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Summary

A short review on the role of endothelium and nitric oxide (NO) in experimental hypertension is presented in the light
of the literature and our own recent findings. Based on these data, it is concluded that even though there is a lot of
evidence in favor of the primary and causal association of endothelial dysfunction and NO in experimental
hypertension, it seems still more plausible that they are causative in some types of hypertension only. Our own
experience rather speaks for a secondary but still an important participation of endothelium in the maintenance and
further elevation of high blood pressure. Endothelium plays a key role in the development of organ damages in

hypertension.
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Review of the literature

The modern history of vascular endothelium
begins in 1980 when Furchgott and Zawadski described
the obligatory role of intact endothelium for
acetylcholine-induced vasodilation. A few years later, the
endothelium-derived relaxing factor (EDRF) was
identified as nitric oxide (NO) (Palmer et al 1987,
Ignarro et al. 1987, Khan and Furchgott 1987). However,
already in 1970’s the protective role of endothelium
against platelet thrombi and the discovery of prostacyclin
were reported by Gryglewski et al. (1976). In addition to
these agents, endothelial cells produce endothelium-
(EDHF),

supposed to be arachidonic acid metabolite, formed via

derived hyperpolarizing factor which s

non-cyclooxygenase pathway. It has vascular smooth
muscle relaxing properties through potassium channels.
Endothelium is also known to produce various
vasoconstrictor factors including small peptides such as
endothelins (Yanagisawa et al. 1988) or angiotensin II as
well as prostaglandin H, or thromboxane A, (for review
see Gryglewski 1995, Born et al. 1998, Russel and
Davenport 1999).

Based on this background it is evident that
endothelium, the continuous monolayer lining the entire
surface of all types of blood vessels and the heart
participates the normal regulation of blood pressure (for
review see Das and Kumar 1995, Schini-Kerth and
Vanhoutte 1995). It is also a target for the harmful effects

of elevated blood pressure. Endothelial dysfunction can

PHYSIOLOGICAL RESEARCH

© 2000 Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic

E-mail physres@biomed.cas.cz

ISSN 0862-8408
Fax +420 2 293 894
http://www.If2.cuni.cz/physiolres/physiolres.htm



2 Vapaatalo et al.

Vol. 49

aggravate the development of hypertension in different
ways. This short review is aimed to describe some
aspects of the role of endothelium and NO in
experimental hypertension based on the literature and our
studies the vasodilatory
components and antihypertensive treatments, with either

own mainly focused on
dietary or pharmacological manipulation.

The role of endothelium in hypertension is very
complex due to counteracting and balancing factors
formed and their relative amounts released. Furthermore,
based on our and others’ experience in the animal models
of hypertension used (for review see Zicha and Kune$
1999), the age and gender of the animals as well as the
developmental phase of hypertension can influence
endothelial functions. Many of the suggestions on the
importance of endothelium and NO are based mainly on
the findings obtained in isolated vascular preparations or
cell cultures. It is evident that these results should be
interpreted cautiously. The fact that mice lacking the gene
for endothelial nitric oxide synthase (eNOS) develop
hypertension (Huang et al 1995) is the additional
evidence for the role of NO in the regulation of blood
pressure. The use of inhibitors of NO synthase (NOS-
inhibitors) offers an important tool for the evaluation of
endothelium and NO in the pathogenesis of hypertension
(for review see Zatz and Baylis 1998, Zicha and Kune$
1999). These
contraction of isolated arteries, decrease blood flow and

drugs cause endothelium-dependent
induce pronounced and sustained hypertension in vivo
(Vallance er al. 1989, Gardiner et al. 1992, Rees et ul.
1996, Takase et al. 1996, Vaskonen et al. 1997). Morton
et al. (1993) described hypertension persisting even after
the discontinuation of NOS-inhibitor treatment lasting
14 weeks. On the other hand, hypertension was regressed,
when the NOS-inhibitor was withdrawn after 4 weeks
(Ribeiro et al. 1992). In their review Zatz and Baylis
(1998) have discussed the importance of the dosage of an
NOS-inhibitor and the degree of NOS inhibition in the
development of hypertension and its implications as well
as the role of dietary sodium intake. Antihypertensive
ability of
endothelium as shown by us (see later), probably also due

treatments can restore the functional
to a formation of alternative relaxing agents than NO
(Takase et al. 1996).

