Physiol. Res. 49: 549-560, 2000

MINIREVIEW

Altered Pulmonary Vasoreactivity in the Chronically Hypoxic
Lung

L. A. SHIMODA, J. S. K. SHAM, J. T. SYLVESTER

Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine
Baltimore, Maryland, USA

Received February 29, 2000
Accepted April 3, 2000

Summary

Prolonged exposure to alveolar hypoxia induces physiological changes in the pulmonary vasculature that result in the
development of pulmonary hypertension. A hallmark of hypoxic pulmonary hypertension is an increase in vasomotor
tone. In vivo, pulmonary arterial smooth muscle cell contraction is influenced by vasoconstrictor and vasodilator factors
secreted from the endothelium, lung parenchyma and in the circulation. During chronic hypoxia, production of
vasoconstrictors such as endothelin-1and angiotensin 11 is enhanced locally in the lung, while synthesis of vasodilators
may be reduced. Altered reactivity to these vasoactive agonists is another physiological consequence of chronic
exposure to hypoxia. Enhanced contraction in response to endothelin-1 and angiotensin II, as well as depressed
vasodilation in response to endothelium-derived vasodilators, has been documented in models of hypoxic pulmonary
hypertension. Chronic hypoxia may also have direct effects on pulmonary vascular smooth muscle cells, modulating
receptor population, ion channel activity or signal transduction pathways. Following prolonged hypoxic exposure,
pulmonary vascular smooth muscle exhibits alterations in K* current, membrane depolarization, elevation in resting
cytosolic calcium and changes in signal transduction pathways. These changes in the electrophysiological parameters of
pulmonary vascular smooth muscle cells are likely associated with an increase in basal tone. Thus, hypoxia-induced
modifications in pulmonary arterial myocyte function, changes in synthesis of vasoactive factors and altered
vasoresponsiveness to these agents may shift the environment in the lung to one of contraction instead of relaxation,
resulting in increased pulmonary vascular resistance and elevated pulmonary arterial pressure.
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Evidence of Active Vasoconstriction during vasculature and, consequently, elevated pulmonary
Chronic Hypoxia arterial pressure. The reduction in vascular caliber is not
only due to structural remodeling of the pulmonary

Long-term exposure to alveolar hypoxia is  vasculature, but also due to sustained active
associated with luminal narrowing of the pulmonary  vasoconstriction of pulmonary arterial smooth muscle.
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Active contraction of vascular smooth muscle during
chronic alveolar hypoxia is evidenced by an acute
reduction in pulmonary arterial pressure (Pp,) in response
to inhaled oxygen therapy or vasodilatory agents (Jones
and Evans 1997, MacNee ef al. 1983, Mionard et al. 1994,
Oka et al. 1993).

In rats, exposure to simulated high-altitude
(17000 ft) for 3-4 weeks caused significant right
ventricular hypertrophy indicated by an increase in the
ratio of right ventricle to left ventricle plus septum
weights from 0.32 in low altitude rats to 0.58 in the
chronically hypoxic rats (Oka et al. 1993) and increased
mean Pp, from ~19 mm Hg to 41 mm Hg. Administration
of a K channel agonist reduced mean Pp, by 22%,
compared to a 15% reduction in mean Pp, observed in
rats breathing 80 ppm nitric oxide (NO) (Oka et al.
1993). In patients with chronic obstructive lung disease
(COPD), which is often characterized by chronic
hypoxia, infusion of acetylcholine, an
endothelium-dependent  vasodilator, rapidly reduced
mean Pp, from 31 to 28 mm Hg (Adnot et al. 1993).
Inhalation of NO (40 ppm) decreased Pp, in a
concentration-dependent fashion, reaching an 18 %
reduction in mean Pp,, within 2-3 min after the beginning
of inhalation, with no associated change in cardiac output
(Adnot et al. 1993). Consistent with these findings, later
studies reported similar reductions in mean Pp, during
inhaled NO therapy (Jones and Evans 1997, Mionard et
al. 1994). Acute reductions in mean Pp, by 10-30 %
(ranging from ~25mm Hg to ~20mm Hg) have been
noted in COPD patients after increasing FIO, to 100 %,
although the decrease in Pp, under these conditions was
likely due, in part, to a fall in cardiac output (Jones and
Evans 1997, Mionard et al. 1994).

