Metabolomics and Lipidomics for Studying Metabolic Syndrome: Insights into Cardiovascular Diseases, Type 1 & 2 Diabetes, and Metabolic Dysfunction-Associated Steatotic Liver Disease

Stanislava RAKUSANOVA¹, Tomas CAJKA¹

¹Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic

Supplementary Materials

Table S1. Metabolomics and lipidomics cohort studies focused on cardiovascular disease

 Table S2. Metabolomics and lipidomics cohort studies focused on type 1 and type 2 diabetes

 Table S3. Metabolomics and lipidomics cohort studies focused on metabolic dysfunction-associated steatotic

 liver disease

Table S1. Metabolomics and lipidomics cohort studies focused on cardiovascular disease

Subjects (n)	Cohort	Matrix	Platforms	Reported	Markers	Outcomes	Ref.
Discovery cohort: n = 4,824 (27.8% female) Replication cohort: n = 1,716 (56.3% female)	Participants with 15.8 years follow-up	Serum	NMR	41	Isoleucine Leucine Phenylalanine Glycerol Cholesterol Total lipid concentrations, Glycerides and other Phospholipids, Fatty acids, Fatty acids ratios — see the original paper.	Association with adherence to dietary recommendations provided by the Alternative Healthy Eating Index	[1]
European cohort: n = 352 USA cohort: n = 1,777	European participants (100% Caucasian) with either abdominal aortic aneurysm or sub- aneurysmal aortic dilations, and healthy non- aneurysm subjects US participants (96% Caucasian) with abdominal aortic diameter of 3.0 cm or greater, and subjects with history of dilated aorta with measurements of abdominal aortic diameter less than 3 cm or no prior aortic aneurysm, and no MI, stroke or death over the following 3 years	Plasma	LC-MS/MS	3	Choline Trimethylamine <i>N</i> -oxide Trimethylamine	 Association of elevated TMAO with increased abdominal aortic aneurysm incidence 	[2]
Low-risk cohort: n = 620 Borderline-risk cohort: n = 110 Intermediate-risk cohort: n = 225 Highrisk cohort: n = 147 (53.3% female)	Participants with LDL levels less than 190 mg/dl and no pre-existing coronary artery disease or myocardial infarction	Plasma	LC-MS/MS	50	Alanine Arginine Aspartic acid CAR 4:0-DC CAR 8:1 CAR 16:0-OH Citrulline Glutamic acid Glutamine Glycine Histidine Phenylalanine Threonine Tryptophan	 Association with the 10-year ASCVD risk score Identification of metabolic pathways associated with the development of 10-year ASCVD events 	[3]
EPIC-Potsdam Study cohort: Common reference subcohort: n = 1262 T2D subcohort: n = 1886 (775 incident cases) CVD subcohort: n = 1671 (551 incident cases) DIVAS study cohort: CVD risk subcohort: n = 113 (on 3 different isoenergic diets)	General population Patients with estimated moderate CVD risk	Plasma	DMS-MS/MS	282	CE 20:3 DG 16:0 DG 18:0 FA 15:0 FA 20:4 LPC 18:2 MG 15:0 MG 20:4 PC 20:3 PE 20:3 TG 16:0 TG 18:0 TG 18:2 TG 18:3 TG 22:1	 Association with cardiometabolic disease risk and T2D risk Dietary fat intervention as a potential tool for primary disease prevention 	[4]

Subjects (n)	Cohort	Matrix	Platforms	Reported metabolites (n)	Markers	Outcomes	Ref.
Discovery cohort: n = 1,162 (36.3% female) Validation cohorts: n = 2,331 (US, 33.2% female), n = 832 (European, 29.9% female)	Stable participants undergoing elective diagnostic cardiac evaluation	Plasma	LC-MS/MS	5	N ¹ -Methyl-2-pyridone-5-carboxamide N ¹ -Methyl-4-pyridone-3-carboxamide Phenylacetylglutamine Trimethylamine N-oxide Trimethyllysine	 Association of terminal breakdown products of excess niacin with residual CVD risk 	[5]
Phase I: Discovery cohort: n = 3,613 Validation cohorts: n = 121,733 Phase II: n = 118,120	UK Biobank participants have undergone a wide range of physical measures, provided information on their lifestyle and medical history (follow-up)	Plasma	NMR	111	Multiple markers – see the original paper.	 Association with a healthy lifestyle Association of healthy lifestyle- associated metabolites with coronary artery disease (CAD) 	[6]
Discovery cohort: n = 1,028 Validation cohort: n = 1,670	Discovery cohort: Participants free of coronary heart disease (10 years follow-up)	Plasma	LC-MS/MS	32	LPC 18:1 LPC 18:2 MG 18:2 SM d28:1	 Association of MG 18:2 with coronary heart disease Association of LPCs with body mass index, C-reactive protein and with less evidence of subclinical CVD 	[7]
Discovery cohort: n = 1,833 (57% female) Validation cohorts: n = 1,522 Low walnut intake subcohort: n = 691 High walnut intake subcohort: n = 467	Participants at high cardiovascular risk	Plasma	LC-MS	385	4-Hydroxy-3-methylacetophenone Cyclohexylamine Guanine Isocitric acid <i>N</i> -Acetylaspartic acid Piperine Serine Sorbitol Succinic acid Bilirubin Biliverdin CAR 10:2 LPC 14:0 LPC 16:1 MG 22:1 PC 36:4 PE 36:5 PS 40:6 TG 54:6	 Association of walnut consumption with a lower risk of incident T2D and CVD in a Mediterranean population at high cardiovascular risk 	[8]
Study cohort: n = 1,057	Participants with symptomatic coronary artery disease	Blood- platelets	LC-MS/MS	767	CAR 10:0 CAR 14:0 CAR 14:1 CAR 16:0 CAR 16:1 FA 18:1 FA 18:2 FA 18:2;2O LPE 18:1 LPE 0:0/18:1 LPE 18:1 LPE 18:1/0:0 LPE 18:2 LPE 18:2/0:0 LPE 18:2 LPE 18:2/0:0 LPE 20:1 LPE 20:1/0:0 LPE 20:3 LPE 0:0/20:3 LPE 20:3 LPE 20:3/0:0 LPE 20:4 LPE 20:5 LPE 22:4 LPE 0:0/22:4 LPE 22:4 LPE 22:4/0:0 LPE 22:5	Association of adverse cardiovascular events with alterations in the platelet lipidome	[9]

Subjects (n)	Cohort	Matrix	Platforms	Reported	Markers	Outcomes	Ref.
				metabolites (ii)	LPE 22:6 LPS 18:1 LPS 0:0/18:1 PC 34:2;0 PE 34:3 PE 16:1_18:2;0 PI 36:4 PI 16:0_20:4 PI 38:5 PI 18:1_20:4 TG 48:1 TG 14:0_16:0_18:1 TG 48:2 TG 16:0_14:1_18:1		
Study cohort: n = 1,021 (48.3% female)	Participants with T2D and were followed up for CVD over the subsequent 10 years	Serum	NMR	228	3-Hydroxybutyric acid Acetic acid Creatinine Glycine Lactic acid Leucine Phenylalanine	 Association with 10-year cardiovascular risk in people with type 2 diabetes Metabolite-based risk score created 	[10]
Malmo Diet and Cancer-Cardiovascular cohort: n = 4,067	General population followed up to 23 years and stratified into risk groups	Plasma	DI-MS/MS	184	Sum of lipid subclasses: Ceramide Cholesteryl ester Cholesterol Diacylglycerol Ether-phosphatidylcholine Ether-phosphatidylethanolamine Lysophosphatidylcholine Lysophosphatidylethanolamine Phosphatidylcholine Phosphatidylethanolamine Phosphatidylethanolamine	Possible identification of lipidomic risk before disease incidence (CVD and T2D)	[11]
Discovery cohort 1: n = 99 Discovery cohort 2: n = 1,162 Validation cohort: n = 2,140	Sequential stable subjects without evidence of acute coronary syndrome undergoing elective diagnostic coronary angiography for evaluation of CAD with longitudinal (3–5 years) follow-up	Plasma	HILIC-MS/MS LC-MS/MS		Trimethyllysine Trimethylamine <i>N</i> -oxide	Association with CVD risks	[12]
Study cohort: n = 2,278 (50% female)	Participants were followed up for CVD incident (almost 10 years)	Plasma	LC-MS/MS	790 (37)	Dimethylglycine N-Acetylmethionine (top findings)	Association with CVD risks	[13]
Study cohort: n = 5,072	Participants with diabetes	Plasma	NMR	44	3-Hydroxybutyric acid Acetic acid Acetoacetatic acid Acetone Alanine Citric acid Creatinine Glucose Glutamine Glycine Histidine Isoleucine Lactic acid Leucine Phenylalanine Pyruvic acid Tyrosine Valine	Association of multiple healthy lifestyle factors with improved circulating metabolites from different pathways	[14]

