timing of treatment by 
hypolipidemic or antihypertensive drugs after the 
menopause. 

Regarding the effect of HRT on BP the evidence 
is rather ambiguous. An observational cohort study of 
43,405 previously normotensive postmenopausal women 
in Australia even found that HRT was associated with 
significantly higher odds of elevated BP. These odds 
increased with the duration of HRT use [73]. A French 
observational study showed slight but significant increase 
in hypertension risk in postmenopausal women using 
combined oral estrogen and progesterone therapy [74]. In 
contrast, the Kronos Early Estrogen Prevention Study 
(KEEPS) showed that HRT use, regardless of formulation 
(oral conjugated estrogen or weekly transdermal 
estradiol, each with intermittent progesterone 
administration) did not affect BP in normotensive 
postmenopausal women [75]. With respect to BP 
changes, HRT may also improve fat mass and 

distribution, dyslipidemia, and insulin resistence after 
menopause. As shown in the meta-analysis performed by 
Salpeter et al. [76], HRT had a beneficial effect in 
patients with metabolic syndrome. In this meta-analysis 
of 107 trials that enrolled 33,315 subjects, HRT increased 
lean body mass and reduced abdominal fat, HOMA-IR, 
and the onset of new diabetes in previously non-diabetic 
postmenopausal women. However, the effect of HRT on 
BP was negligible. Unfortunately, the effect of the timing 
of such preventive measures besides hormone HRT in 
women transitioning to menopause has not been studied 
and reliable data are not available for this population.  

In summary, premenopausal women have  
a lower incidence of hypertension and other 
cardiovascular events than men of the same age, but the 
reduced sex differences after menopause suggest that 
17β-estradiol (E2) is a protective agent. The 
cardioprotective effects of E2 are mediated by nuclear 
estrogen receptors (ERα and ERβ) and a G protein-
coupled estrogen receptor but the exact mechanisms 
involved in the association of sex differences and E2 are 
not fully identified, which should encourage not only 
clinical trials but also experimental studies in this field 
[77].  

 
Experimental perspective 
 
Salt-dependent forms of hypertension in ovariectomized 
rats 

Postmenopausal hypertension in the rat is 
usually induced by ovariectomy (OVX), which enhances 
both DOCA-salt hypertension [10,78] and salt 
hypertension in Dahl rats [8,79,80]. Increased BP and 
higher degree of glomerulosclerosis were found in 
ovariectomized salt-loaded F2(DSxDR) hybrids 
compared to intact F2 hybrids [81,82]. Under the 
conditions of high salt intake, OVX of DS females was 
accompanied by distinct renal alterations such as 
increased density of α2-adrenergic receptor [83] or 
angiotensin AT1 receptors in the kidney [80]. There was  
a blunted pressure natriuresis in ovariectomized DS rats 
[84]. Chronic administration of estrogens (17β-estradiol) 
to ovariectomized DS females fed a HS diet lowered their 
BP, glomerular filtration rate and adrenal density of  
AT1 receptors, while this hormonal therapy increased the 
expression of estrogen receptors ERα and the density of 
AT1 receptors in the kidney [80,85]. Ovariectomized DS 
females fed a HS diet showed increased oxidative stress 
because the formation of oxygen free radicals was 
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enhanced and their scavenging was reduced; these 
changes were attenuated by estrogen administration [86].  

It has been observed in Dahl salt-sensitive rats 
[8] that males generally developed salt hypertension more 
rapidly than females. However, final BP was similar in 
both sexes and, more importantly, castration of males had 
no effect on BP, whereas OVX caused an increase in BP 
in the females. In addition, OVX resulted in greater body 
growth compared to control females, whereas castration 
of males had the opposite effect. It was speculated that 
these changes were due to an increase of pituitary growth 
hormone after OVX or enhanced growth hormone 
receptor sensitivity in females, while the opposite effect 
was proposed in males. It was considered unlikely that 
the BP effect was simply due to the increased dietary salt 
intake associated with greater growth since growth was 
independent of salt intake. It was therefore suggested that 
the rise in BP associated with the cessation of ovarian 
function might mimic "menopausal" hypertension in 
women. However, the increase in growth hormone 
associated with decline in ovarian function after the 
menopause could be the stimulus for the development of 
hypertension earlier than would be expected from 
chronological age. In this case, there is an indirect 
evidence from human studies focusing on the treatment 
of central precautious puberty by gonadotropin-releasing 
hormone agonists (GnRHa), which could also cause 
hypertension. These compounds have a high affinity for 
the pituitary LHRH receptor and are resistant to 
enzymatic degradation. By continuous stimulation, 
GnRHa inhibit the pulsatile secretion of gonadotropin, 
resulting in hormonal suppression [87]. 

 
Salt-independent postmenopausal hypertension in 
ovariectomized Dahl rats 

A long-term development of postmenopausal 
hypertension has been described in OVX DS females fed 
a low-salt (LS) diet in which the elevated BP was reduced 
by chronic estrogen administration [42,88-90]. This form 
of hypertension was accompanied not only by 
glomerulosclerosis and tubulointerstitial fibrosis but also 
by an increased density of AT1 receptors in the glomeruli 
and adrenal cortex. The severity of these changes was 
attenuated by E2 administration [91]. OVX decreased the 
expression of iNOS and eNOS in the renal medulla of 
DS-LS females, while these changes were attenuated by  
a concomitant estrogen administration. In addition, OVX 
increased the number of renal CD68 macrophages, which 
was reduced by estrogen treatment [92]. 

Ovariectomy and estrogen treatment in SHR 
Castration of male SHR substantially lowered 

their BP [4,16,25,93-95], whereas OVX had much 
smaller BP effects in SHR females [4,16,25, 96]. In 
contrast, Iams and Wexler [94] described the late BP rise 
in OVX SHR females, which was attenuated by estrogen 
treatment. Much attention has been paid to the role of 
testosterone in the higher BP of male SHR or 
testosterone-treated ovariectomized SHR females  
[96-98]. It should be mentioned that BP differences 
between male and female SHR as well as between the 
castrated SHR males and ovariectomized SHR females 
could be abolished by chronic treatment with the ACE 
inhibitor enalapril [25,] implying the effect of the RAS. 
Although ovariectomized SHR females are often used for 
the studies of postmenopausal BP changes, it is not clear 
whether OVX performed in the prepuberty (at the age of 
3-6 weeks) or in the early adulthood (at the age of  
3-4 months) is an optimal model for human 
postmenopausal hypertension [28,58,100,101].  

Prepubertal OVX of young SHR females aged  
3 weeks increased their sensitivity to hypertensogenic 
effects of high salt intake, while dietary phytoestrogens 
attenuated this BP increase by reducing sympathetic tone 
[102]. Phytoestrogens are known to have a high affinity 
to ERβ receptors. Thus, the treatment of young 
ovariectomized SHR females with ERβ receptor agonist 
8β-VE2 lowered their elevated BP by decreasing total 
peripheral resistance, improved NO-dependent 
vasodilatation, attenuated cardiac hypertrophy but 
increased their cardiac output through the augmentation 
of stroke volume [103]. In contrast, chronic treatment 
with estrohen receptor-α agonists (16α-LE2 or Cpd1471) 
did not significantly reduce BP of young ovariectomized 
SHR females but attenuated cardiac hypertrophy, 
increased cardiac output and myocardial contractility 
[104] and improved their endothelial dysfunction [105]. 

OVX of young adult SHR females aged  
3 months substantially increased BP through the 
augmentation of sympathetic tone, which was associated 
with the enhanced expression of AT1 receptors in the 
brainstem [106]. Enhanced sympathetic tone and/or 
decreased vagal tone were also detected in 
ovariectomized SHR, in which only a moderate BP 
elevation was observed [107,108]. Decreased baroreflex 
gain and increased variance of systolic arterial pressure 
were also seen in ovariectomized SHR without  
a significant BP change [109]. OVX increased BP in 
SHR females and enhanced the reactivity of their 
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mesenteric vessels to angiotensin II. This was due to  
an increase in mRNA expression of AT1 (but not AT2) 
receptors in the kidney, aorta and mesenteric arteries, 
causing thus a pronounced rise in the AT1/AT2 ratio [26]. 

Ovariectomized SHR females are characterized 
by attenuated acetylcholine-induced vasodilatation due to 
impaired release of endogenous NO [110-112], enhanced 
production of superoxide radicals [108,113] and the 
presence of vasoconstrictor prostaglandins [114,115]. On 
the other hand, vascular formation of vasodilator 
prostaglandins was not altered by OVX in SHR [110]. 
The increased superoxide generation appears to be 
mediated by augmented NADPH oxidase activity 
[113,116], which is partly under the control of 
angiotensin II acting via AT1 receptors. Therefore, the 
chronic blockade of the RAS by ACE inhibitors [112] or 
AT1 receptor blockers [113,114] reduced oxidative stress 
and increased NO bioavailability. The aforementioned 
endothelial dysfunction in ovariectomized SHR females 
can be reduced by estrogen supplementation 
[112,113,115,117]. 

Late OVX (carried out in SHR aged 5-9 months) 
also caused a substantial endothelial dysfunction due to  
a decreased NO bioavailability and increased superoxide 
formation, as well as enhanced expression of vascular 
AT1 receptors. These changes were corrected by chronic 
estrogen treatment or stimulation of estrogen receptors 
[118-120]. 

Fortepiani et al. [121] proposed to use the 
“postcycling” 18-month-old SHR females with a BP 
equal to that of the age-matched SHR males. This model 
showed lower estradiol and higher testosterone serum 
levels, elevated plasma renin activity, high urinary  
F2-isoprostanes as well as considerable alterations of 
renal function (decreased glomerular filtration rate, low 
renal plasma flow, high renal vascular resistance) [121]. 
This form of postmenopausal hypertension can be 
attenuated by chronic antioxidant treatment [121], 
chronic blockade of endothelin ETA receptors [122,123], 
chronic inhibition of 20-HETE formation [124],  
chronic ACE inhibition [125,126] and combined α1- and  
β-adrenergic blockade [127]. 

 
Ovariectomy and estrogen treatment in mRen2 transgenic 
rats 

OVX in heterozygous mRen2.Lewis rats, 
a congenic rat strain established from the original 
(mRen2)-27 transgenic rats [128], dramatically increased 
BP as well as plasma angiotensin II, ACE activity and 

plasma renin concentrations, while renal levels of eNOS 
or ANG(1-7) were decreased [128]. Estrogen replacement 
or treatment with olmesartan (AT1 receptor blocker) 
lowered BP even below the level of sham-operated 
controls. Estrogen supplementation shifted the 
vasoconstrictor/vasodilator balance of the RAS towards  
a higher contribution of the vasodilator ANG(1-7) while 
reducing vasoconstrictor effect of angiotensin II [129]. 
Estradiol treatment started 7 weeks after OVX decreased 
cardiac angiotensin II and ANG(1-7) concentrations, 
which were increased after OVX [130]. 