intravenous

Mechanisms of Active Vasoconstriction

The mechanisms underlying  pulmonary
vasoconstriction in response to chronic hypoxia and
subsequent development of pulmonary hypertension are
incompletely understood; however, a number of possible
mechanisms have been proposed. In vivo, pulmonary
arterial smooth muscle cell (PASMC) tone is influenced
by vasoconstrictor and vasodilator factors secreted from
the endothelium, lung parenchyma and in the circulation.
Attenuated endothelium-dependent relaxation, depressed
contraction in response to acute hypoxic challenge and
enhanced contraction to endothelin-1 (ET-1), serotonin
(5-HT), angiotensin II (ANG II) and histamine have been

described in chronic hypoxic pulmonary hypertension
models (McMurtry et al. 1978, Porcelli and Bergman
1983, Rodman et al. 1990, Wanstall and O'Donnell 1990,
Rui and Cai 1991, Eddahibi et al. 1991, 1992, Carville et
al. 1993, MacLean et al. 1995). Altered reactivity to
pharmacological agonists is a physiological consequence
of chronic exposure to hypoxia that, combined with
changes in synthesis, may contribute to the active
contraction of pulmonary vascular smooth muscle by
shifting the environment to one of contraction instead of
relaxation, resulting in increased pulmonary vascular
resistance and elevated pulmonary arterial pressure.
Chronic hypoxia may also have direct effects on
pulmonary vascular smooth muscle cells, modulating
receptor populations, ion channel activity or signal
transduction pathways.

Vasodilators

The vascular endothelium secretes vasodilators
such as NO and prostacylin (PGI;). Under normal
conditions, inhibition of NO or PGI, production
sometimes (Cremona et al. 1999, Ferrario et al. 1996,
Gordon et al. 1993, Nelin and Dawson 1993, Walker et
al. 1982), but not always (Archer et al. 1989, Nishiwaki
et al. 1992, Weir et al. 1976), caused constriction in the
lung, suggesting a possible role for endogenous
vasodilators in maintenance of basal tone
pulmonary circulation. Under conditions where tone was
elevated, such as during hypoxia, inhibition of NO and

in the

PGI, synthesis potentiated vasoconstriction (Weir et al.
1976, Archer et al. 1989), implying that these
vasodilators act to oppose vasoconstriction in the
presence of increased tone. Impairment in the action or
synthesis of these vasodilators during hypoxic exposure
could, therefore, contribute to the development of
hypoxic pulmonary hypertension. Consistent with this
notion, mice deficient in the endothelial, or constitutive,

form of nitric oxide synthase (eNOS), the enzyme

responsible for NO production, exhibited exaggerated
development of chronic hypoxic pulmonary hypertension
(Steudel er al. 1998). Vasorelaxation of pulmonary
arteries to agents that induce NO secretion, such as
acetylcholine and bradykinin, was attenuated in models
of chronic hypoxic pulmonary hypertension (Rodman ez
al. 1990, Adnot ef al. 1991, Rui and Cai 1991, Carville et
al. 1993, Dinh-Xuan et al. 1993, Eddahibi et al. 1992).
The diminished relaxation in response to agonists that
cause vasodilation by release of NO could be due to
decreased endothelial cell capacity to produce NO
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following prolonged hypoxic exposure; however,
conflicting results have been shown regarding the effect
of hypoxia on the expression and activity of eNOS.
Evidence has been presented for both upregulation (Shaul
et al. 1995, Le Cras et al. 1996, Xue and Johns 1996,
Resta et al. 1997) and downregulation (Kourembanas et
al. 1997, Fike et al. 1998) of eNOS during chronic
hypoxia. These results suggest that other mechanisms in
addition to decreased NOS, such as reduced availability
of cofactors, may be responsible for diminished NO
production during hypoxia. PGI, production was also
decreased by hypoxia in pulmonary arterial endothelial
cells from neonatal calves (Badesch et al. 1989) as well
as in endothelial cells exposed to hypoxia in vitro
(Kourembanas et al. 1997).

