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Summary

The effect of Na'-K'-ATPase inhibitor ouabain on the resting membrane potential (V,,) was studied by glass
microelectrodes in isolated somatic longitudinal muscles of the earthworm Lumbricus terrestris and compared with frog
sartorius muscle. In earthworm muscle, V,, was —49 mV (inside negative) in a reference external solution with 4 mmol/l
K*. The electrogenic participation of Na'-K'-ATPase was absent in solutions with very low concentrations of
0.01 mmol/l K*, higher in 4 and 8 mmol/l K (4-5 mV) and maximal (13 mV) in solutions containing 12 mmol/l K*
where V,, was —46 mV in the absence and —33 mV in the presence of 1x10* M ouabain. The electrogenic participation
of Na'-K*-ATPase was much smaller in m. sartorius of the frog Rana temporaria bathed in 8 and 12 mmol/l K". The
results indicate that the Na'-K*-ATPase is an important electrogenic factor in earthworm longitudinal muscle fibres and
that its contribution to V,, depends directly on the concentration of K" in the bathing solution.
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Introduction 1982, Edwards and Vysko&il 1984), selective ionic

permeability (Shabunova and Vysko¢il 1982), pH

The resting membrane potential (Vy,) in skeletal
fibre is the result of several integrative
mechanisms (Siegenbeek van Heulekom et al. 1994): the
electrochemical potential of electrogenic ions (Edwards

muscle

(Volkov 1983), membrane ionic pumps such as Na'-K'-
ATPase (Kernan 1962,Vysko&il et al. 1995) and the
furosemide-sensitive CI transporter (Volkov et al. 1987,
Urazaev et al. 1998). V,, is also controlled by an osmotic
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state of the cell (Edwards 1982, Lang et al 1995),
hormones (Zemkova er al. 1982) and by long-lasting
transmitter release regulated by second messengers, nitric
oxide (Urazaev et al. 1998, Mukhtarov et al. 1999,
Nikolsky ef al. 1999) and presynaptic autoreceptors
(Bukharaeva ef al. 1999). Ion pumps, Na'-K'-ATPase
and CI transporter in particular, have dual effects on the
Vo of muscle fibres: they stabilize the transmembrane ion
gradients and they are electrogenic per se. In vertebrates,
the electrogenic component represents 3-30 % of the total
Vm value (Martin and Levinson 1985). Despite the fact
that the role of V,, for impulse transmission and muscle
contraction is very important in invertebrates as well as in
vertebrates (Chang 1969, Walker et al. 1993), the extent
of pump electrogenicity in developmentally important
phyllum Annelidae is not known. For this reason, we
studied the V., of earthworm somatic muscles and its
dependence on a mild increase of potassium in the
bathing solution under conditions of active and inhibited
Na'-K" pump and compared it with the resting
electrogenic contribution of the pump in frog Rana
temporaria.

Material and Methods

Experiments were performed on isolated
neuromuscular preparations of the longitudinal somatic
muscles of the earthworm Lumbricus terrestris (Drewes
and Pax 1974) and m. sartorius of the frog Rana
temporaria in winter period (February - March).

The earthworm Drewes-Pax solution contained
(mM): NaCl 163; KCl 4; CaCl, 6; sucrose 167; Tris 2; pH
7.2-7.4. The frog Ringer solution contained (mM): NaCl
116; KCI 2.0; CaCl, 1.8; NaHCO; 1.0; MgCl, 2.0; pH
7.2-7.4. Strips of muscle, approximately 10 segments in
~ length, were prepared from the body wall of the
earthworm, from which the nerve cord and viscera had
been removed. The electrogenic contribution of the Na'-
K" pump to V,,, which causes hyperolarization of muscle
fibres, was statistically quantified by impaling, with glass
microelectrodes (2.5 mol/l KCI, 15-20 MQ) 20 or more
fibres during a 5 min period before, and another 20 or
more fibres 5-10 min after the addition of 1x10™ mol/l
ouabain (Sigma, USA) to the medium. The difference
between the mean resting membrane potentials under
these two conditions is generally considered to be due to
electrogenic activity of the pump (Kernan 1962,

Zemkova et al. 1982).

Microcal Origin version 3.5 (Microcal Software,
Inc. 1991-1994) was used for statistical analyses.
Parametric analysis of variance (ANOVA) of the
experimental groups versus the control group was made
by multiple comparison using the Bonferroni t-test.
Throughout the text, statistically significant differences
between mean + S.E.M. of two groups are indicated at the
given level of probability.
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Fig. 1. Resting membrane potential V,, in mV (ordinate)
of earthworm longitudinal muscles (EW, circles) and frog
sartorius muscles (FR, squares) before (controls, C) and
after application of 1x107 mol/l ouabain (OUA) bathed
in saline with different concentrations of potassium ions
(abscissa).

