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Summary

A mathematical description is presented of osmotic flows across both ideally semipermeable membranes and
membranes permeable not only for the solvent but also for the solute. The principles of thermodynamics of irreversible
processes used for the description are given and illustrated on the example of electroosmosis. Modern ideas about the
physical basis of osmotic pressure on porous membranes are discussed and an experiment is described that models the

processes of osmosis on a macroscopic level.
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Osmotic flows across ideally semipermeable membranes
and membranes also permeable for the solute

The volume flow J, across a membrane may be
expressed, e.g. inml em? s, i.e. cm® cm™s” = cm s and
has the dimension of velocity. When the flow proceeds
across an ideally semipermeable membrane, i.e.
membrane permeable only for solvents but impermeable
for solutes, it is equal to the volume flow of the solvent

only, and may be expressed as
J, =L, (4p — 4x) ey

where L, is called the hydraulic conductivity of the
membrane, 4p is the difference between the hydrostatic
pressures on the two sides of the membrane and 47 is the
difference of osmotic pressure between the two solutions.
The osmotic pressure 7 may be calculated according to
the formulas thoroughly discussed in the first overview

(Janacek and Sigler 1996), notably by the approximation
known as van’t Hoff"s formula

7 = RTc, )

where c, is the concentration of the impermeable solute in
mol/l. (Eq. / is sometimes termed the Starling hypothesis;
it was developed to describe the volume flow between the
blood in capillaries and interstitial fluid. Here, the
difference between osmotic pressures is caused by the
presence of proteins in blood plasma to which the
capillary wall is normally impermeable. It is called
while the
hydrostatic pressure is the capillary pressure resulting

colloid osmotic pressure, difference in
from the pumping action of the heart minus the tissue
pressure).

When a membrane is permeable not only for the
solvent but also for the solute, the simple Eq. I does not
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hold any more. There are two reasons for this: the volume
flow J, is then no longer equal to the volume flow of the
solvent alone, but rather to the difference between it and
the volume flow of solute taking place in the opposite
direction. Another factor may be still more important:
when the solute and the solvent penetrate the membrane
by a common pathway, the two flows interact and part of
the solvent flow is driven back by the flow of the solute.
It should be noted that this factor need not always be
present; for instance, a lipophilic solute can penetrate
across the lipid bilayer of the cell membrane while water
penetrates through specific aquaporin pores. Then there is
no interaction of the flows in the membrane.

Interactions of this kind are best described by the
thermodynamics of irreversible processes, also called the
thermodynamics of the state. The
assumption of this theory is that in various systems each

steady basic
flow may be linearly dependent not only on its conjugate
force but also on other forces operating in the system.
Thus, apart from diffusion governed by Fick's law,
thermodiffusion (thermal diffusion, Soret effect) may
proceed in some systems. Phenomenological equations of
the thermodynamics of irreversible processes can be
written as

Jy=LX, + LiX,
Jr = LppX; + Ly X, (3)

L;; are straight coefficients relating the generalized flows
Ji to their conjugate forces .X;, and L; (i =) are cross
coefficients relating them to nonconjugate forces. Flows
and forces have to be properly chosen; the sum of flows
multiplied by their conjugate forces has to give the
production of entropy in the system, d,S/dt, or, in
isothermal systems, usually the so-called dissipation
function 7dS/dt. The two express the tendency of
irreversible processes to proceed.

When properly chosen flows satisfy the linear
relations such as (3), Onsager’s law

Ly-L; “)

holds.

The usefulness of Onsager’'s law may be
illustrated on the description of electrokinetic
phenomena, electroosmosis and streaming potentials.
Flow of water across a membrane, which separates two
salt solutions and is more permeable for either cations or
anions, caused by an electric current, is called
electroosmosis. The flow of volume J, and the electric

current j interact; the two are linearly related to both the

difference of the hydrostatic (hydraulic) pressure 4p and
the difference of the electrical potential AE:

Jy=L, Ap + Lz AE )
j=LEAE+LEpAp (6)

Coefficient L, is the hydraulic conductivity of the
membrane and Ly its electric conductivity.

When the electroosmotic volume flow across the
membrane is measured by a shift of menisci in calibrated
capillaries joined to chambers separated by the
membrane, the hydrostatic pressure difference Ap is zero.

Then, on dividing (5) by (6), we obtain
(JJ) ap-0 = Lpe/Li @)

When, on the other hand, the fluid is driven
across the membrane by the hydrostatic pressure
difference Ap and the electric current across the
membrane is zero (the so-called streaming potential is
measured by a millivoltmeter with a high input
resistance), j = 0 and Eq. (6) gives

(AE/AP)1=0 = LE/LE ®)

Since Onsager’s law is valid, the right-hand
sides of equations (7) and (8) are, except for the minus
sign, equal. On measuring just the electroosmotic volume
flow we can readily calculate the value of the expected
streaming potential in the system, and vice versa. This is
important: the aim of science is not only to describe but
also to predict.