Nava and Liischer (1999) have published very
recently an extensive review on NO in experimental
hypertension, and the readers are advised to consult it in
details. According to this review, there are animal models

of hypertension in which production of NO is increased

and some models in which its production is decreased.
Moncada (1999) has also suggested that in relation to NO
two types of experimental hypertension exist. In a normal
situation vasoconstrictor influences are opposed by the
production of NO.
augmented production of vasoconstrictor factors could
lead to increased synthesis of NO to act as a protective
mechanism. This type of hypertension shows enhanced
production of NO. In another form of hypertension, there
may be a decrease in NO production, and the normal

In one type of hypertension,

vasoconstrictor activity in the vascular wall would be
unopposed, leading to increased blood pressure.

In the 23 original papers on the spontaneously
hypertensive rats (SHR) referred in the review of Nava
and Liischer (1999), one third of the reports showed
unaltered third  found
diminished and one third augmented endothelial function.
The studies were both in vivo and in vitro functional and
analytical studies. Different mechanical factors (shear
blood
pressure) can be stimuli for vascular (Buga et al. 1991,
Nava et al. 1994) and cardiac (Nava ef al 1995)
endothelial NOS (eNOS), thus increasing the NO
production. Qiu and coworkers (1998) showed recently

endothelial function, one

stress, pulsatile stress, elevated intraluminal

that, depending on the stimulus, different biochemical
and functional responses of eNOS can be found. In
mesenteric artery perfused in vitro, flow-induced release
of cGMP (the second messenger of NO) was greater in
SHR than in normotensive controls despite a lower flow-
induced dilatation in SHR. The NOS-inhibitor L-NAME
inhibited completely the cGMP release in response to
flow in both strains, although the flow-induced dilatation
was not affected by L-NAME in SHR. The eNOS activity
and its mRNA were greater in SHR than in normotensive
rats. Nitroprusside induced a larger increase of cGMP in
SHR. Acetycholine-induced cGMP release was decreased
in SHR in parallel with smaller relaxation. It was
suggested that the upregulation of NO/cGMP pathway
compensates for the increased vascular tone in SHR.

finding is that
developmental phase of hypertension (prehypertensive

An important during the
and early hypertensive stage) in SHR, NO vasodilation is
preserved or possibly even enhanced so that a putative
impairment of this function provides no significant
pathogenetic contribution to the onset of hypertension in
this model (Radaelli er al. 1998; for review see Zicha and
Kunes 1999).
Commonly,

acetylcholine-induced  vasorela-

xation in vitro has been used as a measure of NO-



2000

Endothelium and NO in Hypertension 3

mediated vasodilation. However, a carefully analysis of
the mechanisms of acetylcholine responses (Imaoka et al.
1999) indicated that endothelium-dependent relaxations
were lower in aortic rings of SHR (both adult and elderly)
than in normotensive controls. Aging did not influence
them in SHR but did it in normotensive rats. Using
inhibitors of prostacyclin and NO synthesis these authors
finally concluded that in SHR NO-mediated relaxation
responses to acetylcholine are attenuated with aging but
are not impaired by increased blood pressure.

Other factors than high blood pressure could also
contribute to the left ventricular hypertrophy and
contractile dysfunction in SHR. This is supported by the
recent finding that the expression of eNOS is selectively
decreased in cardiac myocytes, but not in the coronary
microvascular endothelial cells of young SHR. The eNOS
protein was decreased but eNOS mRNA was increased
(Bayraktutan et al. 1998).

In the Dahl salt-sensitive hypertensive rats
impaired endothelium-dependent relaxations were found
suggesting decreased NO production (Liischer and
Vanhoutte 1988). Supporting findings have been reported
using  NOS-inhibitors and thereafter
supplementation (Chen and Sanders 1991).