Subjects (n)	Cohort	Matrix	Platforms	Reported	Markers	Outcomes	Ref.
				metabolites (n)			
Discovery cohort: n = 1,833 (57.6% female) Validation subcohort: n = 1,522 Study cohort: n1 = 5,991; n2 = 3,779 (38.9% female)	Participants at high risk of CVD (1-year follow- up)	Plasma Plasma	LC-MS/MS	metabolites (n) 382	1-Methylguanineγ-Aminobutyric acid (GABA)Aminoisobutyric acidAsparagineCortisolCreatineCytosineGlycodeoxycholic acidHippuric acidHomoarginineHypoxanthineLactic acidLysineN ¹ -AcetylspermidineN-Acetylaspartic acidN-AcetylornithinePiperinePyroglutamic acidSorbitolSucroseTrimethylbenzeneCAR 7:0CAR 18:2CAR 18:0DG 34:3DG 36:0LPC 16:1MG 22:1PC 38:4PE 32:0PE 38:6PE 40:7SM d34:2 SM d18:1/16:1TG 50:3TG 50:4TG 55:2TG 56:2CE 24:0LPI 18:2PC 0-34:2PC 0-34:2	Association of legume consumption with T2D incidence, but not with CVD incidence risk	[15]
Discovery cohort: n = 1.162	Sequential stable subjects undergoing elective	Plasma	НШС-МS	5 (ton-ranked)	PC O-36:1 PC P-40:6 PE 38:6 PI 38:3 SM d42:1 Phenylacetylglutamine	Association with cardiovascular disease	[17]
Validation cohort: n = 4,000	diagnostic cardiac evaluation with longitudinal (3 years) follow-up	FIASIIIA	LC-MS/MS	5 (top-rankeu)	Filenylacetyigiutaninie	and death in humans	[1/]

Subjects (n)	Cohort	Matrix	Platforms	Reported metabolites (n)	Markers	Outcomes	Ref.
Discovery cohort: n = 1,149 Validation cohort: n = 3,954	Participants with preserved kidney function undergoing elective diagnostic cardiac evaluation with longitudinal follow-up (5 years)	Plasma	GC-MS LC-MS/MS	N/A	<i>p</i> -Cresol sulfate Indoxyl sulfate	Association with CVD risk and overall mortality	[18]
Study cohort: n = 2,627	Participants were invited to attend a health examination for additional tests and collection of 8–12 h fasting blood samples (mean 12.9 years follow-up)	Plasma	HILIC-MS LC-MS/MS	79	Hex2Cer d34:2 Hex2Cer d18:2/16:0 HexCer d36:1 HexCer d18:1/18:0 HexCer d34:1 HexCer d18:1/16:0 HexCer d42:2 HexCer d18:2/24:0 SM d34:1 SM d18:1/16:0 SM d36:1 SM d18:1/18:0 SM d36:2 SM d18:2/18:0 SM d42:1 SM d18:1/24:0	Association with higher CVD risk	[19]
Study cohort: n ₁ =50; n ₂ =4,007	 Healthy participants before and after the suppression of intestinal microbiota with oral broad-spectrum antibiotics underwent phosphatidylcholine challenge (ingestion of two hard-boiled eggs and deuterium [d₉]- labeled phosphatidylcholine) Participants undergoing elective diagnostic cardiac catheterization with no history of acute coronary syndrome 	Plasma	LC-MS/MS	3	Betaine Choline Trimethylamine <i>N</i> -oxide	 Association among intestinal microbiota-dependent metabolism of dietary phosphatidylcholine, TMAO levels, and adverse CVD events 	[20]
Discovery cohort: n = 3,867 Validation cohort: n = 3,569	Participants were free of known CVD at baseline	Serum	NMR	N/A	1,5-Anhydrosorbitol 1-Methylhistidine 3-Hydroxybutyric acid 5-Oxoproline Acetaminophen + glucuronide Alanine Aspartic acid Citratic acid Glucose Glutamatic acid Glutamine Glycerol Glycine Histidine Lactic acid Lysine Mannose Methionine myo-Inositol Dimethylglycine Phenylalanine Glyceryl groups of lipids Lipids (CH2-CH2-C=, CH2-CH2-CO) Lipids (CH3-CH2-R, (CH2)n) Lipids (CH3-CH2-R, CH3-CH2-C=)	Association with atherosclerosis and incident CVD	[21]
Discovery cohort: n = 50 Validation cohort: n = 25	Stable patients undergoing elective cardiac evaluation who subsequently experienced a heart attack, stroke or death over the ensuing three-year period vs. age- and gender- matched subjects who did not	Plasma	LC-MS/MS	18	Betaine Choline Trimethylamine <i>N</i> -oxide	 Identification of markers as predictors of CVD risk Discovery of a relationship between gut- flora-dependent metabolism of dietary 	[22]

Subjects (n)	Cohort	Matrix	Platforms	Reported metabolites (n)	Markers	Outcomes	Ref.
						phosphatidylcholine and CVD pathogenesis	
Discovery cohort: n = 1,157 Validation cohorts: n ₁ = 2,149; n ₂ = 833	Stable subjects undergoing cardiac risk assessment	Plasma	GC-MS LC-MS/MS	N/A	Creatinine Erythritol Xylitol	Association with major adverse cardiovascular event	[23]
Discovery cohort: n = 1,157 Validation cohort: n = 2,149	Stable subjects undergoing elective diagnostic cardiac evaluations Healthy volunteers (n = 10)	Plasma	GC-MS LC-MS/MS	N/A	Creatinine Erythritol Xylitol	Association with major adverse cardiovascular event	[24]
Discovery cohort: n = 7,256 Validation cohorts: n1 = 2,622; n2 = 3,563	Participants were followed up for CVD incident (15 years)	Serum	NMR	68	3-Hydroxybutyric acid Acetic acid Acetic acid Alanine Citratic acid Glucose Glutamine Glycerol Glycine Histidine Isoleucine Lactic acid Leucine Phenylalanine Pyruvic acid Tyrosine Valine Docosahexaenoic acid (FA 22:6) Linoleic acid (FA 18:2) Monounsaturated FA Omega-3 FA Omega-6 FA Polyunsaturated FA Saturated FA	Association with incident CVD	[25]
Study cohort: n = 4,007	Participants undergoing elective diagnostic cardiac catheterization with no history of an acute coronary syndrome	Plasma	LC-MS/MS	18	Choline Trimethylamine Trimethylamine <i>N</i> -oxide	 Discovery of increased levels of TMAO as a predictor of incident risk for thrombotic events Association between specific dietary nutrients, gut microbes, platelet function, and thrombosis risk 	[26]