Interactions between the solvent and the solute
flows were treated by the above method by Kedem and
Katchalsky (1958).

The flow of solvent J,, and that of solute J; may
be described by the following equations:

Jw = wa A,U“, + st A/‘J (9)
Js = Ls.s' Aﬂ, + st A;uw (10)

(see, e.g. Kotyk and Janacéek 1977).

Au,, and Ay
potential of water and solute across the membrane;

are the differences of chemical

respectively, and Onsager’s law

Lw.\' = st (l 1)

is satisfied.

To develop equations (9) and (/0) in terms of
directly measurable quantities, differences of solute
concentrations Ac, and of hydrostatic pressure 4p, the
following formulas can first be used:
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Ay, =V, Ap + RT Alnx,, (12)
Auy =V, Ap + RT Aln x, (13)

Expressing mole fractions as
Cy Cy
and x, = —— (14)
¢y T ¢y

Xy =

Cy + Cy

the following approximations can be used:

—AnS TS - Al -Gy 2 A% = écs

w W W W

(15)

Cy
Alnx, =Aln— . =~
Cy +,

where C,, is the mean concentration of water in the two
solutions and the approximation /n (I + x) ~ x, valid for
small x was used.

Alnx, =Aln S~ Aln—ci=A(lncs —Inc,) = Alnc, _4a
cW +CS CW CS
(16)

(C, is the mean concentration of the solute, ¢, + ¢, = ¢,
since ¢, >>cyand A In ¢, = 0).
Equations (/2) and (/3) may thus be rewritten as

M, =V, dp - R an
C.
Au, =V, Ap— RTAc, (18)

S

The dissipation function (production of entropy in the
system, which is a measure of the tendency of irreversible
processes to proceed, multiplied by the temperature in
Kelvins) may then be rewritten in the new expressions for
the differences of chemical potentials

dS

ST = B Ty = TV ap - S8 g v, ap 4 REAS)

ar C, c
(19)

On rearranging the terms on the right-hand side of Eg,
(19), we obtain

d.S J,
—T=UJV s
dr WV, + JsVs)Ap+(C

— 5 RTA, = JyAp + JoRTAc,
S W

(20)

and two new fluxes are thus defined together with their

conjugate forces. The first of them, J,, will interest us

because it is the volume flow across a membrane that
may be permeable for both the solvent and the solute.
(The other one, Jp, the exchange flow corresponding to
the velocity of solute relative to water in the membrane,
was discussed, e.g. by Kotyk and Janacek 1977).

We can now write the phenomenological

equations in terms of new flows and forces:

Jy=L,Ap + Lyp RT Ac,

JD= LD RT AC_‘« + LDp Ap (21)

The cross coefficient Ly, = L,p shows how large is the
volume flow brought about by a difference of osmotic
pressure and how large is the ultrafiltration on the same
membrane caused by the difference in hydraulic pressure
Ap.

When we measure the osmotic pressure under
the condition of zero osmotic flow, J, =0,

-L,D

4p = —L~~~RTAC_\. or

P

Ap = o TR Acy 22)
expresses how the effective osmotic pressure differs from
the theoretical one; o is called the reflection coefficient
and it is simply the ratio of the osmotic pressure
developed on a membrane permeable for both the solute
and the solvent (and measured as 4p) to the pressure
which would be measured on an ideally semipermeable
membrane. Our equation of osmosis is now

Jy =L, 4p - o RT Ac, (23)

With a permeable solute the reflection coefficient o is in
general less than unity. One of the reasons is the
difference between the volume flow of water and the
volume flow of the solvent, which may be shown
(cf. Kotyk and Janacek 1977) to reduce the reflection
coefficient as follows

st Vo 24)
RTAc, L,

where the coefficient ®, introduced by Kedem and
Katchalsky (1958) in the form RTw as the permeability
coefficient of a nonelectrolyte, is in our terms

o= telo =L (25)
P

When the reflection coefficient is still lower,
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sl Y (26)
L

there are probably frictional interactions between the
water and the solute flows on a common pathway, in
water-filled pores. Such interactions between diffusing
ions and the water flow may be so strong that the
coefficient o becomes negative (Katchalsky 1961) and
the volume flow proceeds from the more concentrated
solution to the dilute one.