Chen (1991) showed that
intravenously given L-arginine lowered blood pressure in
the Dahl salt-sensitive but not in the salt-resistant rats,
whereas NOS-inhibition raised blood pressure more in
the salt-resistant rats. They concluded that NOS is likely
involved in the regulation of blood pressure in the Dahl
rats on high salt diet. The salt-sensitive rats may be
defective in raising the activity of NOS in response to salt
load. Liischer and coworkers (1987) described endothelial
dysfunction in this hypertension model and proposed
diminished EDHF-production (not yet accepted to be
NO) as a cause of elevated blood pressure.

Similarly, a hypertension-prone subset of Sabra

L-arginine

and Sanders

rats has reduced levels of circulating oxidation products
of NO, such as nitrite and nitrate (Rees ef al. 1996).
Accordingly, in these rats the inhibition of NOS induced
a greater vasoconstriction in the normotensive controls
than in the hypertensives. The hypertensive animals had
also lower sodium excretion than the normotensives.
When hypertension has been induced by
deoxycorticosterone-sodium chloride treatment (DOCA-
salt hypertension), lowered NO production has also been
suggested based on the impaired endothelium-dependent
vascular relaxation (Voorde and Leusen 1986). The

endothelial dysfunction in DOCA-salt hypertensive rats
can be improved and the hypertension attenuated by
L-arginine treatment (Hayakawa er al. 1994, Laurant er
al. 1995).

The question on the role of NO and NOS in
hypertension becomes even more complex, when the
recent studies on knock-out mice are concerned (for
review see Deng 1998). Homozygous mice lacking the
constitutive neuronal form of NOS (nNOS) had blood
pressure similar to the wild type mice (Huang et al. 1993,
Nelson et al. 1995, Laubach et al. 1995). On the other
hand, homozygous mice deficient in the constitutive
endothelial NOS had higher blood pressure than the wild
type controls (Huang et al. 1995, Steudel et al. 1997),
whereas blood pressure in eNOS-overexpressing mice
was lower compared to control littermates (Ohashi et al.
1998) suggesting that eNOS plays a central role in the
regulation of blood pressure. The findings in the
inducible NOS (iNOS)-deficient mice suggest that iNOS
may have this blood pressure increasing effect, too
(MacMicking et al. 1995). Deng (1998) carried out
genetic tests and found in linkage studies that the
inducible NOS locus cosegregated with blood pressure in
F,-populations originated from crosses of Dahl salt-
with
However, the same was not found with the brain nNOS
eNOS. He concluded that the
chromosome region including iNOS gene did not contain
a quantitative trait locus (QTL) for blood pressure. In
consequence, iNOS gene is no more considered as a
candidate QTL capable of causing high blood pressure in
Dahl salt-sensitive rats. Nevertheless, the NO system

sensitive rats various normotensive strains.

and endothelial

appears to be involved secondarily in the regulation of
blood pressure in this hypertensive rat model. Based on
these findings it can be suggested that in salt-dependent
models of hypertension the decreased synthesis and/or
action of NO has a role in the development of high blood
pressure.

Renal hypertension models show controversial
results concerning the arginine-NO pathway. On the basis
of impaired vascular relaxation (Dohi et al 1991,
Lockette et al. 1986) and reduced formation of NO
(Nakamura and Prewitt 1992), deficient NO system might
be related to the hypertension. However, there are also
reports on higher production of NO metabolites and the
NO-related second messenger (cGMP) (Dubey et al.
1996) which could even lead to opposite conclusion.
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Table 1. Summary of findings of our research group speaking for or against the role of endothelium and/or nitric oxide
in experimental hypertension.