Chappell et al. [131] analyzed the interaction of 
estrogen and high salt intake in mRen2.Lewis females 
showing that early OVX (performed at 4-5 weeks of life) 
substantially exacerbated the development of 
hypertension and that high salt intake increased BP in 
intact animals. Estrogen depletion increased their BP 
response to high salt intake. The inability of this strain to 
downregulate various components of the RAS has been 
suggested as the mechanism leading to their elevated BP 
following either OVX or high salt intake [131]. 
Interestingly, high salt intake applied for four weeks at 
the age of 60 weeks in mRen2.Lewis rats that underwent 
OVX at 15 weeks of age did not alter their BP, while 
proteinuria, glomerulosclerosis and creatinine were lower 
in ovariectomized females suggesting that OVX 
performed in older females is protective against salt-
induced renal damage [132]. In addition, Groban et al. 
[133] demonstrated an exacerbation of diastolic 
dysfunction after high-fat diet, which was further 
deteriorated by OVX. This may explain a higher 
susceptibility of postmenopausal women to diastolic heart 
failure. Experiments using GPR30, an estrogen receptor 
agonist, in ovariectomized mRen2. Lewis rats suggested  
a possible role of estrogen in diastolic dysfunction. In 
addition, Lindsey et al. [134] demonstrated that the 
vasorelaxant effects of GPR30 agonist or E2 on 
resistance mesenteric arteries were due to NO release 
from endothelium and the activation of guanylate cyclase 
in vascular smooth muscle. The chronic activation of 
GPR30 reduced BP in ovariectomized females but not in 
male mRen2.Lewis rats. Furthermore, GPR30 activation 
also reduced oxidative stress and proteinuria in 
ovariectomized females on a high-salt diet, independent 
of BP reduction [135].  

The participation of renal NO in BP increase 
after OVX was demonstrated in mRen2.Lewis female 
rats, which showed reduced renal eNOS that correlated 
negatively with BP [136]. In line with this finding, Jessup 
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et al. [137] found that chronic nNOS inhibition in rats 
treated 7 weeks after OVX improved diastolic 
dysfunction and reduced oxidative stress in the same 
model. In (mRen2)-27 transgenic females, estrogen 
augmented endothelial NO release and thus contributed to 
the modulation of agonist-induced contractile response 
[138]. 

 
Timing of treatment after ovariectomy in 
experimental studies 

 
Unfortunately, only one paper was focused on 

the timing of sex hormone therapy after ovariectomy. In 
this study the 2-month-old ovariectomized Sprague-
Dawley rats were implanted with E2 in oil capsules 1, 4, 
and 8 months after surgery [139]. While most of the 
vascular changes were reversed in the groups treated one 
or four months after surgery, no such effect was observed 
when the treatment was delayed for 8 months after OVX, 
indicating irreversible changes. After such a long period 
of hypoestrogenicity, acetylcholine-mediated aortic 
relaxation was attenuated and insensitive to E2 
administration despite sustained endothelial integrity. 
Whereas no rapid vasorelaxant responses were elicited by 
a selective estrogen receptor-β agonist, the responses to 
E2 and a selective estrogen receptor-α agonist waned 
after OVX at any given time and were restored by E2 
treatment after 1 and 4 months, but not 8 months, after 
OVX. Accordingly, endothelial ERα mRNA and protein 
expression decreased approximately six-fold after 
prolonged hypoestrogenicity and was restored by 
estrogen replacement starting 1 month but not 8 months 
after OVX. Furthermore, the amount of active 
phosphorylated endothelial NO synthase increased 
significantly after E2 replacement after 1 and 4 months 
but not 8 months after OVX. The present findings 
document that the functional impairment of the 
ERα/endothelial NO synthase signaling network after the 
extended period of hypoestrogenicity was not restored by 
E2 administration, providing experimental support for 
early initiation of estrogen replacement with preferential 
ERα targeting to improve cardiovascular outcomes [139].  

Surprisingly we also found only one human 
study addressing the effect of hypolipidemic therapy after 
menopause in a small group of postmenopausal women 
(n=32). This study compared six months of transdermal 
E2 supplementation plus oral medroxyprogresterone 
acetate with oral simvastatin treatment. Both approaches 
reduced basal and exercise test-induced endothelin-1 

plasma levels. E2 supplementation gradually increased 
NO release, whereas simvastatin initially reduced and 
finally increased NO release. It was concluded that  
6 months of oral simvastatin treatment had a beneficial 
influence on endothelial function similar to that of 
continuous transdermal E2 supplementation combined 
with medroxyprogesterone acetate [140]. 

 
Conclusions and future directions 
 

To summarize, in contrast to human studies, 
most animal studies show a favorable effect of estrogens 
on the protection against hypertension, coronary heart 
disease, stroke, and heart failure. Female rodents are 
protected against increased BP, vascular injury, and heart 
failure compared to males, but this cardioprotection is 
abolished after OVX and reversed back by estrogen 
substitution [131,141,142]. Furthermore, the changes in 
metabolic factors caused by OVX and their reversal by 
estradiol treatment in an experimental study could 
provide valuable information to hemodynamic 
parameters, as already demonstrated in study of 
hereditary hypertriglyceridemic (hHTG) rats as a model 
for prediabetes [143]. In our experimental study 
performed in ovariectomized rats of this strain [144], we 
found not only favorable changes of hemodynamic 
factors after estradiol substitution but also an increase of 
triglyceride content in myocardium reflecting  
a potentially ambiguous role of HRT. Therefore, in 
parallel with the study of hypertension the evaluation of 
metabolic factors is also important. In addition, from this 
point of view, one of the scientific approaches to fill the 
gaps in our knowledge of postmenopausal hypertension is 
to study the effect of the timing of treatment not only 
with HRT but also with other cardioprotective drugs such 
as statins and antihypertensives in already established rat 
models of experimental hypertension.  

Intensive research in this area should be also 
encouraged by the fact that hypertension affects women 
at all stages of life and is a major contributor to 
cardiovascular morbidity and mortality. The combination 
of age, sex hormones, genetic background and unhealthy 
lifestyle contribute to the development of hypertension, 
particularly in postmenopausal women. Despite the 
multiple mechanisms participating in these processes 
such as SNS, RAS and others (Fig. 1), there are several 
gaps in our understanding of the sex-specific prevention, 
detection and management of hypertension at particular 
periods of woman´s life including menarche, pregnancy 
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and especially menopause. Similarly, the experimental 
studies with rodent models, particularly rats, have shown 
great variability regarding the strain, time of ovariectomy, 
type and dosage of hormonal or other therapies and 
especially the timing of therapy after ovariectomy  

(Table 1). The study of the effect of ovariectomy, 
focusing also on metabolic factors accompanying 
development of hypertension, may provide further 
valuable data useful for humans.  

 
 

 
Fig. 1. Interplay between factors associated with hypertension and menopause/ovariectomy. SNS - sympathetic nervous system, RAS - 
renin-angiotensin system 
 

Fig. 2. The effect of intervention could be modified by its timing after menopause/ovariectomy 
 
 
Rapid changes of estrogen and other sex 

hormones associated with the menopausal transition may 
play an important role in the development of risk factors 
including hypertension and their cardiovascular 
consequences at the population level. Therefore, it is of 
great importance to study the effect of the timing of 
interventions in women transitioning to menopause. In 

this respect, the identification of particular mechanisms 
of this approach at the experimental level could provide 
definite proof of this concept and lead to changes in 
clinical practice. If the hypothesis of the menopausal 
transition as a very sensitive method for intervention in 
hypertension (Fig. 2) is correct, it can be immediately 
exploited in everyday clinical practice.  
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Table 1. Management of hypertension and associated vascular impairment with regard to the timing of treatment after ovariectomy 
(OVX) in rats. 
 

Strain of rats 
(reference) 

Age of 
ovariectomy 

Intervention 
type/dosages 

Onset and 
duration of 
intervention 

Results 

Dahl salt-sensitive 
rats  
 
Harrison-Bernard et 
al. [80] 

4-5 weeks 17β-estradiol (1.7 mg) 
subcutaneous pellet 
or candesartan 
(10 mg/kg/day) 
 

At the time of  
OVX 
 
13 weeks 

Development of hypertension in OVX 
rats was prevented by estrogen 
replacement or AT1 receptor blockade. 
Chronic estrogen administration 
lowered BP, glomerular filtration and 
density of AT1 receptors in the  
adrenals, while this hormonal therapy 
increased the expression of estrogen  
ER-α receptors and the density of  
AT1 receptors in the kidney. 

Dahl salt-sensitive 
SS/Jr rats (Rapp 
strain) 
 
Sartori-Valinotti et 
al. [145] 

6 weeks Rosiglitazone 
(5 mg/kg/day) 
 

At the time of  
OVX 
 
2 weeks 

PPARγ activation lowered BP and salt 
sensitivity due to increased NO release 
and reduction of renal resident 
macrophages and inflammation. 

Dahl salt-sensitive 
SS/Jr rats (Rapp 
strain) 
 
Zheng et al. [85] 

Approximately  
2 months of 
age (200-250 g) 

17β-estradiol benzoate 
(10 μg/day)  

At the time of  
OVX 
 
2 weeks 

Ovariectomy increased BP in rats kept 
on high-salt diet. The ovariectomy-
induced BP increase was prevented by 
17β-estradiol treatment, suggesting that 
the loss of E2 causes this BP increase.  
 

Dahl salt-sensitive 
SS/Jr rats (Rapp 
strain) 
 
Zhang et al. [86] 

8 weeks 17β-estradiol (0.5 mg) 
subcutaneous pellet 

At the time of  
OVX 
 
4 weeks 

Ovariectomy led to amplification of 
oxidative stress in rats fed a high-salt 
diet through an increase in reactive 
oxygen species (ROS)-generating 
system and a decrease in ROS-
eliminating system, as shown by the 
increase in superoxide production and 
urinary H2O2 excretion. Supplemen-
tation of estrogens counteracted these 
changes. 

