Thyroid Hormone Receptor Occupancy and Biological Effects of 3,5,3,-L-Triiodothyronine (T₃) in GH₄C₁ Rat Pituitary **Tumour Cells** # P. FILIPČÍK, V. ŠTRBÁK, J. BRTKO Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic Received September 17, 1997 Accepted October 2, 1997 ## Summary The GH₄C₁ pituitary cell line, an excellent model for a thyroid hormone action study, was used for determination of the relationship between thyroid hormone receptor occupancy and intensity of cell proliferation, prolactin (PRL) production, thyrotropin (TSH) inhibition and 3,5,3,-L-triiodothyronine (T₃) receptor down-regulation. Nuclear receptor population was progressively occupied by T₃ in concentrations ranging from 0.025 to 10.0 nM T₃. B_{max} ranged from 0.029 fmol/ 10^6 cells at the lowest T₃ concentration to $B_{max} = 12.51$ fmol/ 10^6 cells at the highest concentration. Each of the observed biological events is operative within distinct dose-response ranges in cultured GH₄C₁ cells. The maximal biological response (except the TSH inhibition and T₃ receptor down-regulation) does not require the occupation of the whole nuclear receptor population by T₃ and the intensity of none of the responses studied was directly proportional to thyroid hormone receptor occupancy. ### Key words GH₄C₁ rat pituitary cell line - 3,5,3,-L-triiodothyronine - Thyroid hormone receptors - Receptor occupancy -Biological response ### Introduction Thyroid hormones (TH) regulate a number of biological events in the pituitary. Their effects are mediated through intranuclear receptors (TR) that have been identified as transcriptional regulators. They are able to bind to specific DNA sequences and regulate complex networks of target genes, and thus control various aspects of growth and development. The existence of different isoforms of TR which are specific in their developmental and spatial distributions in the body and throughout, as well as their intermolecular interactions with other transcriptional factors or accessory proteins, makes the explanation of the mechanism of TR action rather complicated. Moreover, it is believed that various TR isoforms play different roles in biological events (Bradley et al. 1994). Thyroid hormone receptor occupancy (THRO) is one of the critical factors involved in the process of regulation of TH specific events. Relationships between THRO and the intensity of the final biological effect had been investigated by using different cell lines, but controversial results were obtained (Shupnik et al. 1986, Halperin et al. 1990). Useful models for this type of study have been provided by pituitary tumour cell lines (GH₁, GH₃, GC, GH₄C₁) which possess unique characteristics of the original differentiated tissue such as production of hormones in combination with an immortalized growth cell lines potential. Moreover, these intranuclear TH receptors in very high amounts and they respond to physiological concentrations of TH. 42 Filipčík et al. Vol. 47 The aim of this study was to determine T₃ dose responses for nuclear receptor occupancy and several biological parameters including cell growth, prolactin (PRL) and thyrotropin (TSH) secretion and TR down-regulation in GH₄C₁ pituitary cells. We have also clarified the relationship between T₃ receptor occupancy and intensity of the biological effects which seem to be important for further understanding the mechanism of TH action. Thus, our data provide further insight into the mechanism of physiological regulations by thyroid hormones and can supplement other data obtained at the level of T₃-activated gene expression. ### Material and Methods ### Cell culture GH₄C₁ cells were cultured in DMEM/F12 medium (Sigma, U.S.A.) supplemented with 2.5 % foetal calf serum and 12.5 % horse serum, which have been stripped of thyroid hormones prior to the experiments using Dowex 1x8 and charcoal - Norit A treatment (Serva, Germany) according to Samuels et al. (1979a,b). To avoid bacterial contamination, penicillin (100 µU/ml) (Slovakofarma, Slovakia), streptomycin (100 µg/ml) (Medika, Slovakia) or kanamycin (10 μ g/ml) (Sigma, U.S.A.) were used. Cells were plated in 6-cm diameter tissue culture dishes or 24-well culture plates (Flow laboratories, U.K.) usually at the density of $5x10^4$ cells/cm². The cell number never exceeded 3x10⁵ cells/cm². Doubling time and cell viability were determined using a haemocytometer and the Trypan blue exclusion