Model Treatment Antihypertensive Arterial functions Role of Refereces
(duration) effect of treatment in vitro endotheliun
SHR Dietary Ca** + ACh-relaxation + Maikynen
(13 weeks) improved et al. 1995
SHR Exercise and/or Ca** + ACh-, K-, isoprenaline- +/— Sallinen
(23 weeks) (Ca*) relaxations improved et al. 1996
SHR None BP increase with age ACh-, SNP-, isoprenaline-  +/— Wuorella
moderately aged relaxations impaired et al. 1994
SHR Quinapril + ACh-, SNP-, isoprenaline-  +/— Arvola
(15 weeks) relaxations improved et al. 1993
SHR Ramipril and/or + ACh-relaxation + Mervaala
felodipine (4 weeks) improved etal. 1997c
SHR+NaCl Moxonidine + ACh-relaxation + Mervaala
(8 weeks) improved et al. 1997a
SHR+NaCl Felodipine and/or + ACh-relaxation + Mervaala
metoprolol (4 weeks) improved (felodipine) et al. 1997b
SHR+NaCl Ramipril and felodipine + ACh-relaxation + Mervaala
(4 weeks) improved et al. 1998
SHR+NaCl Isosorbide-5-mononitrate + NE responses decreased + Vaskonen
(8 weeks) ACh-relaxation improved  (*) etal 1998
(moderately low salt)
SHR+NaCl Ramipril + ACh-relaxation + Terédvéinen
young vs old (6 weeks) in both ages improved in young **) et al. 1997
(NaCl increased BP in young only)
SHR+NaCl L-NAME increased BP ACh-relaxation impaired + Vaskonen
(3 weeks) and mortality Salt-induced impairment et al. 1997
DOCA-NaCl Dietary Ca>* + ACh-, SNP-, isoprenaline-  +/— Maikynen
(10 weeks) relaxations improved et al. 1994
SHR+CsA Enalapril or valsartan + ACh-, SNP-relaxations +/— Lassila
(6 weeks) improved in renal arteries et al. 1999
SHR - spontaneously hypertension rats, BP — blood pressure, DOCA — deoxycorticosterone acelale,

ACh — acetylcholine, SNP — sodium nitroprusside, NE — norepinephrine, Csd — cyclosporine A, * salt-induced
increase in urinary ¢cGMP normalized by isosorbide-5-mononitrate, *% galt-induced increase in urinary cGMP in

young.

1997) should be kept in mind. Both eNOS and
particularly nNOS are abundant in kidney, glomeruli and
vasculature as well as in most segments of the tubule
(Bachman and Mundel 1994, Kone and Baylis 1997).

In addition to the systemic vascular endothelium,
the capacity of the kidney to produce NO and to regulate
the renal function and blood pressure (Salazar et al. 1993,
Cowley et al. 1995, Fenoy et al. 1995, Zou and Cowley
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It has been reported that in SHR, constitutive NOS
activity (preferably neuronal than endothelial) in the renal
medulla is higher than in the normotensive controls
(Nava et al. 1996).

NO generated within the kidney controls the
glomerular filtration rate, total renal and medullary blood
flow, pressure natriuresis, epithelial Na® transport and
synthesis of vasoactive agents, e'.g. renin (Ito 1995).

As far as cyclosporine A (CsA)-induced
hypertension is concerned, rather little is known about the
role of endothelium and NO. In addition to our own
results (Table 1), Oriji and Keiser (1998) have presented
evidence for the role of CsA-inhibited endothelial
NO-activity resulting in increased arterial pressure which
can be overcome by L-arginine. In addition, the role of
NO pathway seems to be evident in the pathogenesis of
experimental chronic CsA nephrotoxicity (Andoh et al.
1997, Assis et al. 1997, Yang et al. 1998). Interestingly
enough, NO synthesis is enhanced at the renal cortical
level, counterbalancing predominantly the preglomerular
vasoconstriction (Assis et al. 1997, Bobadilla et al. 1994,
1998). This excludes NO deficiency as the only reason
for CsA-induced nephrotoxicity.

NO-related blood
pressure regulation are less investigated. NO is an

Central mechanisms  in
important neuronal transmitter also in the central nervous
system where it activates the soluble cGMP. The wide
but not uniform distribution of NO-synthesizing neurons
in the central nervous system suggests a variety of
functions (for review see Garthwaite 1991, Snyder and
Bredt 1992).

NO is synthesized in
solitarius, the paraventricular nucleus and the ventral

the nucleus tractus
medulla where it can control the sympathetic outflow
(Tseng et al. 1996, Zhang et al. 1997). Interestingly,
chronic NOS inhibition by L-NAME may
hypertension partly via increased central sympathetic
drive (Cunha et al. 1993). If NOS-inhibitors are given
acutely into the central nervous system they cause an

induce

increase in blood pressure by blocking NO production in
certain strategic brain areas (Tseng et al. 1996). This is
also supported by our own findings (Nurminen et al.
1997) after the L-NAME administration.
Furthermore, intracerebroventricular administration of a
new NO-donor GEA3162 induced a dose-dependent

central

hypotensive response independently of cGMP (Nurminen

and Vapaatalo 1996).

