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Several laboratories have been involved in the research of synaptic
transmitters and receptors during the post-World War II period in Czechoslovakia.
The main d the role of ine in the heart, motor
nerves, skeletal muscles and the intestine, the synlhesns of acetylcholine in the nerve
terminals and its release, the role of and the
system in stress, the function of adenylate cyclase and cyclic AMP, and the function
of muscarinic acetylcholine receptors and N-s melhyl -D-aspartate  (NMDA)
receptors. It would be difficult to provide a complete review of the work performed;
some of its most interesting aspects are only mentioned in the following text.

Acetylcholine in the heart

It was discovered by Vlk (1958a) that there is considerably more
acetylcholine in the heart atria than in the ventricles. Later, a gradient in the
distribution of acetylcholine in the heart atria was established (Vik 1958b, Vik and
Tudek 1961, Vik et al 1961), with acetylcholine concentration decreasing in the
order sino-atrial node > right atrium > left atrium. A similar distribution was also

for choline the enzyme ible for the synthesis of
aeetylcho]me (Tuek 1964, Slavikové and Tudek 1982a, 1985)
iochemical data were obtained, providing a partial explanation why the
tonic mﬂuenoe of vagal nerves (Lhoték 1911, Vik 1966, Slavikov4 and Tudek 1982b)
and the effect of vagal stimulation upon the heart (Babdk and Boudek 1907, Vik and
Vincenzi 1977, Vik 1979) increase during ontogenetic development. The content of
acetylcholine in the heart (Vlk 1958a, Vik and Tudek 1962, Kuntscherové and Vik
1979) and the activity of choline acetyltransferase (Tudek 1965, Slavikov4 and Tutek
1982b) undergo a marked increase during the postnatal period, while the density of
muscarinic receptors slightly decreases (Nedoma ef al. 1986).

Acetylcholine in motor nerves and skeletal muscles

Much of the work concerning the release of acetylcholine from motor nerve
terminals and the function of nicotinic acetylcholine rece]nors in skeletal muscles is
being mentioned elsewhere m thls issue (see the article by P. Hnfk).

ine content in skeletal muscles
provided a confirmation of emlner ﬁndings obtained with bioassays, indicating that
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acetylcholine is present in skeletal muscles not only in the motor nerve terminals,
but also in the skeletal muscle fibres (DoleZal and Tu¢ek 1983). The enzyme
responsible for the synthesis of acetylcholine in muscle fibres is not choline
acetyltransferase but rather carnitine acetyltransferase (Tu¢ek 1982). The role of
the acetylcholine which is being produced in the muscle fibres has not been
clarified. The total (neural and muscular) capacity for the synthesis of acetylcholine
in skeletal muscles varies considerably during postnatal development and aging
(Tudek 1972, Tu¢ek and Gutmann 1973) as well as after denervation (Tudek 1973,
1982). It is affected by testosterone and castration in the androgen-sensitive levator
ani muscle in rats (Gutmann et al. 1969, Tuek et al. 1976a,b). The transection of
frog (but not mammalian) nerves triggers the synthesis of choline acetyltransferase
in the cells of Schwann of the degenerating nerve trunks (Tudek ef al. 1978a).
Choline acetyltransferase in the nerve trunks is affected by ischaemia (Tudek et al
1978b, Malé!ové et al. 1989).

1 release of ine from motor nerve
termma]s, first discovered in frog muscles (Katz and Miledi 1977) was subsequently
found to proceed also in mammalian muscles (Vyskodil and Illés 1977, 1978, Vizi
and Vyskodil 1979). The spontancous non-quantal release is mediated by carriers,
which are inh led by botulinum toxin (Dolezal et al 1983) and by
2-(4 (AH 5183, icol; Edwards ef al. 1985). The
sensmv“y of the spontaneous non-quantal release to vesamicol known to block the
transport of acetylcholine into synaptic vesicles (see Ri¢ny and Collier 1986)
suggests that the carriers. for the of
synaptic vesicles may also be responsible for the non-quantal transport of
acelylcholme from the nerve terminals if they become incorporated into the
presynaptic plasma membranes during vesicular exocylosls Spontaneous calcium-

release of prepared
from the slectric organ of Torpedo; it can be hibited by muscarinic receptors
(Dolezal et al. 1988).