Reports of blunted pulmonary vascular
responses to endothelium-dependent vasodilators may be
due to alterations in signal transduction pathways in
smooth muscle rather than decreased production of
vasodilator factors. For example, cyclic GMP pathways
were impaired in pulmonary vascular smooth muscle of
some chronically hypoxic animals (Crawley et al. 1992,
Rodman et al. 1990, Rui and Cai 1991). However,
inhalation of NO gas resulted in pulmonary vasodilation
and reduction of pulmonary artery pressure in patients
with hypoxic pulmonary hypertension (Horstman et al.
1998, Mionard et al. 1994). Similarly, in animal models
of chronic hypoxia, administration of either exogenous
NO or PGI, caused selective vasodilation of hypoxic
pulmonary vasoconstriction (Russell et al 1993,
Kouyoumdjian et al. 1994, Roos et al. 1996). These
findings suggest that NO sighal transduction pathways
were intact following prolonged exposure to hypoxia.

Similar to NO, carbon monoxide (CO) is a
gaseous vasodilator that increases smooth muscle cGMP
levels and inhibits hypoxic induction of the vascular
endothelial growth factor (VEGF), ET-1 and platelet-
derived growth factor (PDGF)-p genes (Morita and
Kourembanas 1995, Liu et al. 1998). In pulmonary
vascular smooth muscle, the enzyme heme-oxygenase
(HO) catalyzes the breakdown of heme to CO, iron and
biliverdin (Morita et al. 1995). Three isoforms of HO
have been identified: HO-1 is the inducible form of the
enzyme, HO-2 is the constitutively expressed isoform and
HO-3 appears to be a neuronal isoform. Hypoxia
increased the transcriptional rate of the HO-1 gene,
resulting in elevated CO levels (Kourembanas et al. 1993,
Morita et al. 1995) and transgenic mice deficient in the
HO-1 gene right
hypertrophy, suggesting potentiation

ventricular
of hypoxic

exhibited greater

pulmonary hypertension (Yet et al. 1999). These findings
suggest that HO-1, and possibly its product CO, may play
a physiologic role in modulating the development of
chronic hypoxic pulmonary hypertension.