Table S2. Metabolomics and lipidomics cohort studies focused on type 1 and type 2 diabetes

Subjects (n)	Cohort	Matrix	Platforms	Reported metabolites (n)	Markers	Outcomes	Ref.
Study cohort: n = 170 (48% female)	Children with high genetic risk for T1D	Plasma	GC-MS LC-MS/MS	91	γ-Aminobutyric acid (GABA) Glycine Tagatose Arabitol myo-Inositol Adipic acid Cer d38:1 Cer d39:1 LPC 18:3 LPC 20:3 LPC 20:5 SM d41:2	Utilization of multi-omics data for the modeling of complex, multifactorial diseases, like T1D	[27]
Study cohort: n = 152 (47.4% female)	Children with T1D (n=76) and healthy control children (n=76)	Cord blood serum	LC-MS/MS	106	PC 32:1 PC 32:1 PC 36:4 PC 38:4 PC 38:5 PC 38:5 PC 38:6 PC 40:4 PC 40:5 PC 40:5 PC 40:5 PC 40:5 PC 40:7 PC 40:8 PC sum PE 38:4 PE 38:4 PE 40:4	Cord-blood metabolic patterns may be a valuable measure of type 1 diabetes risk	[28]
Study cohort: n = 101 (37.6% female)	Children who progressed to T1D (PT1D; n = 30), children who developed at least one islet autoantibody but did not progress to T1D during the follow-up (P1Ab; n = 33), and their age-matched controls (CTR; n = 38)	Cord blood plasma	LC-MS/MS	232 lipid species	CE 18:2 TG 46:2 TG 46:2 TG 48:1 TG 51:3	 Identification of lipids that can be predictive of the risk of progression to T1D Comparison of lipidomic profiles of all subcohorts 	[29]
Study cohort: n = 120	Children progressed to T1D; children developed at least a single islet autoantibody but did not progress to T1D during the follow- up; matched controls	Plasma	LC-MS/MS	45	CE 20:5 PC 33:0 TG 54:4 TG 18:2_18:1_18:1 TG 56:5	 Children who progress to T1D in the follow-up tend to have a distinct and persistently dysregulated lipid profile as compared to those who later progress to islet autoimmunity but not to T1D 	[30]
Study cohort: n = 120	Progressors to T1D (n = 40); children tested positive for at least one antibody in a minimum of two consecutive samples but did not progress to clinical T1D during the follow- up (n = 40); control children remained islet autoantibody-negative during the follow-up (n = 40)	Plasma	GC-MS	94	2-Ketoisocaproic acid 3,4-Dihydroxybutanoic acid Aspartic acid Bisphenol A Glutamic acid Glycerol-2-phosphate Levoglucosan Malic acid Methionine Pyruvic acid	Association of unique metabolomic profile with T1D	[31]
Study cohort: n = 2,124	Children with high genetic risk for T1D	Plasma	GC-MS LC-MS/MS	357	5-Methoxytryptamine Alanine Glutamic acid Isoleucine Leucine	 Studying autoantibodies and metabolomic markers, which are associated with the risk of progression to T1D 	[32]

Subjects (n)	Cohort	Matrix	Platforms	Reported metabolites (n)	Markers	Outcomes	Ref.
Study cohort: n = 166	T1D patients (n = 85) and healthy controls (n = 81). All patients had a stable dose of insulin usage for more than 3 months (dose change <10%)	Serum Urine	LC-MS/MS	54 (serum) 45 (urine)	MethionineProlineValineVitamin Eα-Ketoglutaric acid4-(2-Aminophenyl)-2,4-dioxobutanoic acid4-Pyridoxic acid5-Hydroxytryptophan5-Methoxyindole-3-acetic acidHypoxanthine	 Identification of altered metabolic profiles in T1D individuals with different time in range (TIR) 	[33]
Study cohort: n = 286	Infants later developed T1D (n=33); infants developed different numbers of islet autoantibodies during the follow-up (n=110); controls matched for sex, HLA-DQB1 genotype, city of birth, and period of birth (n=143)	Cord blood serum	LC-MS/MS	137	Thromboxane B3 PC 32:0 PC 16:0_16:0 PC 32:1 PC 16:0_16:1 PC 34:1 PC 16:0_18:1 PC 34:3 PC 16:0_18:3 PC 36:1 PC 18:0_18:1 PC 38:3 PC 18:0_20:3 SM d34:1 SM d18:1/16:0 SM d36:1 SM d18:1/18:0 SM d38:0 SM d18:0/20:0 SM d38:1 SM d18:1/20:0 SM d42:1 SM d18:0/24:1 SM d42:2 SM d18:1/24:1 SM d42:2 SM d18:0/24:2 SM d42:3 SM d18:2/24:1	Association with high risk for progression to T1D	[34]
Study cohort: n = 343	Children, who later developed type 1 diabetes (n=166), and random control children in the Norwegian Mother, Father, and Child cohort (n=177)	Cord blood plasma	LC-MS/MS	27	Aminoadipic acid Indoxyl sulfate Tryptophan	Association with T1D	[35]
Study cohort: n = 655	Children with high genetic risk for T1D	Plasma	GC-MS	139	Ascorbic acid Piperidone	Association with progression to T1D	[36]
Study cohort: n = 141	Children with T1D (n=76) and gender- and age- matched healthy controls (n=65)	Serum	GC-MS	70	1,5-Anhydroglucitol Adenine Fructose Glycerol-α-phosphate Inosine Levoglucosan Pyruvic acid Uridine Xylulose	• Association with T1D and with the duration of the disease	[37]
Study cohort: n = 11,896	Participants from four prospective population-based cohorts in Finland (follow-up for 7.8–15 years)	Serum	NMR	229	3-Hydroxybutyric acid Acetatic acid Acetoacetatic acid Citratic acid Creatinine Glutamine Glycerol Glycine Histidine Isoleucine Lactic acid Leucine Phenylalanine Pyruvic acid	 Association with risk of developing diabetes Association with deterioration in postload glucose and insulin resistance than with future fasting hyperglycemia 	[38]

Subjects (n)	Cohort	Matrix	Platforms	Reported metabolites (n)	Markers	Outcomes	Ref.
					Tyrosine Valine		
Study cohort: n = 1,016	General population	Plasma	NMR	49	3-Hydroxybutyric acid Acetatic acid Alanine Citratic acid Creatine Creatine phosphate Creatinine Cysteine Glutamine CH2CH2CO- CH2N- Isobutyratic acid Isopropanol Leucine <i>N</i> -Acetylglutamine <i>O</i> -Phosphoethanolamine Phenylpropionic acid Proline Pyruvic acid	Strong inverse association of healthy lifestyle with incident T2D	[39]
Study cohort: n = 1,138	Participants from four prospective population-based cohorts	Plasma	LC-MS/MS	70	2-Methylbutyroylcarnitine Cortisol Deoxycholic acid Tyrosine γ-Glutamyl-leucine Barogenin CerPE 38:2 LPC 20:2 MG 18:2 PC 42:7 SM d33:1 SM d34:2 SM d36:3 SM d18:2/18:1	Association with incident T2D	[40]
Study cohorts: n ₁ = 1,261; n ₂ = 2,580	Clinically healthy participants (follow-up for 3 years)	Plasma	LC-MS/MS	N/A	2-Hydroxybutyric acid LPC 18:2	Association with insulin resistance and glucose intolerance	[41]
Study cohort: n = 2,282 Incident T2D cohort: n = 800	General population	Serum	FI-MS	163	Glycine Hexose Phenylalanine LPC 18:2 PC O-34:3 PC O-40:6 PC O-42:5 PC O-42:5 PC O-44:4 PC O-44:5 PC O-32:1 PC 36:1 PC 36:1 PC 38:3 PC 40:5 SM d34:2 SM d18:1/16:1	Association with increased or decreased risk of T2D	[42]
Study cohort: n ₁ = 1,813; n ₂ = 451	1,813 participants without any signs of T2D 451 participants with newly diagnosed T2D	Serum	FI-MS LC-MS/MS	134	Alanine/glycine	Association of analine/glycine ration with T2D	[43]