Acetylcholine in the intestine

Investigations of the release of acetylcholine from the cholinergic neurones
in the myenteric plexus led to the finding that the release can be enhanced by
prostaglandin E; (Kadlec et al. 1974, 1978) and to the discovery of post-tetanic
potentiation on muscarinic synapses (Kadlec et al. 1979, 1982), substance P or a
similar compound plays a role in the mechamsm of polemlalmn (sz]ec e: aL
1984a, Seveik e al 1990). igati
from the myenteric plexus (Kadlec et nl. 198417 1985, 1986 1987a) led to lhe
conclusion that the release depends on the propagation of action potentials along
the varicose fibres of the plexus; action potentials may fail to reach distal
vancouues during slow sum\llz!mn but their spreading may be improved by

potassium (Kadlec et al. 1990b, 1991) or
by high frequency stimulation in the presence of drugs promoting calcium
conductance (Kadlec ef al. 1987b, 1990a).




1991 Synaptic Transmitters and Receptors 235

‘The synthesis of acetylcholine in neurones

In i with ion of brain the
highest activity of choline ace!yllransferase was found in the fraction of the nerve
endings (Tugek 1967a,b), in accordance with data indicating that acetylcholine is
mainly produced in the nerve terminals. The enzyme, however, is synthesized in
ueuronal perikarya and is transferred to the nerve terminals by means of slow
unidirectional axonal transport (Tuéek 1974, 1975). The enzyme is non-specifically
activated by common cations (Morris and Tucek 1966).

e question of the origin of the acetyl groups in the molecule of
acetylcholine has been given much attention. While there is no doubt that the
immediate precursor of these acetyl groups is acetylcoenzyme A (Tudek 1978), the
provenience of the acetyl groups in the acetylcoenzyme A which is used for the
synthesis of acetylcholine is less clear. In experiments with intracisternal injections
of various labelled precursors of acetyl groups to rats in vivo, labelled atoms from
glucose, pyruvate and lactate were found to be most efficiently incorporated into
brain acetylcholine (Tugek and Cheng 1970, 1974). In the electric organ of Torpedo,
the most efficient precursor proved to be acetate (Israel and Tudek 1974). Glucose
is converted to acetylcoenzyme A via pyruvate, which is known to undergo oxidative
decarboxylation in the mitochondrial matrix. Three ways are available in which the
acetyl groups from the intramitochondrial acerylcocnzyme A may be transferred to
the pool o of A: () using citrate as the
carrier (Tuéek et al. 1981, Riéng and Tuek 1982); (b) using acetylcarnitine as the
carrier (Dolezal and Tutek 1981); (c) utilizing direct passage of acetylcoenzyme A
through via cal channels
(Tuéek 1967, Riény and Tucek 1983).

The rate of the symhesls of acetylcholine in brain slices has been found to
depend on the concentration of acetylcoenzyme A in the slices (Rfény and Tugek
1980, 1981). The availability of acetylcoenzyme A is likely to be one of the rate-
limiting factors in the control of acelylcho]me synthesis in the brain in vivo (Dolezal
and Tugek 1982). Other factors involved in !he control of the rate of acetylcholine
synthesis in cholinergic neurones are the ility of choline
(Tudek 1984, 1985, 1988). In the context of the analysis of the control of
acetylcholine syntheus, the finding by Kuntscherovd (1972) that the levels of
acetylcholine in the brain, heart and intestine may be augmented by the
administration of a large dose of choline, was of outstanding interest.