test. # Percentage of T_3 receptor occupancy and medium T_3 concentration T₃ receptors were estimated using a modified method of Barlow and De Nayer (1988). Initially we determined both, the nuclear receptor occupancy in GH₄C₁ cells after 48 h incubation in the presence of different T₃ concentrations and T₃ nuclear receptor capacity at each T₃ dose. From these data, we calculated the relationship between the concentration of T₃ in the medium and the percentage of nuclear receptor occupancy. For the binding experiments, a sixpoint saturation analysis was performed in duplicates. Cells were plated in a normal growth medium that had been changed for the TH stripped one 12 h after plating. The cultures were supplemented with different concentrations of T₃ and the same dose (5.0 pM) of radioactive [125I]T₃ (SA=44.4 TBq/g; New England Nuclear, U.S.A.). After 48 h, cell nuclei were isolated (Samuels et al. 1973) and specifically bound nuclear T₃ was determined. A similar experimental procedure was followed at each T₃ concentration for assessment of nuclear receptor capacity. In this case, we incubated the cells at different T₃ concentrations for 48 h and T₃-TR specific binding was determined during the last three hours of the period by incubation with radioactive T₃ (Halperin *et al.* 1990). Non-specific T₃ binding was determined in a thousandfold excess of non-radioactive T₃ and was always less than 8 % of the total nuclear radioactivity. ### PRL and TSH determination Prolactin and TSH in a conditioned medium of GH₄C₁ cells were determined by RIA using kits for the "Rat Pituitary Hormone Program" (NIADDK, NIH, U.S.A.) and normalized to the protein content. ### Statistics The differences between various experimental groups were compared by the analysis of variance. The figures give the standard error of the mean $(\pm S.E.M.)$ and the results are the means of at least three independent experiments. Fig. 1. The dependence of nuclear TH receptor occupancy in GH_4C_1 cells in relation to different concentrations of T_3 in culture media. Non-specific binding was estimated in the presence of tenfold excess of non-labelled thyroid hormone and was usually less than 8 % of the total binding. ### **Results and Discussion** Specific T_3 binding in nuclei of GH_4C_1 cells, TR occupancy and down-regulation of TR by T_3 The GH_4C_1 rat pituitary tumour cell line is a widely used experimental model. The cells produce PRL, TSH and represent an easily accessible source of TR. Saturation analysis revealed the presence of specific T₃ binding sites characterized by equilibrium association constant, $K_a = 1.07 \times 10^9 \,\mu\text{mol}$ and the maximal binding capacity, B_{max} = 12.19 fmol/10⁶ cells, which indicates the presence of approximately 7300 T₃ binding sites per cell nucleus. The maximal binding capacity and the receptor occupancy were determined for each of T₃ doses after 48 h incubation at 37 °C according to Halperin et al. (1990). Figure 1 shows the relationship between TH receptor occupancy and the concentration of T₃ in the culture medium. The TR population was occupied in the T₃ concentration range from 0.025 nM to 20.0 nM. At doses higher than 10 nM T₃, we observed down-regulation of nuclear receptors, their binding capacity being reduced by about 19.6 % (p<0.02) of the maximal value (Fig. 2). At this T_3 concentration, 92.0 % of TRs were occupied. In agreement with the data on receptor down-regulation, we also observed a significant reduction of the TR alpha mRNA accumulation as measured by Northern blot hybridization with c-erbA alpha cDNA probe (data not shown), which indicates that the inhibition of TR expression occurs at the pretranslational level. Based on these observations, most of the effects of thyroid hormone occurs within the concentration interval from 0.025 nM to 20.0 nM T₃, and resulting in 12.6 % TR occupancy to 10.0 nM T₃, at which almost all of the TR population might be expected to be already occupied Fig. 3. GH_4C_1 cell growth stimulation in the presence of T₃. (<20 % nuclear receptor occupancy). Doses higher than 0.1 nM T_3 inhibited cell division (* p < 0.05; n = 10, ANOVA). Fig. 4. The effect of T_3 on PRL production in GH_4C_1 cells. Maximum of PRL production was observed at concentrations of 1.0 nM T3 resulting in 66 % of TR occupancy. Higher doses of T3 did not increase PRL production (* p < 0.05; n = 3). T₃ dose-dependent biological