Subjects (n)	Cohort	Matrix	Platforms	Reported	Markers	Outcomes	Ref.
Study cohort: n = 5844 (90% female)	Female and male nurses	Plasma	LC-MS/MS	186	1-Methylnicotinamide 1-Methylguanosine	Association between inflammatory and insulinemic dietary	[44]
					Aminoisobutyric acid	patterns, plasma inflammatory/insulin biomarkers	
					CAR 2:0	plasma metabolomics and	
					CAR 5:0	risk of type 2 diabetes.	
					CAR 5:0-DC		
					Dimethylglycine		
					Guanidoacetic acid		
					N ² , N ² -Dimethylguanosine		
					N ⁴ -Acetylcytidine		
					N-Acetylspermidine		
					N-Acetyltryptophan		
					Pinerine		
					Ribothymidine		
					Tryptophan		
					Biliverdin		
					Cer d34:1 Cer d18:1/16:0		
					LPE 18:2		
					PC 54.2 PC P-34·4		
					PC P-38:4		
					PE 36:4		
					PE P-36:2		
					SM d38:1 SM d18:1/20:0		
Study cohort: n = 2240	T2D participants, prediabetes participants, and	Serum	FI-MS	123	Glycine	Association with incident T2D	[45]
	normal glucose tolerance participants		LC-IVIS/IVIS		LPC 18·2		
					PC 0-36:0		
Study cohort: n = 4,442 (61% female)	Participants without diabetes at baseline	Plasma	LC-MS/MS	6	Betaine	Association with incident T2D	[46]
					Carnitine		
					Choline		
					Crotonobetaine		
					γ-Butyrobetaine		
Study cohort: n = 1571	Healthy participants (follow-up for 14 years)	Plasma	NMR	24	1.5-Anhydroglucitol	 Increase of the long-term prediction 	[47]
		1 lasina	LC-MS		2-Hydroxybutyric acid	performance in combination with	[. ,]
					2-Oxoglutaric acid	classical measurements	
					Glycerol		
					Glycine betaine		
					Isoleucine		
					Lactic acid Methionine		
					Pyruvic acid		
					Tyrosine		
					PC 34:2;O		
					TG 48:0		
					16 48:1 TG 50:5		
		1	1	1	10,000		1

Subjects (n)	Cohort	Matrix	Platforms	Reported	Markers	Outcomes	Ref.
				metabolites (n)			
Discovery cohort: n = 3,821	Participants with normal glucose regulation	Serum	LC-MS/MS	667 (discovery	CE 14:0	 Association of biomarkers and lipid 	[48]
Validation cohort: n = 14,651				cohort)	LPI 16:1	pathway dysregulation with T2D onset	
				250 (validation	PC 34:3		
				cohort)	PE 38:4 PE 18:0_20:4		
					TG 48:1 (16:0)		
					TG 48:1 (16:1)		
					TG 48:2 (16:0)		
					TG 48:2 (16:1)		
					TG 48:2 (18:1)		
					TG 48:3 (16:1)		
					TG 50:0 (18:0)		
					TG 50:1 (16:0)		
					TG 50:1 (16:1)		
					TG 50:1 (18:0)		
					TG 50:2 (16:0)		
					TG 50:2 (16:1)		
					TG 50:2 (16:2)		
					TG 50:2 (18:1)		
					TG 50:3 (16:0)		
					TG 50:3 (16:1)		
					TG 50:3 (16:2)		
					TG 51:0 (17:0)		
					TG 51:2 (17:0)		
					TG 51:3 (17:1)		
					TG 53:2 (19:0)		
					TG 53:3 (16:0)		
					TG 54:3 (16:0)		
					TG 54:4 (16:0)		
					TG 54:4 (16:1)		
					TG 54:5 (16:0)		
					TG 54:5 (16:1)		
					TG 54:6 (20:4)		
					TG 54:7 (20:4)		
					TG 54:7 (22:6)		
					TG 55:6 (19:3)		
					TG 56:5(18:1)		
					TG 56:5(22:4)		
					TG 56:6(22:5)		
Study cohort: $n = 2.204 (100\% female)$	Participants with T2D or impaired fasting	Plasma	LC-MS/MS	AA7	2-Hydroxybutyric acid	Association with incident T2D and IEG	[49]
(100/0 lenale)	glucose + normoglycemic control participants		GC-MS	/	1 5-Anhydroglucitol		[]
		onne	00-1015		Arabinose		
					Citrulline		
					Dimothylargining		
					Enthritol		
					Fructose		
					Glucose		
					Isolaucina		
					Malicacid		
					Mannose		
					Octanovicarniting		
					FIOIIIIE		1

Subjects (n)	Cohort	Matrix	Platforms	Reported metabolites (n)	Markers	Outcomes	Ref.
					Uric acid Valine 10-Heptadecenoic acid (FA 17:1n7) 15-Methylpalmitic acid (FA iso-17:0) 3-Methyl-2-oxobutanoic acid 3-Methyl-2-oxovaleric acid 4-Methyl-2-oxopentanoic acid 5-Dodecenoic acid (FA 12:1n7) Adrenic acid (FA 22:4n6) Arachidonic acid (FA 20:4n6) Cholesterol Heptanoic acid (FA 7:0) Myristic acid (FA 14:0) Myristoleic acid (FA 14:1n5) Palmitoleic acid (FA 16:1n7) SM d34:1 SM d18:1/16:0 Pelargonic acid (FA 9:0) Pentadecanoic acid (FA 15:0)		
Study cohort: n = 1,150	Participants with normal fasting glucose (follow-up for 20 years)	Plasma	LC-MS/MS	N/A	5-Hydroxyindoleacetic acid Glucose Glycine Isocitric acid Phenylalanine Taurine 2-Aminodipic acid 3-Methyladipic acid CE 20:3 DG 36:1 LPC 18:1 LPC 18:2 PC 36:4 SM d42:1 SM d18:1/24:0 TG 48:0 TG 48:1 TG 52:1 TG 54:8 TG 58:11	Association with improved prediction of T2D beyond conventional risk factors	[50]
Discovery cohort: n = 543 Validation cohort: n = 1,044	Non-diabetic participants (follow-up)	Serum	LC-MS/MS GC-MS	568	2-Hydroxybutyric acid Bilirubin Glucose Glutamic acid Glutamine Histidine Isoleucine Mannose Trehalose Valine α-Tocopherol	Association with positive or negative impact on progression to T2D	[51]
Study cohort: n = 1,248	Participants with 6.5 years follow-up	Plasma	DMS-MS/MS GC-MS	N/A	Lipid classes containing species with FA 15:0 and FA 17:0: CE 15:0 CE 17:0 DG 15:0 FA 15:0	Association with incident T2D	[52]