Results and Discussion

Vi of earthworm muscle fibres was —48.71+0.6
mV (inside negative, n=300, Fig. 1, open circles) in
Drewes-Pax solution with a normal concentration of K*
(4 mmol/l). This value of V,, is much smaller than the
membrane potential in frog sartorius muscle, which was
—82.240.3 mV (n=60) in Ringer solution with 4 mmoV/]l
of K* (Fig. 1, solid squares). Even in solutions containing
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a very low concentration of K" (0.01 mmol/l), V, of
earthworm muscle fibres was —47.1£1.0 mV (n=140)
which does not differ significantly (P>0.05) from values
in 4 mmol/1 K* solutions.

One possibility is that the low value of V, in
earthworm muscles is due to substantial participation of
resting permeability to other ions, in particular chlorides
(Dulhunty 1978). Substitution of 90 mmol/ NO;™ anion
for a corresponding amount of CI, however, did not
significantly hyperpolarize the V,, of earthworm muscles
which was —41.1+1.0 mV (n=80, P>0.05) one hour after
this ion exchange.

The increase of K'concentration from 4 to
8 mmol/l depolarized the muscle fibres substantially in
the frog; Vy, of the sartorius muscle was —76.8+0.6 mV,
(n=60) in 8 mmol/l K*. However, this concentration of
potassium caused only slight depolarization to —45.0£0.7
mV (n=220) in earthworm muscles. The increase of K"
up to 12 mmol/l further depolarized the frog muscles;
V,, was —61.3£0.6 mV, (n=60) in the sartorius muscle
(Fig. 1, squares). Contrary to this, the 12 mmol/l K"
solution did not depolarize the V,, in earthworm muscle
fibres, which was —46.3 mV (P>0.05; Fig. 1, open
circles). This evidently contradicts the expected
depolarization which should develop according to the
Goldman-Hodgkin-Katz
relationship between membrane potential and ion

equation  describing  the
concentrations across the membrane (Hodgkin and
Horowitz 1959). This absence of depolarization can be
explained either by the
K' permeability in V, of earthworm muscles or by
activation of electrogenic membrane Na'-K'-ATPase by
higher extracellular potassium (Martin and Levinson
1985) which compensates the K'-induced depolarization.

If the latter possibility is true, then the inhibition
of Na*-K'-ATPase would remove the ,,compensatory”
hyperpolarization and the K dependence would be closer
to Goldman-Hodgkin-Katz prediction. .

small participation of

The Na'-K*- ATPase was therefore inhibited by

1x10* M ouabain which was applied to the earthworm
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muscle bath. Measurements of V,, were performed in the
time window between 5-10 min of the presence of
ouabain, to minimize the late depolarization due to loss of
ion gradients across the membrane expected after
inhibition of the Na'-K'-pump. In the presence of
ouabain, V,, became depolarized in solutions with
increased extracellular K* (Fig. 1, solid circles) with a
coefficient of 11.25 mV per 10 mmol/l change in the
concentration of extracellular potassium ions. This is
already a reasonable K' dependence, but still much
smaller than in the frog, where it was 24 mV per
10 mmol/l K*. In frog, in solutions with 8 and 12 mmol/l
potassium, ouabain was much less potent and pump
electrogenic contribution of about 5 mV was significant
only in 4 mmol/l K" (Fig. 1, squares).

The experiments with ouabain provided us with
two important pieces of information: First, the K"
transmembrane gradients do participate in Vp, of
earthworm muscles, which are therefore no exceptions to
the general rule. Secondly, the development of Vp
depolarization by K'ions in muscles with inhibited
Na'-K*-ATPase by ouabain demonstrates that the Na"-K"
pump is strongly electrogenic in resting muscle fibres and
its absolute contribution to Vy rises with higher K"
concentrations: it is 5-6 mV in 4 and 8 mmol/1 K*, and as
much as 13 mV in the medium with 12 mmol/I K. This
value is close to the maximum, theoretically calculated
for electrogenic contribution of the Na™-K" pump (Martin
and Levinson 1985) and much higher than in frog muscle.
Experiments are in progress with the aim to characterize
further the role of Na'-K'-ATPase and to compare the
properties of resting membrane potential components in
the earthworm with other animal species.
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