events: cell proliferation, regulation of PRL and TSH production All the experiments were performed in a resin-treated serum containing medium, which was completely depleted of thyroid hormones and subsequently supplemented with desired concentration of T₃. The doubling time of cell population (in a hormone-free medium) was extended from 38.8 h to 68.2 h which represents an increase of about 75.7±14.5 % in comparison to cells grown in a medium containing normal serum. T3 increases significantly the cell division rate (p<0.05). Figure 3 shows the effect of T₃ dose on cell proliferation. The growth rate reaches its maximum at 0.025 nM T₃ which represents an occupancy of less than 20 % of the TR population. It is interesting to note that the cell growth rate was not maintained at higher T₃ concentrations but it was rather reduced to control level. Figures 4 and 5 show the dose-dependent effects of T₃ on PRL and TSH production. The basal levels of PRL and TSH produced by GH₄C₁ cells were 85.0 ng PRL/ml media/10⁶ cells and 76.0 μ U TSH/ml media/10⁶ cells as measured after 48 h in the cell culture media. We found that the GH₄C₁ cells respond to specific doses of 3,5,3,-L-triiodothyronine differently e.g. the PRL production increases whereas the production of TSH is decreased as measured by RIA in the cell culture medium. A significant increase of PRL production was observed at a concentration of 1.0 nM T₃ (118% increase above the control values). This concentration caused a receptor occupancy by T₃ equal to 66% and also represents the maximal stimulation of PRL production. Under the same conditions, we observed moderate inhibition of TSH production (Fig. 5). Ten times higher T₃ concentration resulted in almost complete TR occupation by T₃. At 20.0 nM T₃, we observed significant reduction of the T₃ nuclear receptor binding capacity, resulting in 52.5 % reduction (Fig. 2) when compared to the control values. **Fig. 5.** The effect of T_3 on TSH production in GH_4C_1 cells. Decreased TSH production was found at higher T_3 doses and significant differences occurred after saturation of the TR population (* p < 0.05; n = 3). Fig. 6. The relationship between intensity of selected biological responses and the percentage of nuclear thyroid hormone receptor occupancy in rat pituitary tumour cell line GH₄C₁. Full dots - cell growth, triangles - PRL production, full squares - TSH inhibition. Each of the responses reached its maximum at different T_3 concentrations and therefore at different receptor occupancy. The response ranges partly overlap and intensity of the processes are not directly proportional to receptor occupancy. Intensity of biological effects and the TH-receptor occupancy relationship The experimental data were used to define the relationships between the intensity of biological effects and the percentage of thyroid hormone receptor occupancy in this particular cell line. Figure 6 represents a summary of the above experiments. Each of the responses is operative in different T₃ dose ranges and different nuclear receptor occupancy intervals. It is obvious that the induction of a particular biological event requires the occupancy of a different minimal number of receptors by T₃ and no full receptor population occupancy by the thyroid hormone is needed for a maximal intensity of the above mentioned process (except for TR down-regulation). In certain cases (e.g. cell division), occupation of a higher than optimal percentage of TR population can inhibit the biological process. Cell growth seems to be a very sensitive response of the cells to T₃ stimulation. On the other hand, PRL production begins when more than 20 % of the TR population is being occupied by T₃, and a maximal response occurs in the middle of the occupancy range. A higher number of receptors (at least 80 % of the TR population) has to be occupied to inhibit TSH production as well as to down-regulate nuclear T₃ receptors. These effects are operative in distinct T₃ dose ranges which can partially overlap as is shown in Figure 6. The concentration of T₃ and percentage of the THRO corresponding to the maximal intensity of the above biological responses were as follows: a) the maximal growth rate was attained at 0.1 nM T₃ corresponding to T₃ receptor occupancy of less than 20 %; b) the maximal stimulation of PRL production was observed at 1.0 nM T₃ which corresponds to 66.0 % of THRO; c) inhibition of