Subjects (n)	Cohort	Matrix	Platforms	Reported	Markers	Outcomes	Ref.
				metabolites (n)			
					FA 17:0		
					LPC 15:0		
					LPC 17:0		
					LPE 17:0		
					MG 15:0		
					MG 17:0		
					PC 15:0		
					PC 17:0		
					PE 17:0		
					PL-OCFA (phospholipid species containing odd-		
					chain fatty acids)		
					TG 15:0		
					TG 17:0		
Study cohorts: n ₁ = 1,039; n ₂ = 520	Participants with mean follow-ups: 4.61 and	Plasma	LC-MS/MS	166	CE 16:1	 Association with incident T2D 	[53]
	7.57 years				LPC 15:0		
					LPC 18:2		
					PC 33:3		
					PC 35:3		
					PC 40:7		
					PC 43:6		
					PC 44:1		
					SM d34:2		
					SM d41:2		
					TG 46:1 (12:0)		
					TG 48:1 (16:0)		
					TG 48:2 (14:0)		
					TG 49:7 (16:0)		
					TG 50:1 (16:0)		
					TG 50:2 (16:0)		
					TG 50:3 (18:1)		
					TG 51:7 (16:0)		
					TG 52:5 (18:2)		
					TG 52:6 (18:2)		
					TG 54:3 (18:0)		
					TG 54:4 (18:2)		
					TG 54:5 (18:2)		
					TG 54:6 (18:2)		
					TG 54:7 (18:3)		
					TG 56:5 (20:4)		
Study cohort: n = 2.939	Participants without diabetes prevalence	Serum	LC-MS/MS	245	3-(4-Hydroxyphenyl)lactic acid	Association with incident T2D	[54]
			, -		Asparagine	(protective biomarker of diabetes risk)	
					Ervthritol		
					Isoleucine		
					Leucine		
					Trehalose		
					Valine		
		I					1

Subjects (n)	Cohort	Matrix	Platforms	Reported metabolites (n)	Markers	Outcomes	Ref.
Study cohort: n = 2,103	Participants with a 6-year follow-up	Plasma	LC-MS/MS	34	Carnitine 3-Dehydroxycarnitine 3-Dehydrocarnitine CAR 2:0 CAR 3:0 CAR 3:0-DC CAR 4:0 CAR 5:0 CAR 5:0 CAR 5:1 CAR 5:1 CAR 6:0 CAR 6:0-DH CAR 6:0-DC	Association with improved predictive ability for type 2 diabetes beyond conventional risk factors	[55]
					CAR 0.0 DC CAR 7:0-DC CAR 8:0 CAR 8:1 CAR 10:0 CAR 10:0-DC CAR 12:0 CAR 12:0-OH CAR 12:1 CAR 12:0-DC CAR 14:0 CAR 14:0-OH		
					CAR 14:1-OH CAR 16:0 CAR 16:1 CAR 16:2 CAR 18:0 CAR 18:0-OH CAR 18:1 CAR 18:2 CAR 20:0 CAR 20:4		
Study cohort: n = 3,234	Participants were assigned to 1) intensive lifestyle, 2) metformin, or 3) placebo (all followed up for 3.2 years)	Plasma	HILIC-MS/MS	84	Betaine Methionine sulfoxide Serine	Association with incident T2D	[56]

Table S3. Metabolomics and lipidomics cohort studies focused on metabolic dysfunction-associated steatotic liver disease

Subjects (n)	Cohort	Matrix	Platforms	Reported metabolites (n)	Markers	Outcomes	Ref.
Study cohort: n = 121,032	Participants with a mean 12.6-year follow-up	Plasma	NMR	170	3-Hydroxybutyric acid Acetic acid Acetoacetatic acid Acetone Alanine Citric acid Creatinine Glucose Glutamine Glycine Histidine Isoleucine Lactic acid Leucine Phenylalanine Pyruvic acid Tyrosine Valine Docosahexaenoic acid (FA 22:6) Linoleic acid (FA 18:2) Omega-3 FA Omega-6 FA	Positive and negative association with MASLD	[57]
Study cohort: n = 10,809	Participants with and without MASLD	Plasma	NMR	123	Tyrosine	Association with MASLD	[58]
Study conort: n = 3,048	including questionnaires and clinical assessments starting from age 7 years	riasma		104	Acetic acid Acetoacetatic acid Alanine Creatinine Glutamine Histidine Isoleucine Leucine Phenylalanine Tyrosine Valine	Association with incident MASLD	[96]
Study cohort: n = 928 (67% female)	Participants with and without MASLD	Plasma	CE-MS	94	4-Methyl-2-oxopentanoic acid Alanine Glutamic acid Isoleucine Leucine Proline Tryptophan Tyrosine Valine Glycerophosphorylcholine	Association with both MASLD and cardio-ankle vascular index (CAVI)	[60]
Study cohort: n = 1,479 Study subcohort: n = 447 (known age)	Participants were not treated for cancer or infectious disease or had undergone surgery in the previous year, and they had no history of cancer or an infectious disease.	Serum	LC-MS/MS	N/A	Oleic acid-hydroxy oleic acid (OAHOA) Sphingosine Uric acid	Association with MASLD	[61]
Study cohort: n = 997 (53% female)	Participants free of prevalent myocardial infarction or congestive heart failure at the first examination cycle	Plasma	HILIC-MS/MS	179	Anandamide	 Association with MASLD severity, the presence of nonalcoholic steatohepatitis, and fibrosis 	[62]

Subjects (n)	Cohort	Matrix	Platforms	Reported metabolites (n)	Markers	Outcomes	Ref.
Study cohort: n = 559	Participants with and without MASLD	Plasma	LC-MS/MS	11	Dihydrothymine Serine Tryptophan LPC 18:1 LPE 20:0	Screening tool for MASLD	[63]
Study cohort: n = 1,154 (50% female) Control cohort: n = 350	Participants with biopsy-proven MASLD and participants from the general population with similar gender and age to the cohort of patients with MASLD	Serum	LC-MS NMR	105	PC 32:0 PC 16:0_16:0 PC 32:2 PC 14:0_18:2 PC 34:2 PC 16:0_18:2 PC 36:1 PC 18:0_18:1 PC 36:3 PC 36:6 PC 18:3_18:3 PC 37:5 PC 38:2 PC 20:0_18:2 PC 38:3 PC 18:0_20:3 SM d32:1 SM d39:1 TG 48:3	 Identification of three MASLD subgroups, independent of histological disease severity 	[64]
Study cohort: n = 627	Histologically characterized participants. Participants include the full spectrum of disease, from histologically normal liver tissue through NAFL to NASH-F4 (cirrhosis)	Serum	LC-MS/MS GC-MS/MS	211	Markers of fibrosis 0–1 vs. 2–4: 2-Hydroxybutyric acid 3-Hydroxybutyric acid LPC 0-16:0 LPC P-16:0 LPC 18:2 LPC 20:4 Oleic acid PC 32:0 PC 16:0/16:0 PC 32:1 PC 37:4 PC 0-34:2 PC 0-34:3 PE 16:0/18:1 PE 34:2 PE 38:6 SM d42:1 SM d18:1/24:0 SM d36:0 SM d41:1 TG 56:4 TG 58:6	 Identification of a key metabolic 'watershed' in the progression of liver damage, separating severe disease from mild 	[65]
Discovery cohort: n = 1,546 Internal validation cohort: n = 377 Prospective validation cohort: n = 749	Participants with and without MASLD (4 years follow-up	Feces	LC-MS/MS	198	Taurocholic acid	 Positive association with both a higher microbiome risk score and MASLD risk 	[66]