Dahl salt-sensitive 
SS/Jr rats (Rapp 
strain) 
 
Hinojosa-Laborde et 
al. [90] 

8 weeks 17β-estradiol (5 mg) 
subcutaneous pellet 
 
implants replaced every 
12 weeks 

At the time of  
OVX 
 
10 months 

Rats fed a low-salt diet have developed 
hypertension with age that was 
accelerated by OVX and attenuated by 
estrogen replacement. Concurrently, 
AT1Rs were upregulated by age and 
OVX, which was prevented by estrogen 
replacement. Increased activity of the 
renin-angiotensin system might 
contribute to the development of 
hypertension, and estrogen protects 
against this process. 

Dahl salt-sensitive 
SS/Jr rats (Rapp 
strain) 
 
Maric et al. [91] 

12 weeks 17β-estradiol (5 mg) 
subcutaneous pellet 
 
implants replaced every 
12 weeks 

At the time of  
OVX 
 
1 or 9 months 

E2 is renoprotective in the ageing rat by 
attenuating glomerulosclerosis and 
tubulointerstitial fibrosis. 

Dahl/Iwai salt-
sensitive rats 
 
Sasaki et al. [89] 

12 weeks 17β-estradiol (0.5 mg) 
subcutaneous pellet 
 

At the time of 
OVX 
 
8 weeks 

Estrogen replacement suppressed 
hypertension development and 
attenuated platelet aggregation. 
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Dahl salt-sensitive 
SS/Jr rats (Rapp 
strain) 
 
Maric et al. [92] 

12 weeks 17β-estradiol (5 mg) 
subcutaneous pellet 
 
implants replaced every 
12 weeks 

At the time of 
OVX 
 
1 or 9 months 

E2 loss with ageing may contribute to 
the development of age-related renal 
disease through downregulation of 
iNOS and eNOS and increased renal 
inflammation. Furthermore, E2 
supplementation may be protective in 
ageing kidney by attenuating these 
changes. 

SHR 
 
Reckelhoff et al. 
[96] 

3 weeks Testosterone  
(5 mg s.c.) 
 
Replaced every 3 weeks 

Nine weeks 
after OVX 
 
6 weeks 

Male sex hormones contribute to the 
exacerbation of hypertension by 
reducing pressure-natriuresis 

SHR 
 
Fang et al. [102] 

3 weeks dietary phytoestrogens At the time of 
OVX 
 
9 weeks 

Dietary phytoestrogens protect 
ovariectomized females from NaCl-
sensitive hypertension through 
attenuated sympathetic tone. 

SHR 
 
Iams and Wexler 
[94] 

4 weeks Estradiol  
(0.5 mg/2 weeks) 
 
Injections repeated every 
2 weeks 

At the time of  
OVX 
 
30 weeks 

Estradiol lowered blood pressure in 
both intact or gonadectomized animals. 
Besides lowering of BP, estradiol also 
increased pituitary and adrenal weights, 
caused hyperlipidemia, and increased 
circulating levels of corticosterone and 
11-deoxycorticosterone. 

SHR 
 
Jazbutyte et al. [103] 

6 weeks 17β-estradiol  
(2 μg/kg/day) or  
ER-β receptor agonist 8β-
VE2 (30 μg/kg/day) 

At the time of  
OVX 
 
12 weeks 

Ligand-dependent activation of  
ER β receptors lowered BP more than 
17β-estradiol or ERα agonist. 

SHR  
 
Pelzer et al. [104] 

6 weeks 17β-estradiol  
(2 μg/kg/day) or  
ER-α receptor agonist 
16 α-LE2 (30 μg/kg/day 

At the time of 
OVX 
 
12 weeks 

Activation of ERα receptors favorably 
affects cardiac hypertrophy, myocardial 
contractility and gene expression in 
OVX rats. 

SHR 
 
Loh and Salleh [146] 
 

8 weeks Testosterone propionate 
(10 mg s.c.)  

Two weeks 
after OVX 
 
6 weeks 

Chronic testosterone treatment of 
ovariectomized rats increased their 
blood pressure although there was 
decrease not only in plasma aldosterone 
and Na+ but also in ENaC levels in 
kidneys. 

SHR 
 
Reckelhoff et al. 
[25] 

8 weeks Testosterone  
(10 mg s.c.) 
 
Replaced every 3 weeks 
 
ACE inhibitor enalapril 

One week after 
OVX 
 
8-10 weeks 

ACE inhibitors reduced BP to similar 
levels in all gender groups. Untreated 
males and OVX females given 
testosterone had significantly higher 
levels of urinary protein excretion than 
the other groups. ACE inhibitors had no 
effect on proteinuria in any group. 
Thus, the development of hypertension 
regardless of sex steroids is mediated 
by the renin-angiotensin system. 

SHR  
 
Huang et al. [110] 

9 weeks 17β-estradiol  
(50 μg/kg s.c.,  
every 48 hours) 

One week after 
OVX 
 
3 weeks 

Estrogen preserved NO-mediated 
portion of flow/shear stress-induced 
dilation resulting in lower wall shear 
stress in females 

SHR 
 
Bonacasa et al. [147] 

10 weeks 17β-estradiol  
(1.5 mg pellet) 
 
Tempol (90 mg/kg/day) 

At the time of 
OVX 
 
8 weeks 

Tempol prevented BP rise after OVX 
but a combination of E2 with tempol 
had detrimental effects on myocardial 
arteriolar remodeling. 

SHR 
 
Garcia et al. [148] 

10 weeks 17β-estradiol  
(1.5 mg pellet) 
 
Captopril (5 mg/kg/day) 

At the time of 
OVX 
 
8 weeks 

Estrogens enhanced the improvement of 
vascular remodeling induced by chronic 
administration of ACE inhibitor. 
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SHR 
 
Gimenez et al. [149] 

10 weeks 17β-estradiol  
(1.5 mg pellet) 
 
Captopril (5 mg/kg/day) 

At the time of 
OVX 
 
8 weeks 

Both chronic treatments with estrogen 
and captopril attenuated hypertension 
development and improved micro-
vascular density (additive effects). 

SHR  
 
Gimenez et al. [112] 

10 weeks 17β-estradiol  
(1.5 mg pellet) 
 

At the time of 
OVX 
 
8 weeks 

Treatment with 17β-estradiol prevented 
the blunted acute BP response to 
captopril in ovariectomized rats. Kinins 
and nitric oxide may be involved in the 
mechanisms of 17β-estradiol 
potentiation of the hemodynamic 
effects of captopril. 

SHR 
 
Widder et al. [105] 

12 weeks 17β-estradiol  
(2 μg/kg/day) or selective 
ERα agonist Cpd1471 
(30 μg/kg/day) 

At the time of 
OVX 
 
4 weeks 

After ovariectomy, endothelium-
dependent NO-mediated vasorelaxation 
and eNOS expression are attenuated. 
The novel selective ERα agonist 
Cpd1471 prevented these pathophy-
siological changes to a similar extent as 
17β-estradiol. Thus, the selective 
activation of ERα receptors mediates 
positive vascular effects. 

SHR  
 
Dantas et al. [113] 

12 weeks Subcutaneous pellets 
containing estradiol (0.05 
mg) or estradiol (0.05 
mg) with  progesterone 
(50 mg) 
 

Thirty days 
after OVX 
 
4-6 weeks 
 

Estrogens reduced superoxide 
overproduction induced by OVX. The 
antioxidant effect of estrogen, which 
can contribute to a less pronounced 
endothelial dysfunction, may be 
dependent on a direct modulatory action 
of estrogen on NADPH activity 

SHR  
 
Ceravolo et al. [116] 
 

12 weeks Conjugated equine 
estrogen (CEE) given 
by gavages at the dose of 
0.625 mg/day 

Thirty days 
after OVX 
 
2 weeks 

Benefit of CEE therapy through  
a mechanism that involves reduction of 
oxidative stress, improving endothelial 
function 

SHR 
 
Silva-Antonialli et 
al. [26] 

12 weeks 17β-estradiol  
(50 μg/ s.c.) 

Thirty days 
after OVX 
 
2 weeks 

OVX increased expression of AT1 
receptors, while it lowered expression 
of AT2 receptors. Estrogen treatment 
reversed these changes. 

SHR  
 
Riveiro et al. [114] 

13 weeks Irbesartan  
(50 mg/kg/day) 

No hormonal 
substitution 
 
ACEi at the 
time of OVX 
 
30 weeks 

Irbesartan enhanced basal nitric oxide 
availability and ameliorated vascular 
relaxation by decreased production of 
cyclooxygenase-dependent contracting 
factors in smooth muscle cells, 
regardless of estrogen status 
 

SHR  
 
Dantas et al. [115] 

13 weeks 17β estradiol (50 μg)  
subcutaneous pellet 

Fifteen days 
after OVX 
2 weeks 

Estrogen deprivation leads to activation 
of prostaglandin endoperoxide synthase, 
which is reversed by estrogens. 

SHR 
 
Wassmann et al. 
[118] 

16 weeks 17β-estradiol (1.7 mg) 
subcutaneous pellets 
 
 
 
Irbesartan 
(50 mg/kg/day) 

At the time of 
OVX  
 
5 weeks 
 
2 weeks after 
OVX 
 
5 weeks 

Ovariectomy increased vascular free 
radical production and enhanced 
angiotensin II-induced vasoconstriction, 
resulting in endothelial dysfunction. 
Estrogen replacement therapy and  
AT1 receptor antagonism prevented these 
pathological changes. Thus, estrogen 
deficiency induced AT1 receptor 
overexpression and oxidative stress that 
play important role in menopause 

SHR 
 
Jazbutyte et al. [150] 

12 weeks 
or 
24 months 

17β-estradiol  
(2 μg/kg/day) 

At the time of 
OVX 
 
6 weeks 

Aging attenuated antihypertrophic 
effects of estradiol with major 
alterations of ERα and estradiol 
metabolism. This explains low 
efficiency of estrogen substitution in 
senescent SHR. 
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SHR  
 
Vera et al. [120] 

6 months Phytoestrogen genistein 
(10 mg/kg/day p.o.) 
or   
17β-estradiol 
(2 mg/kg/week s.c.)  

Three weeks 
after OVX 
 
5 weeks 

Genistein prevented all cardiovascular 
changes induced by estrogen depletion 
to a similar extent as estradiol but had 
no uterotrophic effect.  
 

