Physiol. Res. 48: 215-219, 1999

Anoxia/induced Membrane Changes in Human
Red Blood Cells

A.NICAK, J. MOJZIS, M. JANDOSEKOVA!, L. MIROSSAY

Department of Pharmacology, Medical Faculty, Safdrik University and Transfusion Center,
University Hospital, KoSice, Slovak Republic

Received June 3, 1998
Accepted January 22, 1999

Summary

The cation-osmotic hemolysis was studied in human red blood cells incubated under anoxic conditions. In relation to the
time course of anoxia, two phases of hemolysis were distinguished. A significant decrease of hemolysis was found
between 3 and 24 h of incubation. On the other hand, hemolysis was significantly increased after prolonged incubation
(48-72 h). Using the method of cation-osmotic hemolysis, the properties of two membrane constituents, spectrine
membrane skeleton and membrane bilayer, were studied. The relation between cation-osmotic hemolysis and

erythrocyte deformability is being discussed.
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Introduction

It is known that the hemorheological membrane
properties of red blood cells (RBC) may be changed
under hypoxic conditions (Backman 1986). Human RBC
treated under anoxic conditions for an adequate time
period lose their discoid form in favor of spiculated or
spherical forms (Reinhart and Chien 1987). Erythrocytes
and hemoglobin have been shown to be a source of
enhanced superoxide production under hypoxic
conditions (Balagopalakrishna e al. 1997). It is believed
that oxidative stress causes membrane damage associated
with membrane protein cross-linking and the loss of
deformability can be a consequence of these membrane
changes (Rifkind et al. 1991). Furthermore, it was found
that ATP-depletion under anoxic conditions increases
spectrin cross-linking to oligomers and accumulation of

intracellular calcium (Kamada et al. 1983). An increase in
intracellular calcium results in a decrease of RBC
deformability (Clark e al. 1981, Chien 1987). Increased
osmotic fragility in metabolic depleted RBCs has also
been observed (Tozzi-Ciancarelli et al. 1992).

On the other hand, Kaniewski et al. (1994) found
that hypoxic conditions did not alter the biophysical
properties of human RBC membranes. Using the
ectacytometric method, these authors examined human,
cat, dog, rabbit, and rat erythrocytes under normoxic and
hypoxic Decreased deformability was
observed only in rat erythrocytes.

The aim of our paper was to study the
erythrocyte deformability changes in human RBC under
anoxic conditions using the method of cation-osmotic
hemolysis (COH).

conditions.
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Method

The blood used for in vitro experiments was
withdrawn from a group of 35 healthy donors 19 to 46
years. The blood samples in volumes of 2 ml were
collected according to the rules of the International
Hemorheological Committee (ICSH Expert Panel on
Blood Rheology 1986).

The erythrocyte membrane deformability was
studied using the method of cation-osmotic hemolysis
(Nicdk and Mojzi§ 1992, Mojzi§ and Nicdk 1993).
Immediately after blood sampling, 15 pl of blood were
added to 3 ml of the incubating medium, which contained
different concentrations of NaCl and isotonic glucose.
The concentrations of NaCl used (ionic strength) were as
follows (in mmol.I'"): 15.4, 30.8, 46.2, 61.6, 77.0, 92.4,

107.8, 123.2, 138.6 and 154.0. On the other hand, the
concentrations of isotonic glucose were (in mmol.I""):
258.3;229.6; 200.7; 172.2; 143.5, 114.8, 86.1, 57.4, 28.7
and 0.0. The hemolysis was induced by HgCl, (0.15
mmol.I"") present in the incubating medium. The samples
were incubated for 60 min at 37 °C and centrifuged
afterwards for 5 min at 700 g. Hemolysis was established
spectrophotometrically at 540 nm and expressed as the
hemolytic rate in relation to hemolysis in distilled water,
which was arbitrarily set as 100 %.