Mechanism of osmosis across porous membranes

As shown in a preceding paper (Janagek and
1996), ideally
semipermeable membrane is related to its driving force

Sigler the volume flow across an
by the same hydraulic conductance coefficient L,
whether the driving force is a hydrostatic pressure
difference 4p or an osmotic pressure difference RTAc,
The L, is also the same irrespective of whether the
membrane contains water-filled -pores or not. However,
the hydraulic flow encounters less resistance (and hence
the membrane displays a higher L, coefficient) than a
diffusional flow of ‘molecules moving separately.
Accordingly, the osmosis across membrane pores is
bound to proceed not by diffusion, but by the same
mechanism as that brought about by hydrostatic pressure
and the difference of solute concentration has somehow
to produce an equivalent hydrostatic pressure drop.

Various hypotheses have been developed to
explain how this happens. According to the rather
attractive hypothesis called the solvent tension theory
(Hammel and Scholander 1976), the solvent in a solution
is always under tension, i.e. under negative hydrostatic
pressure. The total pressure of any solution is, according
to this theory, composed of positive partial pressure of
the solute and negative partial pressure of the solvent.
The latter is transmitted by Pascal’s law to the membrane
and pulls water through it. The theory was discussed in
depth by several authors (Hammel 1979a, Hildebrand
1979, Mauro 1979, Soodak and Iberall 1979, Hammel
1979b) and although it has its merits it should be
discarded (cf. Janacek 1984). The concept of partial
pressures it uses is obviously valid only for ideal gases in
which intermolecular forces are negligible.

Soodak and Iberall (1978) suggested that “The
water in the semi-permeable membrane is stretched by
the outward diffusion drive acting on the membrane
water at the solution interface”. A molecular picture of

this situation based on the kinetic theory of liquids had
previously been given by Dainty (1965). A qualitative
description of this theory is as follows: Jumps of water
molecules from the higher concentration in the pores are
more frequent than in the opposite direction and hence
leave behind more vacancies. As a result of this the
density of water, and hence also its hydrostatic pressure,
is lower in this part of the pore than in the surroundings.
This pressure drop counteracts the concentration fall of
water at the pore opening and, at the same time, it brings
about a mass flow from the other end of the pore, i.e.
osmosis. Dainty’s theory provides the right order of
magnitude of the hydrostatic pressure drop.

Fig. 1. Experimental device for macroscopic modeling of
osmosis across a membrane pore.

Another theory of the molecular-dynamic basis
of osmosis was given by Ferrier (1984) and described by
Dainty and Ferrier (1989) as follows: “...
molecular

a truly
consider the
intermolecular forces involved in the behavior of the
solute and solvent molecules in or near an aqueous pore.

theory would have to

Let us consider how often a solute molecule would be at
the mouth of a pore. In solution containing 0.1 mol/l
solute, only about 1 in 550 molecules is a solute; if the
pore mouth has a cross-sectional area of 5-6 water
molecules (or solute molecules, if both have the same
molecular volume) then a solute molecule would be at the
pore mouth for only about 1 % of the time. It would stay
there for some 10" s, then jump back into the solution. It
would be about 10® s on average before another solute
molecule arrived at the pore mouth. During this period,
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the pore mouth “sees” pure water! A solute molecule ~ 2) At least one of the two parts of the setup must be
present at the pore mouth will obviously retard water ~ reasonably elastically deformable (if one is made of

flow from the solution into the pore, and will exert a  Polyamide, the other must be made of rubber).
It should be noted that, although the overall

effect, i.e. the “pumping” or “drawing” of water from one
side of the membrane to the other, resembles the action of
the model postulated by Ferrier and Dainty, the
macroscopic device may differ from it in the nature of the
forces at work. Firstly, as shown in the above point (1),
the attraction exerted on the water in the pore may not be
of great importance here; secondly, it is debatable if its
presumed mode of action, i.e. periodical increase in water
pressure in the pore, after which water emerges along the
pathway of lowest resistance, could work equally at the
molecular level. Perhaps, osmotic phenomena do not
necessarily depend too much on the hydrophilic
properties of the solute particles.

force of attraction on the water in the pore” (for a
quantitative development of the theory see Ferrier (1984),
Dainty and Ferrier (1989) or Janacéek (1997).

Finally, we should like to describe an

experiment intended for macroscopic modeling of
osmosis across a pore (Janalek 1997, see the setup in
Fig. 1). A rubber or polyamide stopper immersed in water
represents the membrane and the hole represents the pore.
A rubber or polyamide piston rounded at the end
simulates the spherical solute molecule. It strikes the
opening of the pore at a frequency of 100 Hz. Water
comes out of the opening in small droplets and is thus
transported upwards through the pore. The arrangement
has the following features:
1) Attraction between the piston surface and water does
not seem to play a role since the piston works equally
well whether it is coated with vaseline or covered with
water-soaked deerskin.
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