References

- Akbaraly T, Würtz P, Singh-Manoux A, Shipley MJ, Haapakoski R, Lehto M, Desrumaux C, Kähönen M, Lehtimäki T, Mikkilä V, ET AL. Association of circulating metabolites with healthy diet and risk of cardiovascular disease: analysis of two cohort studies. Sci Rep 2018;8:8620. <u>https://doi.org/10.1038/s41598-018-26441-1</u>
- Benson TW, Conrad KA, Li XS, Wang Z, Helsley RN, Schugar RC, Coughlin TM, Wadding-Lee C, Fleifil S, Russell HM, ET AL. Gut microbiota–derived trimethylamine N-oxide contributes to abdominal aortic aneurysm through inflammatory and apoptotic mechanisms. Circulation 2023;147:1079-1096. <u>https://doi.org/10.1161/CIRCULATIONAHA.122.060573</u>
- Dehghanbanadaki H, Dodangeh S, Parhizkar Roudsari P, Hosseinkhani S, Khashayar P, Noorchenarboo M, Rezaei N, Dilmaghani-Marand A, Yoosefi M, Arjmand B, ET AL. Metabolomics profile and 10-year atherosclerotic cardiovascular disease (ASCVD) risk score. Front Cardiovasc Med 2023;10:<u>https://doi.org/10.3389/fcvm.2023.1161761</u>
- 4. Eichelmann F, Sellem L, Wittenbecher C, Jäger S, Kuxhaus O, Prada M, Cuadrat R, Jackson KG, Lovegrove JA, Schulze MB. Deep lipidomics in human plasma: Cardiometabolic disease risk and effect of dietary fat modulation. Circulation 2022;146:21-35. <u>https://doi.org/10.1161/circulationaha.121.056805</u>
- Ferrell M, Wang Z, Anderson JT, Li XS, Witkowski M, DiDonato JA, Hilser JR, Hartiala JA, Haghikia A, Cajka T, ET AL. A terminal metabolite of niacin promotes vascular inflammation and contributes to cardiovascular disease risk. Nat Med 2024;30:424-434. <u>https://doi.org/10.1038/s41591-023-02793-8</u>
- Fu Z, Liu Q, Liang J, Weng Z, Li W, Xu J, Zhang X, Xu C, Gu A. Association between NMR metabolomic signatures of healthy lifestyle and incident coronary artery disease. Eur J Prev Cardiol 2022;30:243-253. <u>https://doi.org/10.1093/eurjpc/zwac252</u>
- Ganna A, Salihovic S, Sundström J, Broeckling CD, Hedman ÅK, Magnusson PKE, Pedersen NL, Larsson A, Siegbahn A, Zilmer M, ET AL. Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLOS Genet 2014;10:e1004801. <u>https://doi.org/10.1371/journal.pgen.1004801</u>
- Guasch-Ferré M, Hernández-Alonso P, Drouin-Chartier JP, Ruiz-Canela M, Razquin C, Toledo E, Li J, Dennis C, Wittenbecher C, Corella D, ET AL. Walnut consumption, plasma metabolomics, and risk of type 2 diabetes and cardiovascular disease. J Nutr 2021;151:303-311. <u>https://doi.org/10.1093/jn/nxaa374</u>
- Harm T, Dittrich K, Brun A, Fu X, Frey M, Petersen Uribe A, Schwarz F-J, Rohlfing A-K, Castor T, Geisler T, ET AL. Large-scale lipidomics profiling reveals characteristic lipid signatures associated with an increased cardiovascular risk. Clin Res Cardiol 2023;112:1664-1678. <u>https://doi.org/10.1007/s00392-023-02260-x</u>
- Huang Z, Klaric L, Krasauskaite J, Khalid W, Strachan MWJ, Wilson JF, Price JF. Combining serum metabolomic profiles with traditional risk factors improves 10-year cardiovascular risk prediction in people with type 2 diabetes. Eur J Prev Cardiol 2023;30:1255-1262. <u>https://doi.org/10.1093/eurjpc/zwad160</u>
- 11. Lauber C, Gerl MJ, Klose C, Ottosson F, Melander O, Simons K. Lipidomic risk scores are independent of polygenic risk scores and can predict incidence of diabetes and cardiovascular disease in a large population cohort. PLOS Biol 2022;20:e3001561. <u>https://doi.org/10.1371/journal.pbio.3001561</u>
- 12. Li XS, Wang Z, Cajka T, Buffa JA, Nemet I, Hurd AG, Gu X, Skye SM, Roberts AB, Wu Y, ET AL. Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight 2018;3:<u>https://doi.org/10.1172/jci.insight.99096</u>
- 13. Lind L, Fall T, Ärnlöv J, Elmståhl S, Sundström J. Large-scale metabolomics and the incidence of cardiovascular disease. J Am Heart Assoc 2023;12:e026885. <u>https://doi.org/10.1161/JAHA.122.026885</u>
- Lu Q, Chen J, Li R, Wang Y, Tu Z, Geng T, Liu L, Pan A, Liu G. Healthy lifestyle, plasma metabolites, and risk of cardiovascular disease among individuals with diabetes. Atherosclerosis 2023;367:48-55. <u>https://doi.org/10.1016/j.atherosclerosis.2022.12.008</u>
- Margara-Escudero HJ, Paz-Graniel I, García-Gavilán J, Ruiz-Canela M, Sun Q, Clish CB, Toledo E, Corella D, Estruch R, Ros E, ET AL. Plasma metabolite profile of legume consumption and future risk of type 2 diabetes and cardiovascular disease. Cardiovasc Diabetol 2024;23:38. <u>https://doi.org/10.1186/s12933-023-02111-z</u>

- 16. Mundra PA, Barlow CK, Nestel PJ, Barnes EH, Kirby A, Thompson P, Sullivan DR, Alshehry ZH, Mellett NA, Huynh K, ET AL. Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention. JCI Insight 2018;3:<u>https://doi.org/10.1172/jci.insight.121326</u>
- 17. Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM, Cajka T, Mohan ML, Li L, Wu Y, ET AL. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 2020;180:862-877.e22. <u>https://doi.org/10.1016/j.cell.2020.02.016</u>
- Nemet I, Funabashi M, Li XS, Dwidar M, Sangwan N, Skye SM, Romano KA, Cajka T, Needham BD, Mazmanian SK, ET AL. Microbe-derived uremic solutes enhance thrombosis potential in the host. mBio 2023;14:e0133123. <u>https://doi.org/10.1128/mbio.01331-23</u>
- Seah JYH, Chew WS, Torta F, Khoo CM, Wenk MR, Herr DR, Choi H, Tai ES, van Dam RM. Plasma sphingolipids and risk of cardiovascular diseases: a large-scale lipidomic analysis. Metabolomics 2020;16:89. <u>https://doi.org/10.1007/s11306-020-01709-8</u>
- 20. Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013;368:1575-1584. https://doi.org/10.1056/NEJMoa1109400
- 21. Tzoulaki I, Castagné R, Boulangé CL, Karaman I, Chekmeneva E, Evangelou E, Ebbels TMD, Kaluarachchi MR, Chadeau-Hyam M, Mosen D, ET AL. Serum metabolic signatures of coronary and carotid atherosclerosis and subsequent cardiovascular disease. Eur Heart J 2019;40:2883-2896. https://doi.org/10.1093/eurheartj/ehz235
- 22. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, Britt EB, Fu X, Chung Y-M, ET AL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011;472:57-63. <u>https://doi.org/10.1038/nature09922</u>
- 23. Witkowski M, Nemet I, Alamri H, Wilcox J, Gupta N, Nimer N, Haghikia A, Li XS, Wu Y, Saha PP, ET AL. The artificial sweetener erythritol and cardiovascular event risk. Nat Med 2023;29:710-718. https://doi.org/10.1038/s41591-023-02223-9
- Witkowski M, Nemet I, Li XS, Wilcox J, Ferrell M, Alamri H, Gupta N, Wang Z, Tang WHW, Hazen SL. Xylitol is prothrombotic and associated with cardiovascular risk. Eur Heart J 2024;<u>https://doi.org/10.1093/eurheartj/ehae244</u>
- 25. Würtz P, Havulinna AS, Soininen P, Tynkkynen T, Prieto-Merino D, Tillin T, Ghorbani A, Artati A, Wang Q, Tiainen M, ET AL. Metabolite profiling and cardiovascular event risk: A prospective study of 3 populationbased cohorts. Circulation 2015;131:774-85. <u>https://doi.org/10.1161/circulationaha.114.013116</u>
- Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, ET AL. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016;165:111-124. <u>https://doi.org/10.1016/j.cell.2016.02.011</u>
- Balzano-Nogueira L, Ramirez R, Zamkovaya T, Dailey J, Ardissone AN, Chamala S, Serrano-Quílez J, Rubio T, Haller MJ, Concannon P, ET AL. Integrative analyses of TEDDY Omics data reveal lipid metabolism abnormalities, increased intracellular ROS and heightened inflammation prior to autoimmunity for type 1 diabetes. Genome Biol 2021;22:39. <u>https://doi.org/10.1186/s13059-021-02262-w</u>
- La Torre D, Seppänen-Laakso T, Larsson HE, Hyötyläinen T, Ivarsson SA, Lernmark Å, Orešič M, Group atDS. Decreased cord-blood phospholipids in young age–at–onset type 1 diabetes. Diabetes 2013;62:3951-3956. <u>https://doi.org/10.2337/db13-0215</u>
- Lamichhane S, Ahonen L, Sparholt Dyrlund T, Dickens AM, Siljander H, Hyöty H, Ilonen J, Toppari J, Veijola R, Hyötyläinen T, ET AL. Cord-blood lipidome in progression to islet autoimmunity and type 1 diabetes. Biomolecules 2019;9:33. <u>https://doi.org/10.3390/biom9010033</u>
- Lamichhane S, Ahonen L, Dyrlund TS, Kemppainen E, Siljander H, Hyöty H, Ilonen J, Toppari J, Veijola R, Hyötyläinen T, ET AL. Dynamics of plasma lipidome in progression to islet autoimmunity and type 1 diabetes – Type 1 diabetes prediction and prevention study (DIPP). Sci Rep 2018;8:10635. <u>https://doi.org/10.1038/s41598-018-28907-8</u>