TSH production occurs at 20.0 nM of T₃ when more than 95.7 % T₃ receptors are occupied by T₃. Several different pituitary cell lines (GC, GH₁, GH₃) have been employed in the studies on thyroid hormone effects. Because of their differentiated phenotype in vitro, they represent a valuable experimental model. Our data contribute to the longlasting discussion whether or not the final effect of TH is directly proportional to THRO. Conflicting opinions can be illustrated by previous reports of other authors (Samuels 1983, Yaffe and Samuels 1984, Nyborg et al. 1984, Shupnik et al. 1985, Halperin et al. 1990). Our data are in principal agreement with those published by Halperin et al. (1990). The authors have established an experimental model using the GC pituitary cell line. They were able to determine unique dose-response regions for three different biological responses (cell division, growth hormone production and nuclear receptor down-regulation) to T₃ within the wide range (from 1 nM to 10 nM T₃) of nuclear receptor occupancy. In agreement with these data, we found cell growth to be the most sensitive response of the cells to TH. Down-regulation of c-erbA mRNA accumulation as well as the final protein product content at concentrations higher than 10 nM of T₃ were also observed in GH₄C₁ cells. Between these extreme effects, PRL production and TSH inhibition were and T₃ dose-response ranges observed determined. In conclusion, we found that the above biological events are operative in distinct T₃ doseresponse ranges and that the intensity of any particular response is not directly proportional to thyroid hormone receptor occupancy. Moreover, full receptor population occupancy is not necessarily needed for achieving the maximal intensity of the biological response. In contrast, increased concentrations of the thyroid hormone (above the optimal level) might lead to inhibition of the biological response. These data also suggest that this cell line can be used as a suitable model for clarifying the mechanism leading to different sensitivity of pituitary cells towards T₃. It is very likely that one of the possible mechanisms is based on a different number and composition of thyroid hormone responsive elements in the regulating regions of target genes. ### References - BARLOW J. W., DE NAYER P.: Characterization of thyroid hormone receptors in human IM-9 lymphocytes. Acta Endocrinol. Copenhagen 117: 327-332, 1988. - BRADLEY D.J., TOWLE H.C., YOUNG W.S. 3rd.: Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo. Proc. Natl. Acad. Sci. U.S.A. 91: 439-443, 1994. - HALPERIN Y., SURKS M.I., SHAPIRO L.E.: L-triiodothyronine (T3) regulates cellular growth rate, growth hormone production, and levels of nuclear T3 receptors via distinct dose-response ranges in cultured GC cells. Endocrinology 126: 2321-2326, 1990. - NYBORG J.K., NGUYEN A.P., SPINDLER S.R.: Relationship between thyroid and glucocorticoid hormone receptor occupancy, growth hormone gene transcription and mRNA accumulation. J. Biol. Chem. **259:** 12377-12383, 1984. - SAMUELS H.H.: Identification and characterization of thyroid hormone responses and action using cell culture techniques. In: Molecular Basis of Thyroid Hormone Action, J.H. OPPENHEIMER, H.H. SAMUELS (eds), Academic Press, New York, 1983, pp. 35-64. - SAMUELS H.H., STANLEY F., CASANOVA I.: Depletion of L-3,5,3,-triiodothyronine and L-thyroxine in euthyroid calf serum for use in cell culture studies of action of thyroid hormone. Endocrinology 105: 80-85, 1979a. - SAMUELS H.H., STANLEY F., CASANOVA J.: Relationship of receptor affinity to modulation of thyroid hormone receptors. J. Clin. Invest. 63: 1229-1235, 1979b. - SHUPNIK A.M., CHIN W.W., HABENER J.F., RIDGWAY E.C.: Transcriptional regulation of the thyrotropin subunit genes by thyroid hormone. *J. Biol. Chem.* **260**: 2900–2903, 1985. - SHUPNIK A.M., ARDISSON L.J., MESKELL M.J., BORNSTEIN J., RIDGWAY A.C.: Triiodothyronine (T₃) regulation of thyrotropin subunit gene transcription is proportional to T₃ nuclear receptor occupancy. *Endocrinology* **118**: 367-371, 1986. - YAFFE B.M., SAMUELS H.H.: Hormonal regulation of the growth hormone gene: relationship of the rate of transcription to the level of nuclear thyroid hormone-recptor complexes. J. Biol. Chem. 259: 6284-6290, 1984. ## Reprint requests P. Filipčík, Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 842 46 Bratislava, Slovak Republic.