Catecholamines and catecholaminergic systems in stress

Important data have been obtained in studies of peripheral sympathoadrenal
and cerebral catecholaminergic systems in animals exposed to different stressors.
Changes in the activity of these systems during adaptation to repeated stress have
been elucidated as manifested by changes in tissue concentrations of
catecholamines, in their secretion, excretion, synthesis and degradation, and in the
activity of enzymes involved in these processes (Kvetiiansky 1980, Kvetiiansky et al.
1984). New findings (many of which were obtained in collaboration between the
group of R. Kvethansky in Bratislava and the Laboratory of Clinical Science, NIH,
Bethesda, US.A.) to the of the
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regulating the activities of enzymes synthesizing and degrading catecholamines and
controlling their secretion, as well as to the understanding of the sources of
circulating catecholamines and of the role of brain catecholamines in
neuroendocrine processes during acute and repeated stress (Kvetiansky 1973,
Kvetilansky et al. 1977, 1979a, 1989).

An elevation of the activity of dopamine-8-hydroxylase in the blood plasma
was found in animals during stress, in addition to the reduction in tissue
concentration of catecholamines and to the elevation of their secretion and
excretion. This finding (Weinshilboum ef al. 1981) was the first published report that
dopamine-B-hydroxylase may serve as an indicator of the sympatho-adrenal system
activity under stress. It was found that plasma catecholamines are highly elevated in
rats killed by itation. Therefore, a i for the collection of
blood via a permanent catheter was devised; this permitted to demonstrate, for the
first time, changes in plasma levels of catccholanunes dunng habnuauon to

stimuli (] et al. 1978a, D etal.

Investigation of the sources of circulating catecholamines released under
stress showed that the elevation of plasma epinephrine is almost exclusively due to
its release from the adrenal medulla; plasma norepinephrine is mainly released
from the peripheral sympathetic nerve endings, and plasma dopamine originates
from both sources (Kvetiiansky et al. 1979a). In repeatedly stressed rats, an elev D
store of catecholamines was found both in adrenal medulla and in sympathetically
innervated organs, together with elevated plasma and urine levels of catecholamines
(Kvetiansky and Mikulaj 1970, Kvetitansky et al. 1984). These changes are the
consequence of increased synthesis and most probably also of reduced degradation
of catecholamines induced by repeated stress.

The elevated synlhesls of calecholammes in repemedly slressed animals was
confirmed by in vivo of their Ky et
al. 1971a) and by in vitro analyses which showed elevations of activities of
synthesizing enzymes (Kvetiiansky et al. 1970, 1971b). The highly elevated activity of
tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of catecholamines,
in the adrenals of repeatedly stressed rats represents the first published report
concerning the acuvauon of this enzyme by physnolugwal stimuli (Kvetiiansky et aI
1970). Studies of involved in the of the elevated bit
of catecholamines showed that the symhesls is regulated by both neural and
endocrine factors (Kvetitansky 1973). The notion that cyclic AMP is involved in the

osine activity (K ky et al. 1971c) has become
generally accepted. It was also shown that the adrenocortical hormones are involved
in the regulation of synthesis, secretion and excretion of catecholamines
(Kvetitansky 1973, Kvetiiansky ef al. 1979b).

In studies of the adrenergic system in the brain, particularly in the

hypolhalamus, it was found that elevaled symhes-s in combination with reduced

are the basic for the rise of the concentration
of catecholamines in the brain of repeatedly stressed rats; alterations in the
concentrations of norepinephrine, dopamine and epinephrine in isolated
hypo;halamw nuclei of rats were demonstrated (Kvetfiansky ef al 1977, 1978b,
1983,

In studies performed on cosmonauts and rats during spaceflights, it was
found that activity is not changed and that long-term
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weightlessness does not represent an intensive stressogenic stimulus (KvetSansky ef

1981). During the long-term stay in weightlessness, however, the
sympathoadrenal system becomes more sensitive to stressors. This is manifested by
its increased activity after the landing on Earth (Kvetfiansky et al. 1981, 1988).