SHROB (obese) 
 
Bitto et al. [151] 

7 months Genistein (54 mg/day) 
 

At the time of 
OVX 
 
4 weeks 

Genistein ameliorated endothelial 
dysfunction and insulin resistance, 
increased HDL cholesterol and 
enhanced liver expression of PPARα 
and PPARγ 
 

SHR  
Males, females 
 
Leitzbach et al. 
[119] 

9 months Estrogen receptor 
modulator raloxifene  
(10 mg/kg/day) 
 

At the time of 
OVX 
 
12 weeks 
 

Long-term treatment of rats with 
raloxifene has beneficial effects on the 
cardiovascular system in old male and 
female OVX via an increased NO 
bioavailability. 

SHR  
 
Fortepiani et al. 
[121] 

OVX  at 
8 months  
or 
Spontaneous 
menopause 

Intact or OVX rats were 
studied at the age of 18 
months 

No hormonal 
substitution  

Postmenopausal rats, but not OVX rats, 
may be a suitable model for the study of 
postmenopausal hypertension. Oxidative 
stress plays a role in the increased BP. 

SHR  
 
Lima et al. [123] 

Spontaneous 
menopause 
studied at the 
age of 
18 months 

Blockade of three 
systems contributing to 
hypertension: renin-
angiotensin (enalapril), 
eicosanoids (1-amino-
benzotriazole), and 
endothelin (ETA receptor 
antagonist). 

No OVX or 
hormonal 
substitution 
 
Short-term 
blockade of 
each system 
for one week 

ANG II, eicosanoids, and endothelin 
contribute together and independently 
to BP control in old female rats. 
However, other systems might also 
contribute to the postmenopausal 
hypertension. 

SHR 
 
Yanes et al. [124] 

Spontaneous 
menopause 
 
studied at the 
age of 
18 months  

Chronic inhibition of 20-
Hydroxyeicosatetraenoic 
acid (20-HETE) 
formation by 1-
aminobenzotriazole (50 
mg/kg/day) 

No OVX or 
hormonal 
substitution 
Short-term 
blockade for 
one week 

20-hydroxyeicosatetraenoic acids  
(20-HETE), produced by cytochrome 
P-450 ω-hydroxylase, contribute to 
postmenopausal hypertension in SHR. 

SHR  
 
Maranon et al. [127] 

Spontaneous 
menopause 
 
studied at the 
age of 
18 months 

Adrenergic blockade 
(terazosin  and 
propranolol , each 
10 mg/kg/day) 
   
Renal denervation after 
uninephrectomy 
 
Melanocortin 3/4 
receptor antagonism 

No OVX or 
hormonal 
substitution 
 
Short-term 
studies for one 
week 

Hypertension in old female SHR is 
partly due to the activation of 
sympathetic nervous system.  
The renal nerves also contribute to this 
hypertension.  
The sympathetic activation in old 
females is independent of melanocortin 
3/4 receptor. 

Sprague-Dawley rats 
 
Pinnaet al. [139] 

At about 
2 months of 
age 
(200-225 g) 

17β-estradiol  
(235 μg/kg/5 days),  

1, 4, and 8 
months after 
OVX 
 
5 days 

Functional impairment of the 
ERα/endothelial NO synthase signaling 
network after an extended (8 months) 
period of hypoestrogenicity was not 
restored by E2 administration, 
providing experimental support to early 
initiation of estrogen replacement with 
preferential ERα a targeting to improve 
cardiovascular outcomes. 

Heterozygous 
mRen2.Lewis rats 
  
Jessup et al. [137] 

4 weeks nNOS inhibitor  
(L-VNIO) N5-(1-imino-
3-butenyl)-L-ornithine  
(0.5 mg/kg /day)  

No hormonal 
substitution 

Chronic nNOS inhibition lowered BP 
and improved diastolic dysfunction and 
reduced oxidative stress in OVX 
mRen2.Lewis female rats. 
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Heterozygous 
mRen2.Lewis rats 
 
Chappell et al. [128] 

5 weeks 17β-estradiol  
(1.0 mg subcutaneous 
pellet replaced after 
3 weeks) 
 
Additional groups of  
12-week-old OVX 
mRen2.Lewis rats were 
treated with AT1 receptor 
antagonist olmesartan  
for 4 weeks 

At the time of 
OVX 
 
6 weeks 

OVX increased BP which was lowered 
by estrogens or olmesartan to a similar 
extent. Ovarial hormones considerably 
lowered blood pressure potentially by 
limiting activation of the renin-
angiotensin system. 

Heterozygous 
mRen2.Lewis rats 
 
Yamaleyeva et al. 
[132] 

15 weeks High-salt diet feeding of 
OVX rats at the age of 60 
weeks 

No hormonal 
substitution 

No BP increase in this strain 15 or 45 
weeks after OVX. However, OVX in 
older female mRen2.Lewis rats conveys 
protection against salt-dependent 
increase in renal injury. 

Heterozygous 
mRen2.Lewis rats 
 
Lindsey et al. [135] 

No OVX 
 

Membrane-bound 
estrogen receptor GPR30 
agonist G-1  
(0.4 mg/kg/day)  
for the last 2 weeks of 
high-salt diet  
 
4% NaCl diet  
(5 to 15 weeks of age) 

Eight weeks 
after the onset 
of high-salt 
diet 
 
2 weeks 

GPR30-mediated beneficial effects in 
salt-sensitive mRen2.Lewis rats were 
independent of changes in BP. The 
failure of G-1 to influence BP may 
reflect a salt-induced impairment in 
GPR30-mediated vasorelaxation. The 
renoprotective action of GPR30 may 
involve attenuation of tubular oxidative 
stress and activation of megalin-
mediated protein reabsorption. 

Acknowledgements 
Supported by Ministry of Education, Youth and Sports of 
the Czech Republic under the Programme for Supporting 
Excellent Research in Priority Areas of Public Interest in 
Health Care – EXCELES, project LX22NPO5104 as well 

as by institutional supports of the Institute of Clinical and 
Experimental Medicine, grant Nr. RVO 00023001, and 
Institute of Physiology, Czech Academy of Sciences, 
grant Nr. RVO 67985823. 
 

 
References 
 
1. Rapsomaniki E, Timmis A, George J, Pujades-Rodriguez M, Shah AD, Denaxas S, White IR, Caulfield MJ, 

Deanfield JE, Smeeth L, Williams B, Hingorani A, Hemingway H. Blood pressure and incidence of twelve 
cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. 
Lancet 2014;383:1899-1911. https://doi.org/10.1016/S0140-6736(14)60685-1 

2. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of  
84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and 
territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet  
2018;392:1923-1994. https://doi.org/10.1016/S0140-6736(18)32225-6 

3. Gerdts E, Izzo R, Mancusi C, Losi MA, Manzi MV, Canciello G, De Luca N, Trimarco B, de Simone G. Left 
ventricular hypertrophy offsets the sex difference in cardiovascular risk (the Campania Salute Network).  
Int J Cardiol 2018;258:257-261. https://doi.org/10.1016/j.ijcard.2017.12.086 

4. Masubuchi Y, Kumai T, Uematsu A, Komoriyama K, Hirai M. Gonadectomy-induced reduction of blood pressure 
in adult spontaneously hypertensive rats. Acta Endocrinol (Copenh) 1982;101:154-160. 
https://doi.org/10.1530/acta.0.1010154 

5. Elmarakby AA, Sullivan JC. Sex differences in hypertension: lessons from spontaneously hypertensive rats 
(SHR). Clin Sci (Lond) 2021;135:1791-1804. https://doi.org/10.1042/CS20201017 

6. Lee MA, Böhm M, Paul M, Bader M, Ganten U, Ganten D. Physiological characterization  
of the hypertensive transgenic rat TGR(mREN2)27. Am J Physiol. 1996;270:E919-E29. 
https://doi.org/10.1152/ajpendo.1996.270.6.E919 



S104   Piťha et al.  Vol. 72 
 
 
7. Opočenský M, Dvořák P, Malý J, Kramer HJ, Bäcker A, Kopkan L, Vernerová Z, Tesař V, Zima T, Bader M, 

Ganten D, Janda J, Vaněčková I. Chronic endothelin receptor blockade reduces end-organ damage independently 
of blood pressure effects in salt-loaded heterozygous Ren-2 transgenic rats. Physiol Res 2004;53:581-93. 
https://doi.org/10.33549/physiolres.930569 

8. Dahl LK, Knudsen KD, Ohanian EV, Muirhead M, Tuthill R. Role of the gonads in hypertension-prone rats.  
J Exp Med 1975;142:748-759. https://doi.org/10.1084/jem.142.3.748 

9. Zicha J, Dobešová Z, Vokurková M, Rauchová H, Hojná S, Kadlecová M, Behuliak M, Vaněčková I, Kuneš J. 
Age-dependent salt hypertension in Dahl rats: fifty years of research. Physiol Res 2012;61(Suppl 1):S35-S87. 
https://doi.org/10.33549/physiolres.932363 

10. Crofton JT, Share L, Brooks DP. Gonadectomy abolishes the sexual dimorphism in DOC-salt hypertension in the 
rat. Clin Exp Hypertens A 1989;11:1249-1261. https://doi.org/10.3109/10641968909038168 

11. Sáinz J, Osuna A, Wangensteen R, de Dios Luna J, Rodríguez-Gómez I, Duarte J, Moreno JM, Vargas F. Role of 
sex, gonadectomy and sex hormones in the development of nitric oxide inhibition-induced hypertension.  
Exp Physiol 2004;89:155-162. https://doi.org/10.1113/expphysiol.2003.002652 

12. Kuneš J, Dobešová Z, Zicha J. Altered balance of main vasopressor and vasodepressor systems in rats with genetic 
hypertension and hypertriglyceridaemia. Clin Sci (Lond) 2002;102:269-277. https://doi.org/10.1042/cs1020269 

13. Kadlecová M, Dobešová Z, Zicha J, Kuneš J. Abnormal Igf2 gene in Prague hereditary hypertriglyceridemic rats: 
its relation to blood pressure and plasma lipids. Mol Cell Biochem 2008;314:37-43. 
https://doi.org/10.1007/s11010-008-9762-0 

14. Zicha J, Pecháňová O, Čačányiová S, Cebová M, Kristek F, Török J, Šimko F, Dobešová Z, Kuneš J. Hereditary 
hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiol Res 
2006;55(Suppl 1):S49-S63. https://doi.org/10.33549/physiolres.930000.55.S1.49 

15. Ganten U, Schröder G, Witt M, Zimmermann F, Ganten D, Stock G. Sexual dimorphism of blood pressure in 
spontaneously hypertensive rats: effects of anti-androgen treatment. J Hypertens 1989;7:721-726. 
https://doi.org/10.1097/00004872-198909000-00005 

16. Chen YF, Meng QC. Sexual dimorphism of blood pressure in spontaneously hypertensive rats is androgen 
dependent. Life Sci 1991;48:85-96. https://doi.org/10.1016/0024-3205(91)90428-E 

17. Maris ME, Melchert RB, Joseph J, Kennedy RH. Gender differences in blood pressure and heart rate in 
spontaneously hypertensive and Wistar-Kyoto rats. Clin Exp Pharmacol Physiol 2005;32:35-39. 
https://doi.org/10.1111/j.1440-1681.2005.04156.x 

18. Sullivan JC, Semprun-Prieto L, Boesen EI, Pollock DM, Pollock JS. Sex and sex hormones influence the 
development of albuminuria and renal macrophage infiltration in spontaneously hypertensive rats.  
Am J Physiol Regul Integr Comp Physiol 2007;293:R1573-R1579. https://doi.org/10.1152/ajpregu.00429.2007 

19. Loukotová J, Bačáková L, Zicha J, Kuneš J. The influence of angiotensin II on sex-dependent proliferation of 
aortic VSMC isolated from SHR. Physiol Res 1998;47:501-505.  