Using a non-selective NOS inhibitor L-NAME
(acute and chronic treatment) and specific nNOS inhibitor
7NI (7-nitroindazole) given acutely in eNOS —/— mice

Kurihara er al. (1998) found that both treatments
decreased blood pressure and inhibited cerebellar nNOS.
They suggested that NO produced by central nNOS
increases blood pressure at the CNS or baroreceptor level.

Own studies

Our research group has been interested in
experimental hypertension and antihypertensive drugs
over 30 years. Endothelium, prostacyclin, nitric oxide and
NO donors became predominant in the middle of eighties.
We have mainly used SHR in which hypertension has
been aggravated by adding sodium chloride in the diet, or
by treating the animals with L-NAME or cyclosporine A.
The other model widely wused by us s
deoxycorticosterone-salt (DOCA-NaCl) hypertension.
Dietary manipulations such as increase of potassium,
magnesium or calcium intake alone or in combination
have been used as well as different antihypertensive
drugs to treat hypertension and to prevent the
development of cardiac and renal hypertrophies and to

improve the vascular function as well as to clarify the

pathogenetic mechanisms in different types of
experimental hypertension.
Table 1 summarizes our main findings

concerning the role of endothelium and NO as well as the
possible effects of the dietary or pharmacological
treatments.

found that
endothelium-dependent relaxations in mesenteric arteries
of SHR were smaller than those in normotensive Wistar-
between

It was acetylcholine-induced

Kyoto rats, supporting the association

endothelial dysfunction and high blood pressure in this

~model of hypertension. However, in some studies, also

endothelium-independent relaxations by nitroprusside
and isoprenaline were also impaired. Increasing content
of sodium chloride in the diet augmented endothelial
dysfunction.

Supplementation of the diet with other
electrolytes (potassium, magnesium or calcium) as well
as drug treatment (ACE inhibitors, calcium antagonists,
AT, receptor antagonists and imidazoline-1 receptor
agonists) in subchronic experiments (4-23 weeks)
prevented the development of hypertension. They also
prevented the development of cardiac and renal
hypertrophy, the two detrimental complications of high
blood pressure, and improved the impaired vascular
responses, i.e. both endothelium-dependent and
-independent relaxations of mesenteric artery rings. This

suggests a crucial role of long-lasting blood pressure
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elevation as a cause of arterial dysfunction. Additional
support was found in the DOCA-salt-, L-NAME- or

cyclosporine A-induced or -aggravated hypertension
models.

Table 2. Role of endothelium and NO in experimental hypertension

« NO production, eNOS expression or activity are often decreased, but can even be increased in the vasculature in some
forms of hypertension.

o The complicated interplay between different endothelium-derived vasoactive agents causes difficulties in the
interpretation of experimental findings.

« Endothelial dysfunction develops in different form of hypertension and plays a role in the maintenance of high blood
pressure ("vicious circle").

« Endothelial dysfunction and NO deficiency are important factors in development of the complications of hypertension.

« Endothelial dysfunction is seldom a primary cause of hypertension.

» Non-pharmacological (dietary) and pharmacological therapies improve endothelial dysfunction, reduce blood pressure
and attenuate the complications.

We conclude (Table 2) that in most of our
experimental

dysfunction can be reversed, if the diseased situation has
endothelial
dysfunction and in some studies also reduced NO

hypertension models not lasted too long. Therefore we recommend the early
beginning of therapy even in moderately elevated blood
production have been found. However, more direct and

sophisticated measurements of NO, its metabolites or

pressure to prevent the initiation of the vicious circle.

messengers than in vitro vascular preparations, are
needed to verify the primary role of endothelium and NO
in hypertension. Until now we believe that hypertension
develops due to other — still largely unknown — reasons
and endothelial dysfunction is a consequence. When
developed it worsens the disease and participates in the
organ damages which further elevate blood pressure,
establishing thus the vicious circle. However, by using
prolonged dietary or drug treatments this circle can be
broken and the endothelial

organ changes and
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