- Lamichhane S, Kemppainen E, Trošt K, Siljander H, Hyöty H, Ilonen J, Toppari J, Veijola R, Hyötyläinen T, Knip M, ET AL. Circulating metabolites in progression to islet autoimmunity and type 1 diabetes. Diabetologia 2019;62:2287-2297. <u>https://doi.org/10.1007/s00125-019-04980-0</u>
- 32. Li Q, Parikh H, Butterworth MD, Lernmark Å, Hagopian W, Rewers M, She J-X, Toppari J, Ziegler A-G, Akolkar B, ET AL. Longitudinal metabolome-wide signals prior to the appearance of a first islet autoantibody in children participating in the TEDDY study. Diabetes 2020;69:465-476. https://doi.org/10.2337/db19-0756
- Ma L, Liu J, Deng M, Zhou L, Zhang Q, Xiao X. Metabolomics analysis of serum and urine in type 1 diabetes patients with different time in range derived from continuous glucose monitoring. Diabetol Metab Syndr 2024;16:21. <u>https://doi.org/10.1186/s13098-024-01257-4</u>
- Oresic M, Gopalacharyulu P, Mykkänen J, Lietzen N, Mäkinen M, Nygren H, Simell S, Simell V, Hyöty H, Veijola R, ET AL. Cord serum lipidome in prediction of islet autoimmunity and type 1 diabetes. Diabetes 2013;62:3268-74. <u>https://doi.org/10.2337%2Fdb13-0159</u>
- 35. Tapia G, Suvitaival T, Ahonen L, Lund-Blix NA, Njølstad PR, Joner G, Skrivarhaug T, Legido-Quigley C, Størdal K, Stene LC. Prediction of type 1 diabetes at birth: Cord blood metabolites vs genetic risk score in the Norwegian Mother, Father, and Child cohort. J Clin Endocrinol Metab 2021;106:e4062-e4071. <u>https://doi.org/10.1210/clinem/dgab400</u>
- Webb-Robertson B-JM, Nakayasu ES, Frohnert BI, Bramer LM, Akers SM, Norris JM, Vehik K, Ziegler A-G, Metz TO, Rich SS, ET AL. Integration of infant metabolite, genetic, and islet autoimmunity signatures to predict type 1 diabetes by age 6 years. J Clin Endocrinol Metab 2022;107:2329-2338. 10.1210/clinem/dgac225
- Zhang J, Wu W, Huang K, Dong G, Chen X, Xu C, Ni Y, Fu J. Untargeted metabolomics reveals gender- and age- independent metabolic changes of type 1 diabetes in Chinese children. Front Endocrinol 2022;13:1-11. <u>https://doi.org/10.3389/fendo.2022.1037289</u>
- Ahola-Olli AV, Mustelin L, Kalimeri M, Kettunen J, Jokelainen J, Auvinen J, Puukka K, Havulinna AS, Lehtimäki T, Kähönen M, ET AL. Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia 2019;62:2298-2309. https://doi.org/10.1007/s00125-019-05001-w
- Delgado-Velandia M, Gonzalez-Marrachelli V, Domingo-Relloso A, Galvez-Fernandez M, Grau-Perez M, Olmedo P, Galan I, Rodriguez-Artalejo F, Amigo N, Briongos-Figuero L, ET AL. Healthy lifestyle, metabolomics and incident type 2 diabetes in a population-based cohort from Spain. Int J Behav Nutr Phys Act 2022;19:8. <u>https://doi.org/10.1186/s12966-021-01219-3</u>
- 40. Fall T, Salihovic S, Brandmaier S, Nowak C, Ganna A, Gustafsson S, Broeckling CD, Prenni JE, Kastenmüller G, Peters A, ET AL. Non-targeted metabolomics combined with genetic analyses identifies bile acid synthesis and phospholipid metabolism as being associated with incident type 2 diabetes. Diabetologia 2016;59:2114-2124. <u>https://doi.org/10.1007/s00125-016-4041-1</u>
- 41. Ferrannini E, Natali A, Camastra S, Nannipieri M, Mari A, Adam KP, Milburn MV, Kastenmüller G, Adamski J, Tuomi T, ET AL. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes 2013;62:1730-7. <u>https://doi.org/10.2337/db12-0707</u>
- 42. Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG, Fritsche A, Häring HU, Hrabě de Angelis M, Peters A, ET AL. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 2013;62:639-48. <u>https://doi.org/10.2337/db12-0495</u>
- 43. Lee KS, Lee YH, Lee SG. Alanine to glycine ratio is a novel predictive biomarker for type 2 diabetes mellitus. Diabetes Obes Metab 2024;26:980-988. <u>https://doi.org/10.1111/dom.15395</u>
- Lee DH, Jin Q, Shi N, Wang F, Bever AM, Liang L, Hu FB, Song M, Zeleznik OA, Zhang X, ET AL. The metabolic potential of inflammatory and insulinaemic dietary patterns and risk of type 2 diabetes. Diabetologia 2024;67:88-101. <u>https://doi.org/10.1007/s00125-023-06021-3</u>
- 45. Lee H-S, Xu T, Lee Y, Kim N-H, Kim Y-J, Kim J-M, Cho SY, Kim K-Y, Nam M, Adamski J, ET AL. Identification of putative biomarkers for type 2 diabetes using metabolomics in the Korea Association REsource (KARE) cohort. Metabolomics 2016;12:178. <u>https://doi.org/10.1007/s11306-016-1103-9</u>