20. Loukotová J, Kuneš J, Zicha J. Gender-dependent difference in cell calcium handling in VSMC isolated from 
SHR: the effect of angiotensin II. J Hypertens 2002;20:2213-2219. https://doi.org/10.1097/00004872-200211000-
00021 

21. Gong G, Johnson ML, Pettinger WA. Testosterone regulation of renal α2B-adrenergic receptor mRNA levels. 
Hypertension 1995;25:350-355. https://doi.org/10.1161/01.HYP.25.3.350 

22. Caplea A, Seachrist D, Daneshvar H, Dunphy G, Ely D. Noradrenergic content and turnover rate in kidney and 
heart shows gender and strain differences. J Appl Physiol 2002;92:567-571. 
https://doi.org/10.1152/japplphysiol.00557.2001 

23. Berg T. α2-adrenoreceptor constraint of catecholamine release and blood pressure is enhanced in female 
spontaneously hypertensive rats. Front Neurosci 2016;10:130. https://doi.org/10.3389/fnins.2016.00130 

24. Chen YF, Naftilan AJ, Oparil S. Androgen-dependent angiotensinogen and renin messenger RNA expression in 
hypertensive rats. Hypertension 1992;19:456-463. https://doi.org/10.1161/01.HYP.19.5.456 

25. Reckelhoff JF, Zhang H, Srivastava K. Gender differences in development of hypertension in spontaneously 
hypertensive rats: role of the renin-angiotensin system. Hypertension 2000;35:480-483. 
https://doi.org/10.1161/01.HYP.35.1.480 



2023  Hypertension after Menopause, Experimental Perspective   S105  
 

26. Silva-Antonialli MM, Tostes RC, Fernandes L, Fior-Chadi DR, Akamine EH, Carvalho MH, Fortes ZB, Nigro D. 
A lower ratio of AT1/AT2 receptors of angiotensin II is found in female than in male spontaneously hypertensive 
rats. Cardiovasc Res 2004;62:587-593. https://doi.org/10.1016/j.cardiores.2004.01.020 

27. Sullivan JC, Sasser JM, Pollock JS. Sexual dimorphism in oxidant status in spontaneously hypertensive rats.  
Am J Physiol Regul Integr Comp Physiol 2007;292:R764-R768. https://doi.org/10.1152/ajpregu.00322.2006 

28. Lopez-Ruiz A, Sartori-Valinotti J, Yanes LL, Iliescu R, Reckelhoff JF. Sex differences in control of blood 
pressure: role of oxidative stress in hypertension in females. Am J Physiol Heart Circ Physiol  
2008;295:H466-H474. https://doi.org/10.1152/ajpheart.01232.2007 

29. Sasser JM, Brinson KN, Tipton AJ, Crislip GR, Sullivan JC. Blood pressure, sex, and female sex hormones 
influence renal inner medullary nitric oxide synthase activity and expression in spontaneously hypertensive rats.  
J Am Heart Assoc 2015;4:e001738. https://doi.org/10.1161/JAHA.114.001738 

30. Tipton AJ, Baban B, Sullivan JC. Female spontaneously hypertensive rats have greater renal anti-inflammatory  
T lymphocyte infiltration than males. Am J Physiol Regul Integr Comp Physiol 2012;303:R359-R367. 
https://doi.org/10.1152/ajpregu.00246.2012 

31. Tipton AJ, Baban B, Sullivan JC. Female spontaneously hypertensive rats have a compensatory increase in renal 
regulatory T cells in response to elevations in blood pressure. Hypertension 2014;64:557-564. 
https://doi.org/10.1161/HYPERTENSIONAHA.114.03512 

32. Tipton AJ, Musall JB, Crislip GR, Sullivan JC. Greater transforming growth factor-β in adult female SHR is 
dependent on blood pressure, but does not account for sex differences in renal T-regulatory cells.  
Am J Physiol Renal Physiol 2017;313:F847-F853. https://doi.org/10.1152/ajprenal.00175.2017 

33. Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. 
Nature 1990;344:541-544. https://doi.org/10.1038/344541a0 

34. Johnson MS, DeMarco VG, Heesch CM, Whaley-Connell AT, Schneider RI, Rehmer NT, Tilmon RD,  
Ferrario CM, Sowers JR. Sex differences in baroreflex sensitivity, heart rate variability, and end organ damage in 
the TGR(mRen2)27 rat. Am J Physiol Heart Circ Physiol 2011;301:H1540-H1550. 
https://doi.org/10.1152/ajpheart.00593.2011 

35. Vaněčková I, Husková Z, Vaňourková Z, Cervenka L. Castration has antihypertensive and organoprotective 
effects in male but not in female heterozygous Ren-2 rats. Kidney Blood Press Res 2011;34:46-52. 
https://doi.org/10.1159/000322618 

36. Rauchová H, Hojná S, Kadlecová M, Vaněčková I, Zicha J. Sex differences in blood pressure of aged Ren-2 
transgenic rats. Physiol Res 2020;69:245-252. https://doi.org/10.33549/physiolres.934369 

37. Rauchová H, Hojná S, Kadlecová M, Vaněčková I, Chao YM, Chan JYH, Zicha J. Sex differences in blood 
pressure, free radicals and plasma cholesterol fractions in Ren-2 Transgenic rats of various ages. Physiol Res 
2023; 72:167-175. https://doi.org/10.33549/physiolres.935059 

38. Husková Z, Kramer H, Vaňourková Z, Thumová M, Malý J, Opočenský M, Škaroupková P, Kolský A, Vernerová 
Z, Červenka L. Effects of dietary salt load and salt depletion on the course of hypertension and angiotensin II 
levels in male and female heterozygous Ren-2 transgenic rats. Kidney Blood Press Res 2007;30:45-55. 
https://doi.org/10.1159/000099028 

39. Ouchi Y, Yazaki Y, Tsai RC, Ashida T. Pressor response to vasopressin and norepinephrine in DOC-salt 
hypertensive and prehypertensive rats. Tohoku J Exp Med 1988;154:125-133. 
https://doi.org/10.1620/tjem.154.125 

40. Bayorh MA, Socci RR, Eatman D, Wang M, Thierry-Palmer M. The role of gender in salt-induced hypertension. 
Clin Exp Hypertens 2001;23:241-255. https://doi.org/10.1081/CEH-100102663 

41. Dobešová Z, Kuneš J, Zicha J. Body fluid alterations and organ hypertrophy in age-dependent salt hypertension of 
Dahl rats. Physiol Res 1995;44:377-387.  

42. Hinojosa-Laborde C, Lange DL, Haywood JR. Role of female sex hormones in the development and reversal of 
Dahl hypertension. Hypertension 2000;35:484-489. https://doi.org/10.1161/01.HYP.35.1.484 

43. Dobešová Z, Kuneš J, Zicha J. The altered balance between sympathetic nervous system and nitric oxide in salt 
hypertensive Dahl rats: ontogenetic and F2 hybrid studies. J Hypertens 2002;20:945-955. 
https://doi.org/10.1097/00004872-200205000-00030 



S106   Piťha et al.  Vol. 72 
 
 
44. Behuliak M, Pintérová M, Kuneš J, Zicha J. Vasodilator efficiency of endogenous prostanoids, Ca²⁺-activated  

K⁺ channels and nitric oxide in rats with spontaneous, salt-dependent or NO-deficient hypertension. Hypertens Res 
2011;34:968-975. https://doi.org/10.1038/hr.2011.82 

45. Mensah EA, Daneshtalab N, Tabrizchi R. Differential biomechanics in resistance arteries of male compared with 
female Dahl hypertensive rats. J Hypertens 2022;40:596-605. https://doi.org/10.1097/HJH.0000000000003053 

46. Herrera VL, Tsikoudakis A, Ponce LR, Matsubara Y, Ruiz-Opazo N. Sex-specific QTLs and interacting loci 
underlie salt-sensitive hypertension and target organ complications in Dahl S/jrHS hypertensive rats.  
Physiol Genomics 2006;26:172-179. https://doi.org/10.1152/physiolgenomics.00285.2005 

47. Barris CT, Faulkner JL, Belin de Chantemèle EJ. Salt sensitivity of blood pressure in women. Hypertension 
2023;80:268-278. https://doi.org/10.1161/HYPERTENSIONAHA.122.17952 

48. Xue B, Badaue-Passos D Jr, Guo F, Gomez-Sanchez CE, Hay M, Johnson AK. Sex differences and central 
protective effect of 17β-estradiol in the development of aldosterone/NaCl-induced hypertension.  
Am J Physiol Heart Circ Physiol 2009;296:H1577-H1585. https://doi.org/10.1152/ajpheart.01255.2008 

49. Faulkner JL, Belin de Chantemèle EJ. Mineralocorticoid receptor and endothelial dysfunction in hypertension. 
Curr Hypertens Rep 2019;21:78. https://doi.org/10.1007/s11906-019-0981-4 

50. Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, Sherman S, Sluss PM, de Villiers TJ; STRAW+10 
Collaborative Group. Executive summary of the Stages of Reproductive Aging Workshop +10: addressing the 
unfinished agenda of staging reproductive aging. Climacteric 2012;15:105-114. 
https://doi.org/10.3109/13697137.2011.650656 

51. Hale GE, Zhao X, Hughes CL, Burger HG, Robertson DM, Fraser IS. Endocrine features of menstrual cycles in 
middle and late reproductive age and the menopausal transition classified according to the Staging of 
Reproductive Aging Workshop (STRAW) staging system. J Clin Endocrinol Metab 2007;92:3060-3067. 
https://doi.org/10.1210/jc.2007-0066 

52. Vokonas PS, Kannel WB, Cupples LA. Epidemiology and risk of hypertension in the elderly: the Framingham 
Study. J Hypertens 1988;6(Suppl):S3-S9. https://doi.org/10.1097/00004872-199112002-00002 

53. Ong KL, Cheung BMY, Man YB, Lau CP, Lam KSL. Prevalence, awareness, treatment, and control of 
hypertension among United States adults 1999-2004. Hypertension 2007;49:69-75. 
https://doi.org/10.1161/01.HYP.0000252676.46043.18 

54. Staessen J, Bulpitt CJ, Fagard R, Lijnen P, Amery A. The influence of menopause on blood pressure.  
J Hum Hypertens 1989;3:427-433.   