The remaining portion of blood samples were
incubated during the period of 72 h at 37 °C under anoxic
conditions. The changes of membrane deformability were
established 3, 6, 12, 24, 48 and 72 h after the onset of
incubation according to the method described above.
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Results 30.8 mmol.l-1 of NaCl was significantly lower (p<0.001).

The results of cation-osmotic hemolysis after
three and six hours of incubation are shown in Figure 1.
No significant differences were observed in solutions with
ionic strength from 15.4 to 123.2 mmoll’ of NaCl.
However, in the solutions with higher ionic strength
(138.6-154.0 mmol.I" of NaCl) hemolysis was
significantly lower (p<0.001 and p<0.05, respectively).
Figure 2 demonstrates cation-osmotic hemolysis after 12
and 24 h of incubation. After 12 h of incubation,
hemolysis was significantly lower in the medium
containing 30.8 mmol.I"" of NaCl. However, hemolysis
after 24 h of incubation in the solutions with 15.4 and

- (p<0.01

In the solutions with high ionic strength (138.6-154.0
mmol.I" of NaCl) significant decrease of hemolysis was
observed only after 12 hours of incubation (p<0.001).

Dramatic changes of cation-osmotic hemolysis
occurred after 48 and 72 h of incubation. After 48 h of
incubation in solutions ranging from 462 to 154.0
mmol.I" of NaCl hemolysis significantly increased
and p<0.001, respectively) (Fig.3). More
intensive increase of hemolysis was observed after 72 h of
incubation. Significant enhancement of hemolysis was
found in all incubating solutions except those containing
15.4 mmoLI" of NaCl (30.8-154.0 mmol.I" of NaCl)
(p<0.001).
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Discussion

Few years ago we developed the method of
cation-osmotic hemolysis (Nicak and Mojzi§ 1992).
Subsequently, we proved that membrane deformability
.and cation-osmotic hemolysis are closely related.
Hemolysis of the rigid erythrocyte membrane (treated by
glutaraldehyde) was significantly lower when compared
with non-treated erythrocytes and the filtration time of
glutaraldehyde-treated erythrocytes was also much longer
as compared with non-treated RBCs (Mirossay et al.
1997). On the ‘basis of these results and our previous
experience, we suggest that cation-osmotic hemolysis
reflects the about erythrocyte
deformability.

basic information

The method of cation-osmotic hemolysis makes
it possible to determine the biophysical state of the
spectrin-actin complex (first maximum of hemolysis) and
simultaneously changes of the lipid bilayer (second
maximum of hemolysis) in relation to the ionic strength of
the incubation medium (Nicdk and Mojzi§ 1993). Both
maxima can be considered as a Hg®* blockade of cation
and water membrane channels (band 3 and 4.5) (Benga
1988). Thus the lipid bilayer appear to be the only
pathway for water permeation (Macey and Farmer 1970).

The influence of metabolic depletion on RBC
deformability is a crucial problem. Various intracellular
changes of RBC were found, including a decrease of ATP
and an increase in the calcium content (Kamada et al
1983). The decrease of erythrocyte deformability (ED) in
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metabolically depleted RBC was different according to
the methods employed (Weed et al. 1969). Oxidative
stress was found to be a destructive process connected
with membrane peroxidation only after hypoxia
associated with hemolysis. However, under conditions of
effective anoxia, the intensity of hemolysis is substantially
lower (Rifkind et al. 1991). These authors later found that
oxidative stress at intermediate oxygen pressure induces
membrane damage associated with enhanced lysis,
membrane protein cross-linking and a decrease of
deformability. In our experiments the decrease of COH
was observed until 24 h of anoxia. A significant decrease
of hemolysis after 3 h of anoxia was only found in
solutions of high ionic strength. Later, a significant
decrease was observed after 12 h of incubation in media
with low and high ionic strength. However, after 24 h
incubation a significantly diminished hemolysis was only

found in solutions of low ionic strength. These results are
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