- 46. Lemaitre RN, Jensen PN, Wang Z, Fretts AM, McKnight B, Nemet I, Biggs ML, Sotoodehnia N, de Oliveira Otto MC, Psaty BM, ET AL. Association of Trimethylamine N-Oxide and Related Metabolites in Plasma and Incident Type 2 Diabetes: The Cardiovascular Health Study. JAMA Netw Open 2021;4:e2122844-e2122844. <u>https://doi.org/10.1001/jamanetworkopen.2021.22844</u>
- 47. Liu J, Semiz S, van der Lee SJ, van der Spek A, Verhoeven A, van Klinken JB, Sijbrands E, Harms AC, Hankemeier T, van Dijk KW, ET AL. Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study. Metabolomics 2017;13:104. <u>https://doi.org/10.1007/s11306-017-1239-2</u>
- Lu J, Lam SM, Wan Q, Shi L, Huo Y, Chen L, Tang X, Li B, Wu X, Peng K, ET AL. High-coverage targeted lipidomics reveals novel serum lipid predictors and lipid pathway dysregulation antecedent to type 2 diabetes onset in normoglycemic chinese adults. Diabetes Care 2019;42:2117-2126. <u>https://doi.org/10.2337/dc19-0100</u>
- 49. Menni C, Fauman E, Erte I, Perry JR, Kastenmüller G, Shin SY, Petersen AK, Hyde C, Psatha M, Ward KJ, ET AL. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes 2013;62:4270-6. <u>https://doi.org/10.2337/db13-0570</u>
- 50. Merino J, Leong A, Liu C-T, Porneala B, Walford GA, von Grotthuss M, Wang TJ, Flannick J, Dupuis J, Levy D, ET AL. Metabolomics insights into early type 2 diabetes pathogenesis and detection in individuals with normal fasting glucose. Diabetologia 2018;61:1315-1324. <u>https://doi.org/10.1007/s00125-018-4599-x</u>
- 51. Peddinti G, Cobb J, Yengo L, Froguel P, Kravić J, Balkau B, Tuomi T, Aittokallio T, Groop L. Early metabolic markers identify potential targets for the prevention of type 2 diabetes. Diabetologia 2017;60:1740-1750. https://doi.org/10.1007/s00125-017-4325-0
- 52. Prada M, Wittenbecher C, Eichelmann F, Wernitz A, Drouin-Chartier J-P, Schulze MB. Association of the odd-chain fatty acid content in lipid groups with type 2 diabetes risk: A targeted analysis of lipidomics data in the EPIC-Potsdam cohort. Clin Nutr 2021;40:4988-4999. <u>https://doi.org/10.1016/j.clnu.2021.06.006</u>
- 53. Qiu G, Wang H, Yan Q, Ma H, Niu R, Lei Y, Xiao Y, Zhou L, Yang H, Xu C, ET AL. A lipid signature with perturbed triacylglycerol co-regulation, identified from targeted lipidomics, predicts risk for type 2 diabetes and mediates the risk from adiposity in two prospective cohorts of chinese adults. Clin Chem 2022;68:1094-1107. <u>https://doi.org/10.1093/clinchem/hvac090</u>
- Rebholz CM, Yu B, Zheng Z, Chang P, Tin A, Köttgen A, Wagenknecht LE, Coresh J, Boerwinkle E, Selvin E. Serum metabolomic profile of incident diabetes. Diabetologia 2018;61:1046-1054. <u>https://doi.org/10.1007/s00125-018-4573-7</u>
- 55. Sun L, Liang L, Gao X, Zhang H, Yao P, Hu Y, Ma Y, Wang F, Jin Q, Li H, ET AL. Early prediction of developing type 2 diabetes by plasma acylcarnitines: A population-based study. Diabetes Care 2016;39:1563-1570. <u>https://doi.org/10.2337/dc16-0232</u>
- 56. Walford GA, Ma Y, Clish C, Florez JC, Wang TJ, Gerszten RE. Metabolite profiles of diabetes incidence and intervention response in the diabetes prevention program. Diabetes 2016;65:1424-33. <u>https://doi.org/10.2337/db15-1063</u>
- Gagnon E, Manikpurage HD, Mitchell PL, Girard A, Gobeil É, Bourgault J, Bégin F, Marette A, Thériault S, Arsenault BJ. Large-scale metabolomic profiling and incident non-alcoholic fatty liver disease. iScience 2023;26:107127. <u>https://doi.org/10.1016/j.isci.2023.107127</u>
- Gobeil É, Maltais-Payette I, Taba N, Brière F, Ghodsian N, Abner E, Bourgault J, Gagnon E, Manikpurage HD, Couture C, ET AL. Mendelian randomization analysis identifies blood tyrosine levels as a biomarker of non-alcoholic fatty liver disease. Metabolites 2022;12:440. <u>https://doi.org/10.3390/metabo12050440</u>
- Hartley A, Santos Ferreira DL, Anderson EL, Lawlor DA. Metabolic profiling of adolescent non-alcoholic fatty liver disease [version 2; peer review: 2 approved]. Wellcome Open Res 2019;3:166. <u>https://doi.org/10.12688/wellcomeopenres.14974.2</u>
- 60. Hirata A, Harada S, lida M, Kurihara A, Fukai K, Kuwabara K, Kato S, Matsumoto M, Sata M, Miyagawa N, ET AL. Association of Nonalcoholic Fatty Liver Disease with Arterial Stiffness and its Metabolomic Profiling in Japanese Community-Dwellers. J Atheroscler Thromb 2024;31:1-17. <u>http://doi.org/10.5551/jat.64616</u>

- Hu X-Y, Li Y, Li L-Q, Zheng Y, Lv J-H, Huang S-C, Zhang W, Liu L, Zhao L, Liu Z, ET AL. Risk factors and biomarkers of non-alcoholic fatty liver disease: an observational cross-sectional population survey. BMJ Open 2018;8:e019974. <u>http://dx.doi.org/10.1136/bmjopen-2017-019974</u>
- 62. Kimberly WT, O'Sullivan JF, Nath AK, Keyes M, Shi X, Larson MG, Yang Q, Long MT, Vasan R, Peterson RT, ET AL. Metabolite profiling identifies anandamide as a biomarker of nonalcoholic steatohepatitis. JCl Insight 2017;2:<u>https://doi.org/10.1172/jci.insight.92989</u>
- 63. Khusial R, Cioffi C, Caltharp S, Krasinskas A, Alazraki A, Knight-Scott J, Cleeton R, Castillo-Leon E, Jones D, Pierpont B, ET AL. Development of a plasma screening panel for pediatric nonalcoholic fatty liver disease using metabolomics. Hepatol Commun 2019;3:<u>https://doi.org/10.1002/hep4.1417</u>
- 64. Martínez-Arranz I, Bruzzone C, Noureddin M, Gil-Redondo R, Mincholé I, Bizkarguenaga M, Arretxe E, Iruarrizaga-Lejarreta M, Fernández-Ramos D, Lopitz-Otsoa F, ET AL. Metabolic subtypes of patients with NAFLD exhibit distinctive cardiovascular risk profiles. Hepatology 2022;76:1121-1134. https://doi.org/10.1002/hep.32427
- McGlinchey AJ, Govaere O, Geng D, Ratziu V, Allison M, Bousier J, Petta S, de Oliviera C, Bugianesi E, Schattenberg JM, ET AL. Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease. JHEP Rep 2022;4:100477. <u>https://doi.org/10.1016/j.jhepr.2022.100477</u>
- 66. Zeng F, Su X, Liang X, Liao M, Zhong H, Xu J, Gou W, Zhang X, Shen L, Zheng J-S, ET AL. Gut microbiome features and metabolites in non-alcoholic fatty liver disease among community-dwelling middle-aged and older adults. BMC Med 2024;22:104. <u>https://doi.org/10.1186/s12916-024-03317-y</u>