55. Portaluppi F, Pansini F, Manfredini R, Mollica G. Relative influence of menopausal status, age, and body mass 
index on blood pressure.Hypertension 1997;29:976-979. https://doi.org/10.1161/01.HYP.29.4.976 

56. Cifkova R, Pitha J, Lejskova M, Lanska V, Zecova S. Blood pressure around the menopause: a population study.  
J Hypertens 2008;26:1976-1982. https://doi.org/10.1097/HJH.0b013e32830b895c 

57. Niță AR, Knock GA, Heads RJ. Signalling mechanisms in the cardiovascular protective effects of estrogen: With  
a focus on rapid/membrane signalling. Curr Res Physiol 2021;4:103-118. 
https://doi.org/10.1016/j.crphys.2021.03.003 

58. Roa-Díaz ZM, Raguindin PF, Bano A, Laine JE, Muka T, Glisic M. Menopause and cardiometabolic diseases: 
What we (don't) know and why it matters. Maturitas 2021;152:48-56. 
https://doi.org/10.1016/j.maturitas.2021.06.013 

59. Armeni E, Lambrinoudaki I. Menopause, androgens, and cardiovascular ageing: a narrative review.  
Ther Adv Endocrinol Metab 2022;13:20420188221129946. https://doi.org/10.1177/20420188221129946 

60. Coylewright M, Reckelhoff JF, Ouyang P. Menopause and hypertension: an age-old debate. Hypertension 
2008;51:952-959. https://doi.org/10.1161/HYPERTENSIONAHA.107.105742 

61. Somani YB, Pawelczyk JA, De Souza MJ, Kris-Etherton PM, Proctor DN.Aging women and their endothelium: 
probing the relative role of estrogen on vasodilator function. Am J Physiol Heart Circ Physiol  
2019;317:H395-H404. https://doi.org/10.1152/ajpheart.00430.2018 

62. Maric-Bilkan C, Manigrasso MB. Sex differences in hypertension: contribution of the renin-angiotensin system. 
Gend Med 2012;9:287-291. https://doi.org/10.1016/j.genm.2012.06.005 



2023  Hypertension after Menopause, Experimental Perspective   S107  
 

63. Pechère-Bertschi A, Burnier M. Female sex hormones, salt, and blood pressure regulation. Am J Hypertens 
2004;17:994-1001. https://doi.org/10.1016/j.amjhyper.2004.08.009 

64. El Khoudary SR, Greendale G, Crawford SL, Avis NE, Brooks MM, Thurston RC, Karvonen-Gutierrez C, 
Waetjen LE, Matthews K. The menopause transition and women's health at midlife: a progress report from the 
Study of Women's Health Across the Nation (SWAN). Menopause 2019;26:1213-1227. 
https://doi.org/10.1097/GME.0000000000001424 

65. Udali S, Guarini P, Moruzzi S, Choi SW, Friso S. Cardiovascular epigenetics: from DNA methylation to 
microRNAs. Mol Aspects Med 2013;34:883-901. https://doi.org/10.1016/j.mam.2012.08.001 

66. Sharma S, Eghbali M. Influence of sex differences on microRNA gene regulation in disease. Biol Sex Differ 
2014;5:3. https://doi.org/10.1186/2042-6410-5-3 

67. Schierbeck LL, Rejnmark L, Tofteng CL, Stilgren L, Eiken P, Mosekilde L, Køber L, Jensen JE. Effect of 
hormone replacement therapy on cardiovascular events in recently postmenopausal women: randomised trial. 
BMJ. 2012;345:e6409. https://doi.org/10.1136/bmj.e6409 

68. Hodis HN, Collins P, Mack WJ, Schierbeck LL. The timing hypothesis for coronary heart disease prevention with 
hormone therapy: past, present and future in perspective. Climacteric 2012;15:217-228. 
https://doi.org/10.3109/13697137.2012.656401 

69. Boardman HM, Hartley L, Eisinga A, Main C, Roqué i Figuls M, Bonfill Cosp X, Gabriel Sanchez R, Knight B. 
Hormone therapy for preventing cardiovascular disease in post-menopausal women. Cochrane Database Syst Rev 
2015;2015(3):CD002229. https://doi.org/10.1002/14651858.CD002229.pub4 

70. Newson L. Menopause and cardiovascular disease. Post Reprod Health 2018;24:44-49. 
https://doi.org/10.1177/2053369117749675 

71. El Khoudary SR. The menopause transition: a critical stage for cardiovascular disease risk acceleration in women. 
Menopause 2023;30:556-558. https://doi.org/10.1097/GME.0000000000002172 

72. Mikkola TS, Tuomikoski P, Lyytinen H, Korhonen P, Hoti F, Vattulainen P, Gissler M, Ylikorkala O. Estradiol-
based postmenopausal hormone therapy and risk of cardiovascular and all-cause mortality. Menopause 
2015;22:976-983. https://doi.org/10.1097/GME.0000000000000450 

73. Chiu CL, Lujic S, Thornton C, O'Loughlin A, Makris A, Hennessy A, Lind JM. Menopausal hormone therapy is 
associated with having high blood pressure in postmenopausal women: observational cohort study. PLoS One 
2012;7:e40260. https://doi.org/10.1371/journal.pone.0040260 

74. Trémollières FA, Pouilles JM, Cauneille C, Ribot C. Coronary heart disease risk factors and menopause: a study in 
1684 French women. Atherosclerosis 1999;142:415-423. https://doi.org/10.1016/S0021-9150(98)00252-4 

75. Miller VM, Taylor HS, Naftolin F, Manson JE, Gleason CE, Brinton EA, Kling JM, Cedars MI, Dowling NM, 
Kantarci K, Harman SM. Lessons from KEEPS: the Kronos Early Estrogen Prevention Study. Climacteric 
2021;24:139-145. https://doi.org/10.1080/13697137.2020.1804545 

76. Salpeter SR, Walsh JM, Ormiston TM, Greyber E, Buckley NS, Salpeter EE. Meta-analysis: effect of hormone-
replacement therapy on components of the metabolic syndrome in postmenopausal women. Diabetes Obes Metab 
2006;8:538-554. https://doi.org/10.1111/j.1463-1326.2005.00545.x 

77. Visniauskas B, Kilanowski-Doroh I, Ogola BO, Mcnally AB, Horton AC, Imulinde Sugi A, Lindsey SH. 
Estrogen-mediated mechanisms in hypertension and other cardiovascular diseases. J Hum Hypertens 2022  
(in press) https://doi.org/10.1038/s41371-022-00771-0 

78. Crofton JT, Share L. Gonadal hormones modulate deoxycorticosterone-salt hypertension in male and female rats. 
Hypertension 1997;29:494-499. https://doi.org/10.1161/01.HYP.29.1.494 

79. Otsuka K, Suzuki H, Sasaki T, Ishii N, Itoh H, Saruta T. Blunted pressure natriuresis in ovariectomized Dahl-Iwai 
salt-sensitive rats. Hypertension 1996;27:119-124. https://doi.org/10.1161/01.HYP.27.1.119 

80. Harrison-Bernard LM, Schulman IH, Raij L. Postovariectomy hypertension is linked to  
increased renal AT1 receptor and salt sensitivity. Hypertension 2003;42:1157-1163. 
https://doi.org/10.1161/01.HYP.0000102180.13341.50 

81. Herrera VL, Pasion KA, Moran AM, Ruiz-Opazo N. Differential genetic basis for pre-menopausal and post-
menopausal salt-sensitive hypertension. PLoS One 2012;7:e43160. https://doi.org/10.1371/journal.pone.0043160 



S108   Piťha et al.  Vol. 72 
 
 
82. Herrera VL, Pasion KA, Moran AM, Ruiz-Opazo N. Worse renal disease in postmenopausal  

F2[Dahl S x R]-intercross rats: detection of novel QTLs affecting hypertensive kidney disease. PLoS One 
2013;8:e56096. https://doi.org/10.1371/journal.pone.0056096 

83. Gong G, Dobin A, Johnson ML, Pettinger WA. Sexual dimorphism of renal α2-adrenergic receptor regulation in 
Dahl rats. Hypertens Res 1996;19:83-89. https://doi.org/10.1291/hypres.19.83 

84. Otsuka K, Suzuki H, Sasaki T, Ishii N, Itoh H, Saruta T. Blunted pressure natriuresis in ovariectomized Dahl-Iwai 
salt-sensitive rats. Hypertension 1996;27:119-124. https://doi.org/10.1161/01.HYP.27.1.119 

85. Zheng W, Ji H, Maric C, Wu X, Sandberg K. Effect of dietary sodium on estrogen regulation of blood pressure in 
Dahl salt-sensitive rats. Am J Physiol Heart Circ Physiol 2008;294:H1508-H1513. 
https://doi.org/10.1152/ajpheart.01322.2007 

86. Zhang L, Fujii S, Kosaka H. Effect of oestrogen on reactive oxygen species production  
in the aortas of ovariectomized Dahl salt-sensitive rats. J Hypertens 2007;25:407-414. 
https://doi.org/10.1097/HJH.0b013e328010beee 

87. De Sanctis V, Soliman AT, Di Maio S, Soliman N, Elsedfy H. Long-term effects and significant Adverse Drug 
Reactions (ADRs) associated with the use of Gonadotropin-Releasing Hormone analogs (GnRHa) for central 
precocious puberty: a brief review of literature. Acta Biomed 2019;90:345-359.  