Cyclic AMP

Considerable effort has been spent on investigations of the control of cyclic
AMP formation and of its physiological role. Persistent activation of adenylate
cyclase by the toxin of Vibrio cholerae has been discovered by Hynie and Sharp
(Sharp and Hynie, 1971, Hynie and Sharp 1972) and the importance of cyclic AMP
in the control of lipolysis and of fatty acid mobilization has been demonstrated
(Hynie ef al. 1966, Brodie et al. 1966, 1969, Krishna et al. 1968). New data on the
hormonal control of enzymes involved in transmembrane signal transduction in the
hypophysis (Klenerové and Hynie 1974) have been obtained and the effects of the
of ipids) on these enzymes have
been discovered (Hynie and Smrt 1975, 1978, Smrt and Hynie 1978). The role of
cyclic AMP in the control of intraocular pressure and the effects of drugs and
%eptldes on the activity of adenylate cyclase in ciliary processes were investigated by
epelik and Hynie (1990a,b). Factors affecting membrane fluidity were found to
have an effect on the activity of adenylate cyclase (Hynie 1984, Hynie e al. 1985).
Both cyclic AMP and cyclic GMP levels were found to increase at the onset
of pharmacologically induced clonic seizures and during subsequent tonic
convulsions, returning back to control values after the end of seizures (Folbergrovd
1975b, 1977, 1980). The elevation of cyclic AMP is mainly due to the interaction of
catechnlamines with adenylate cyclase through B-adrenergic receptors (Folbergrové
1977, 1981). Cyclic AMP was shown to play an important role in triggering
glycogenolysis in the brain during seizures. A close correlation was found between
the levels of cyclic AMP and the activation of glycogen phosphorylase in the brain
during seizures, and also when the seizures were prevented by pentobarbital
(Folbergrové 1975abc, 1977) Some fezlures of lhe data obtained indicate,
however, that a of cyclic AMP
is also operating in the hram in which c«l* lons are likely to play a role
(Folbergrova 1981).

Muscarinic acetylcholine receptors

The negative chronotropic effect of the activation of muscarinic receptors in
the heart disappeared entirely in animals that had been injected with pertussis toxin,
which is known to block the interaction between receptors and certain G proteins
(Tuéek et al. 1987); pertussis toxin apparently blocked the G protein-mediated
interaction between muscarinic receptors and K* channels in the heart. The
G pro(eln is also likely to act as an m|ermed|ale in the chain of events whnch are

for the i of release fmm nerve
terminals mediated by i ini i n the
myenteric plexus, pretreatment with pertussis toxin entirely abollshed the mhxbuory
effect of muscarinic activation on the release of acetylcholine evoked by
depolarization of the plexus (Dolezal et al. 1989). Presynaptic muscarinic receptors
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probably influence the release of acetylcholine by decreasing the influx of Ca2* into
the nerve terminals (Dolezal and Tu¢ek 1990).

The effect of several myorelaxant drugs on muscarinic receptors may be
explained by their binding to an allosteric binding site on the receptors; both
negative and positive cooperativities were found to occur in relations between the
muscarinic and the allosteric ligand binding sites on the receptors (Nedoma ef al.
1986, 1987, Tugek et al. 1990).

Excitatory amino acid receptors

NMDA, quisqualate and kainate receptors have been found to differ in the
rate of their desensitization (Vyklicky et al 1986). The mechanism of the
modulatory action of glycine at NMDA receptors has been explained by the effect of
glycine on the desensitization of the receptor-channel complex (Mayer et al. 1989a,
Vyklicky jr et al. 1990a). The desensitization of quisqualate receptors in reduced by
concanavalin A (Mayer and Vyklick§ jr 1989c). Kainate and quisqualate interact in
their action on receptors (Viachové et al 1987). NMDA and Kainate receptor
channels differ in their diameters; the latter is_impermeable for divalent cations
(Vyklicky jr et al. 1988). Regulatory sites for Zn?* (Mayer et al. 1989, Mayer and
Vyklickg jr 1989b) and protons (Vyklicky jr et al. 1990b) were discovered on NMDA
receptors.
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