88. Sasaki T, Ohno Y, Otsuka K, Suzawa T, Suzuki H, Saruta T. Oestrogen attenuates the increases in blood pressure 
and platelet aggregation in ovariectomized and salt-loaded Dahl salt-sensitive rats. J Hypertens. 2000;18:911-917. 
https://doi.org/10.1097/00004872-200018070-00013 

89. Hinojosa-Laborde C, Craig T, Zheng W, Ji H, Haywood JR, Sandberg K. Ovariectomy  
augments hypertension in aging female Dahl salt-sensitive rats. Hypertension 2004;44:405-409. 
https://doi.org/10.1161/01.HYP.0000142893.08655.96 

90. Dai Q, Lin J, Craig T, Chou YM, Hinojosa-Laborde C, Lindsey ML. Estrogen effects on MMP-13 and MMP-14 
regulation of left ventricular mass in Dahl salt-induced hypertension. Gend Med 2008;5:74-85. 
https://doi.org/10.1016/S1550-8579(08)80010-1 

91. Maric C, Sandberg K, Hinojosa-Laborde C. Glomerulosclerosis and tubulointerstitial fibrosis are attenuated with 
17β-estradiol in the aging Dahl salt sensitive rat. J Am Soc Nephrol 2004;15:1546-1556. 
https://doi.org/10.1097/01.ASN.0000128219.65330.EA 

92. Maric C, Xu Q, Sandberg K, Hinojosa-Laborde C. Age-related renal disease in female Dahl salt-sensitive rats is 
attenuated with 17β-estradiol supplementation by modulating nitric oxide synthase expression. Gend Med 
2008;5:147-159. https://doi.org/10.1016/j.genm.2008.05.002 

93. Iams SG, Wexler BC. Retardation in the development of spontaneous hypertension in SH rats by gonadectomy.  
J Lab Clin Med 1977;90:997-1003.  

94. Iams SG, Wexler BC. Inhibition of the development of spontaneous hypertension in SH rats by gonadectomy or 
estradiol. J Lab Clin Med 1979;94:608-616.  

95. Liu B, Ely D. Testosterone increases: sodium reabsorption, blood pressure, and renal pathology in female 
spontaneously hypertensive rats on a high sodium diet. Adv Pharmacol Sci 2011;2011:817835. 
https://doi.org/10.1155/2011/817835 

96. Reckelhoff JF, Zhang H, Granger JP. Testosterone exacerbates hypertension and reduces pressure-natriuresis in 
male spontaneously hypertensive rats. Hypertension 1998;31:435-439. https://doi.org/10.1161/01.HYP.31.1.435 

97. Reckelhoff JF, Zhang H, Srivastava K, Granger JP. Gender differences in hypertension in spontaneously 
hypertensive rats: role of androgens and androgen receptor. Hypertension 1999;34:920-923. 
https://doi.org/10.1161/01.HYP.34.4.920 

98. Loh SY, Salleh N. Influence of testosterone on mean arterial pressure: A physiological study in male and female 
normotensive WKY and hypertensive SHR rats. Physiol Int 2017;104:25-34. 
https://doi.org/10.1556/2060.104.2017.1.3 

99. Reckelhoff JF, Fortepiani LA. Novel mechanisms responsible for postmenopausal hypertension. Hypertension 
2004;43:918-923. https://doi.org/10.1161/01.HYP.0000124670.03674.15 

100. Yanes LL, Reckelhoff JF. Postmenopausal hypertension. Am J Hypertens 2011;24:740-749. 
https://doi.org/10.1038/ajh.2011.71 



2023  Hypertension after Menopause, Experimental Perspective   S109  
 

101. Maranon RO, Reckelhoff JF. Mechanisms responsible for postmenopausal hypertension in a rat model: Roles of 
the renal sympathetic nervous system and the renin-angiotensin system. Physiol Rep 2016;4:e12669. 
https://doi.org/10.14814/phy2.12669 

102. Fang Z, Carlson SH, Chen YF, Oparil S, Wyss JM. Estrogen depletion induces NaCl-sensitive hypertension in 
female spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2001;281:R1934-R1939. 
https://doi.org/10.1152/ajpregu.2001.281.6.R1934 

103. Jazbutyte V, Arias-Loza PA, Hu K, Widder J, Govindaraj V, von Poser-Klein C, Bauersachs J, Fritzemeier KH, 
Hegele-Hartung C, Neyses L, Ertl G, Pelzer T. Ligand-dependent activation of ERβ lowers blood pressure and 
attenuates cardiac hypertrophy in ovariectomized spontaneously hypertensive rats. Cardiovasc Res  
2008;77:774-781. https://doi.org/10.1093/cvr/cvm081 

104. Pelzer T, Jazbutyte V, Hu K, Segerer S, Nahrendorf M, Nordbeck P, Bonz AW, Muck J, Fritzemeier KH, Hegele-
Hartung C, Ertl G, Neyses L. The estrogen receptor-α agonist 16α-LE2 inhibits cardiac hypertrophy and improves 
hemodynamic function in estrogen-deficient spontaneously hypertensive rats. Cardiovasc Res 2005;67:604-612. 
https://doi.org/10.1016/j.cardiores.2005.04.035 

105. Widder J, Pelzer T, von Poser-Klein C, Hu K, Jazbutyte V, Fritzemeier KH, Hegele-Hartung C, Neyses L, 
Bauersachs J. Improvement of endothelial dysfunction by selective estrogen receptor-α stimulation in 
ovariectomized SHR. Hypertension 2003;42:991-996. https://doi.org/10.1161/01.HYP.0000098661.37637.89 

106. Ito K, Hirooka Y, Kimura Y, Sagara Y, Sunagawa K. Ovariectomy augments hypertension through Rho-kinase 
activation in the brain stem in female spontaneously hypertensive rats. Hypertension 2006;48:651-657. 
https://doi.org/10.1161/01.HYP.0000238125.21656.9e 

107. Shimojo GL, Palma RK, Brito JO, Sanches IC, Irigoyen MC, De Angelis K. Dynamic resistance training decreases 
sympathetic tone in hypertensive ovariectomized rats. Braz J Med Biol Res 2015;48:523-527. 
https://doi.org/10.1590/1414-431x20154387 

108. da Palma RK, Moraes-Silva IC, da Silva Dias D, Shimojo GL, Conti FF, Bernardes N, Barboza CA, Sanches IC, 
da Rosa Araújo AS, Irigoyen MC, De Angelis K. Resistance or aerobic training decreases blood pressure and 
improves cardiovascular autonomic control and oxidative stress in hypertensive menopausal rats. J Appl Physiol 
2016;121:1032-1038. https://doi.org/10.1152/japplphysiol.00130.2016 

109. Dias da Silva VJ, Miranda R, Oliveira L, Rodrigues Alves CH, Van Gils GH, Porta A, Montano N. Heart rate and 
arterial pressure variability and baroreflex sensitivity in ovariectomized spontaneously hypertensive rats. Life Sci 
2009;84:719-724. https://doi.org/10.1016/j.lfs.2009.02.019 

110. Huang A, Sun D, Kaley G, Koller A. Estrogen preserves regulation of shear stress by nitric oxide in arterioles of 
female hypertensive rats. Hypertension 1998;31:309-314. https://doi.org/10.1161/01.HYP.31.1.309 

111. Riveiro A, Mosquera A, Calvo C, Alonso M, Macía M, Cores M. Long-term effect of bilateral ovariectomy on 
endothelial function in aortic rings of spontaneously hypertensive rats: role of nitric oxide. Gynecol Endocrinol 
2001;15:158-164. https://doi.org/10.1080/gye.15.2.158.164 

112. Giménez J, García MP, Serna M, Bonacasa B, Carbonell LF, Quesada T, Hernández I. 17β-oestradiol enhances the 
acute hypotensive effect of captopril in female ovariectomized spontaneously hypertensive rats. Exp Physiol 
2006;91:715-722. https://doi.org/10.1113/expphysiol.2006.033449 

113. Dantas AP, Tostes RC, Fortes ZB, Costa SG, Nigro D, Carvalho MH. In vivo evidence for antioxidant potential of 
estrogen in microvessels of female spontaneously hypertensive rats. Hypertension 2002;39:405-411. 
https://doi.org/10.1161/hy0202.102993 

114. Riveiro A, Mosquera A, Alonso M, Calvo C. Angiotensin II type 1 receptor blocker irbesartan ameliorates 
vascular function in spontaneously hypertensive rats regardless of oestrogen status. J Hypertens  
2002;20:1365-1372. https://doi.org/10.1097/00004872-200207000-00023 

115. Dantas AP, Franco Mdo C, Tostes RC, Fortes ZB, Costa SG, Nigro D, Carvalho MH. Relative contribution of 
estrogen withdrawal and gonadotropins increase secondary to ovariectomy on prostaglandin generation in 
mesenteric microvessels. J Cardiovasc Pharmacol 2004;43:48-55. https://doi.org/10.1097/00005344-200401000-
00008 
 



S110   Piťha et al.  Vol. 72 
 
 
116. Ceravolo GS, Filgueira FP, Costa TJ, Lobato NS, Chignalia AZ, Araujo PX, Tostes RC, Dantas AP, Fortes ZB, 

Carvalho MH. Conjugated equine estrogen treatment corrected the exacerbated aorta  
oxidative stress in ovariectomized spontaneously hypertensive rats. Steroids 2013;78:341-346. 
https://doi.org/10.1016/j.steroids.2012.11.018 

117. Huang A, Sun D, Kaley G, Koller A. Estrogen maintains nitric oxide synthesis in arterioles of female hypertensive 
rats. Hypertension. 1997 Jun;29(6):1351-1356. https://doi.org/10.1161/01.HYP.29.6.1351 

118. Wassmann S, Bäumer AT, Strehlow K, van Eickels M, Grohé C, Ahlbory K, Rösen R, Böhm M, Nickenig G. 
Endothelial dysfunction and oxidative stress during estrogen deficiency in spontaneously hypertensive rats. 
Circulation 2001 Jan 23;103:435-441. https://doi.org/10.1161/01.CIR.103.3.435 

119. Leitzbach D, Weckler N, Madajka M, Malinski T, Wiemer G, Linz W. Restoration of endothelial function via 
enhanced nitric oxide synthesis after long-term treatment of raloxifene in adult hypertensive rats. 
Arzneimittelforschung 2005;55:86-92. https://doi.org/10.1055/s-0031-1296828 

120. Vera R, Jiménez R, Lodi F, Sánchez M, Galisteo M, Zarzuelo A, Pérez-Vizcaíno F, Duarte J. Genistein restores 
caveolin-1 and AT-1 receptor expression and vascular function in large vessels of ovariectomized hypertensive 
rats. Menopause 2007;14:933-940. https://doi.org/10.1097/gme.0b013e31802d9785 

121. Fortepiani LA, Yanes L, Zhang H, Racusen LC, Reckelhoff JF. Role of androgens in mediating renal injury in 
aging SHR. Hypertension 2003;42:952-955. https://doi.org/10.1161/01.HYP.0000099241.53121.7F 

122. Yanes LL, Romero DG, Cucchiarelli VE, Fortepiani LA, Gomez-Sanchez CE, Santacruz F, Reckelhoff JF. Role of 
endothelin in mediating postmenopausal hypertension in a rat model. Am J Physiol Regul Integr Comp Physiol 
2005;288:R229-R233. https://doi.org/10.1152/ajpregu.00697.2003 

123. Lima R, Yanes LL, Davis DD, Reckelhoff JF. Roles played by 20-HETE, angiotensin II and endothelin in 
mediating the hypertension in aging female spontaneously hypertensive rats. Am J Physiol Regul Integr Comp 
Physiol 2013;304:R248-R251. https://doi.org/10.1152/ajpregu.00380.2012 

124. Yanes LL, Lima R, Moulana M, Romero DG, Yuan K, Ryan MJ, Baker R, Zhang H, Fan F, Davis DD, Roman RJ, 
Reckelhoff JF. Postmenopausal hypertension: role of 20-HETE. Am J Physiol Regul Integr Comp Physiol 
2011;300:R1543-R1548. https://doi.org/10.1152/ajpregu.00387.2010 

125. Yanes LL, Romero DG, Iles JW, Iliescu R, Gomez-Sanchez C, Reckelhoff JF. Sexual dimorphism in the renin-
angiotensin system in aging spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 
2006;291:R383-R390. https://doi.org/10.1152/ajpregu.00510.2005 

126. Yanes LL, Romero DG, Iliescu R, Zhang H, Davis D, Reckelhoff JF. Postmenopausal  
hypertension: role of the renin-angiotensin system. Hypertension 2010;56:359-363. 
https://doi.org/10.1161/HYPERTENSIONAHA.110.152975 

127. Maranon RO, Lima R, Mathbout M, do Carmo JM, Hall JE, Roman RJ, Reckelhoff JF. Postmenopausal 
hypertension: role of the sympathetic nervous system in an animal model. Am J Physiol Regul Integr Comp 
Physiol 2014;306:R248-R256. https://doi.org/10.1152/ajpregu.00490.2013 

128. Chappell MC, Gallagher PE, Averill DB, Ferrario CM, Brosnihan KB. Estrogen or the AT1 antagonist olmesartan 
reverses the development of profound hypertension in the congenic mRen2.Lewis rat. Hypertension.  
2003;42:781-786. https://doi.org/10.1161/01.HYP.0000085210.66399.A3 

129. Brosnihan KB, Li P, Ganten D, Ferrario CM. Estrogen protects transgenic hypertensive rats  
by shifting the vasoconstrictor-vasodilator balance of RAS. Am J Physiol 1997;273:R1908-R1915. 
https://doi.org/10.1152/ajpregu.1997.273.6.R1908 

130. Wang H, Jessup JA, Zhao Z, Da Silva J, Lin M, MacNamara LM, Ahmad S, Chappell MC, Ferrario CM, Groban 
L. Characterization of the cardiac renin angiotensin system in oophorectomized and estrogen-replete mRen2.Lewis 
rats. PLoS One 2013;8:e76992. https://doi.org/10.1371/journal.pone.0076992 

131. Chappell MC, Yamaleyeva LM, Westwood BM. Estrogen and salt sensitivity in the female mRen(2).Lewis rat. 
Am J Physiol Regul Integr Comp Physiol 2006;291:R1557-R1563. https://doi.org/10.1152/ajpregu.00051.2006 

132. Yamaleyeva LM, Pendergrass KD, Pirro NT, Gallagher PE, Groban L, Chappell MC. Ovariectomy is protective 
against renal injury in the high-salt-fed older mRen2.Lewis rat. Am J Physiol Heart Circ Physiol 2007; 
293:H2064-H2071. https://doi.org/10.1152/ajpheart.00427.2007 



2023  Hypertension after Menopause, Experimental Perspective   S111  
 

133. Groban L, Yamaleyeva LM, Westwood BM, Houle TT, Lin M, Kitzman DW, Chappell MC. Progressive  
diastolic dysfunction in the female mRen(2).Lewis rat: influence of salt and ovarian hormones.  
J Gerontol A Biol Sci Med Sci 2008;63:3-11. https://doi.org/10.1093/gerona/63.1.3 

134. Lindsey SH, Liu L, Chappell MC. Vasodilation by GPER in mesenteric arteries involves both  
endothelial nitric oxide and smooth muscle cAMP signaling. Steroids 2014;81:99-102. 
https://doi.org/10.1016/j.steroids.2013.10.017 

135. Lindsey SH, Yamaleyeva LM, Brosnihan KB, Gallagher PE, Chappell MC. Estrogen receptor GPR30 reduces 
oxidative stress and proteinuria in the salt-sensitive female mRen2.Lewis rat. Hypertension 2011;58:665-671. 
https://doi.org/10.1161/HYPERTENSIONAHA.111.175174 

136. Yamaleyeva LM, Gallagher PE, Vinsant S, Chappell MC. Discoordinate regulation of renal nitric oxide synthase 
isoforms in ovariectomized mRen2.Lewis rats. Am J Physiol Regul Integr Comp Physiol 2007;292:R819-R826. 
https://doi.org/10.1152/ajpregu.00389.2006 

137. Jessup JA, Zhang L, Chen AF, Presley TD, Kim-Shapiro DB, Chappell MC, Wang H, Groban L. Neuronal nitric 
oxide synthase inhibition improves diastolic function and reduces oxidative stress in ovariectomized mRen2.Lewis 
rats. Menopause 2011;18:698-708. https://doi.org/10.1097/gme.0b013e31820390a2 

138. Brosnihan KB, Li P, Figueroa JP, Ganten D, Ferrario CM. Estrogen, nitric oxide, and hypertension differentially 
modulate agonist-induced contractile responses in female transgenic (mRen2)27 hypertensive rats.  
Am J Physiol Heart Circ Physiol 2008;294:H1995-H2001. https://doi.org/10.1152/ajpheart.01193.2007 

139. Pinna C, Cignarella A, Sanvito P, Pelosi V, Bolego C. Prolonged ovarian hormone deprivation impairs the 
protective vascular actions of estrogen receptor alpha agonists. Hypertension 2008;51:1210-1217. 
https://doi.org/10.1161/HYPERTENSIONAHA.107.106807 

140. Ociepka A, Milewicz T, Kialka M, Krzyczkowska-Sendrakowska M. Vascular effects of simvastatin are similar to 
hormone replacement therapy in postmenopausal women. Przegl Lek 2016;73:280-286.  

141. Zhao Z, Wang H, Jessup JA, Lindsey SH, Chappell MC, Groban L. Role of estrogen in diastolic dysfunction.  
Am J Physiol Heart Circ Physiol 2014;306:H628-H640. https://doi.org/10.1152/ajpheart.00859.2013 

142. Oparil S, Chen SJ, Chen YF, Durand JN, Allen L, Thompson JA. Estrogen attenuates the adventitial contribution 
to neointima formation in injured rat carotid arteries. Cardiovasc Res 1999;44:608-614. 
https://doi.org/10.1016/S0008-6363(99)00240-0 

143. Klimeš I, Vrána A, Kuneš J, Šeböková E, Dobešová Z, Štolba P, Zicha J. Hereditary hypertriglyceridemic rat:  
a new animal model of metabolic alterations in hypertension. Blood Press 1995;4:137-142. 
https://doi.org/10.3109/08037059509077585 

144. Pitha J, Hüttl M, Malinska H, Miklankova D, Bartuskova H, Hlinka T, Markova I. Cardiovascular, metabolic and 
inflammatory changes after ovariectomy and estradiol substitution in hereditary hypertriglyceridemic rats.  
Int J Mol Sci 2022;23:2825. https://doi.org/10.3390/ijms23052825 

145. Sartori-Valinotti JC, Venegas-Pont MR, Lamarca BB, Romero DG, Yanes LL, Racusen LC, Jones AV, Ryan MJ, 
Reckelhoff JF. Rosiglitazone reduces blood pressure in female Dahl salt-sensitive rats. Steroids 2010;75:794-749. 
https://doi.org/10.1016/j.steroids.2009.10.010 

146. Loh SY, Giribabu N, Salleh N. Changes in plasma aldosterone and electrolytes levels, kidney epithelial sodium 
channel (ENaC) and blood pressure in normotensive WKY and hypertensive SHR rats following gonadectomy and 
chronic testosterone treatment. Steroids 2017;128:128-135. https://doi.org/10.1016/j.steroids.2017.09.008 

147. Bonacasa B, Hernández I, Fenoy FJ, Quesada T, López B. Effect of tempol on myocardial vascular remodeling in 
female spontaneously hypertensive rats. Histol Histopathol 2012;27:1047-1054.   

148. García MP, Giménez J, Serna M, Salom MG, Bonacasa B, Carbonell LF, Quesada T, Hernández I. Effect of 
estrogen and angiotensin-converting enzyme inhibitor on vascular remodeling in ovariectomized spontaneously 
hypertensive rats. Menopause 2006;13:397-403. https://doi.org/10.1097/01.gme.0000222472.08593.e4 

149. Giménez J, Garcia PM, Reckelhoff B, Carbonell LF, Quesada T, Hernández I. Effects of oestrogen treatment and 
angiotensin-converting enzyme inhibition on the microvasculature of ovariectomized spontaneously hypertensive 
rats. Exp Physiol 2006;91:261-268. https://doi.org/10.1113/expphysiol.2005.032060 
 



S112   Piťha et al.  Vol. 72 
 
 
150. Jazbutyte V, Hu K, Kruchten P, Bey E, Maier SK, Fritzemeier KH, Prelle K, Hegele-Hartung C,  

Hartmann RW, Neyses L, Ertl G, Pelzer T. Aging reduces the efficacy of estrogen substitution to  
attenuate cardiac hypertrophy in female spontaneously hypertensive rats. Hypertension 2006;48:579-586. 
https://doi.org/10.1161/01.HYP.0000240053.48517.c7 

151. Bitto A, Altavilla D, Bonaiuto A, Polito F, Minutoli L, Di Stefano V, Giuliani D, Guarini S, Arcoraci V,  
Squadrito F. Effects of aglycone genistein in a rat experimental model of postmenopausal metabolic syndrome.  
J Endocrinol 2009;200:367-376. https://doi.org/10.1677/JOE-08-0206 

 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