Vasoconstrictors

Numerous studies have demonstrated that the
chronically hypoxic pulmonary vasculature exhibits
increased vasoreactivity in response to ET-1, 5-HT, ANG
II, noradrenaline and histamine (Porcelli and Bergman
1983, Wanstall and O'Donnell 1990, Eddahibi ef al. 1991,
MacLean et al. 1995). Endothelin-1, a 21-amino acid
peptide secreted by the vascular endothelium, has both
vasoconstrictive and mitogenic properties (Lippton et al.
1989, Wanstall and O'Donnell 1990, Horgan et al. 1991,
Peacock et al. 1992, Bonvallet et al. 1993, Zamora et al.
1993, Barman and Pauly 1995, Shimoda et al. 1997,
1998), and is believed to play a significant role in the
development of active vasoconstriction during chronic
hypoxic pulmonary hypertension (Bonvallet et al. 1994,
Chen et al. 1995, DiCarlo et al. 1995, Eddahibi et al.
1995, Oparil et al. 1995). At concentrations between 10"
and 107 M, ET-1 constricted isolated pulmonary arteries
(Wanstall and O'Donnell 1990, Horgan et al. 1991,
Bonvallet ef al. 1993, Barman and Pauly 1995, MacLean
et al. 1995, McCulloch et al. 1998, Shimoda et al. 1997,
1998) and caused long-lasting increases in vascular
resistance in isolated perfused lungs (Lippton et al. 1989)
through activation of endothelin-A (ET,) receptors on
pulmonary vascular smooth muscle. In the presence of
preconstricting agents, ET-1 caused vasodilation at low
doses through activation of endothelin-B (ETp) receptors
on the endothelium and subsequent release of NO and
PGI, (de Nucci et al. 1988). ET-1 mRNA, protein and
circulating plasma levels were markedly increased during
prolonged hypoxia in animal models (Chen et al. 1995,
DiCarlo et al. 1995, Elton et al. 1992) and in patients
with chronic obstructive pulmonary disease (Ferri et al.
1995, Stewart et al. 1991). The elevation in ET-1 levels
correlated with increased pulmonary artery pressure
(Stewart et al. 1991, Ferri et al. 1995). The mechanism
by which ET-1 levels were elevated in response to
hypoxia remains elusive, although the promoter of the
ET-1 gene contains a consensus site for hypoxia-
inducible factor 1 (HIF-1) binding, and hypoxic
regulation of this gene by HIF-1 has been demonstrated
in systemic endothelium (Hu et al. 1998). Expression of
lung ET, and ETp receptors was increased during
hypoxia (Li et al. 1994), although ET-1-induced
vasodilation was impaired (Eddahibi ef al. 1991, 1993),
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consistent with alterations in receptor density and
distribution in the pulmonary vasculature (McCulloch et
al. 1998). The alterations in ET-1 secretion and ET
receptor distribution during chronic hypoxia may act in
concert to increase ET-1-induced constriction.

Similar to ET-1, ANG II is both a
vasoconstrictor and pulmonary fibroblast and smooth
muscle cell mitogen (Morrell et al. 1998, Nguyen et al.
1994). Circulating angiotensin I is converted to its active
form, ANG II, by angiotensin converting enzyme (ACE)
located on vascular endothelium. Lung ACE activity and,
consequently ANG II production, was reduced during
exposure to hypoxia (Kay ef al. 1985, Oparil et al. 1988),
yet acute administration of ACE inhibitors reduced
pulmonary artery pressure and pulmonary vascular
resistance in COPD patients (Bertoli e al. 1986, Peacock
and Matthews 1992) and in animal models of chronic
hypoxia (Morrell et al. 1995b, Nong et al. 1996, van
Suylen et al. 1998). The discrepancy between ACE
activity/ANG 1I secretion and administration of ACE
inhibitors may be explained in that ACE activity was
selectively increased in small resistance arteries of lungs
exposed to chronic hypoxia (Morrell et al. 1995a), and
that these localized changes may not have been
accurately reflected in measurements of whole lung ACE
activity or ANG II production. In addition to
vasoconstrictive properties, ANG II upregulated ET,
receptor expression on pulmonary vascular smooth
muscle (Hatakeyama ez al. 1994), while ET-1 augmented
ACE activity (Kawaguchi et al. 1991) and ANG II
secretion (Kawaguchi et a/. 1990) in pulmonary arterial
endothelium. These studies indicate a link between the
renin-angiotensin and endothelin systems in pulmonary
remodeling during chronic hypoxia.

Alterations in Pulmonary Arterial Smooth
Muscle Cell Function

Abnormalities in pulmonary vascular smooth
muscle are also likely to contribute to the alterations in
vasoreactivity ~during chronic hypoxic pulmonary
hypertension. Intracellular Ca®* concentration is a
primary factor regulating vascular tone. Through the
control of Ca®* influx and cytosolic Ca*" concentration
([Ca®"];), membrane potential may play a vital role in
regulating vascular caliber. Agents that cause
vasoconstriction, including both ET-1 and ANG II,
caused elevations in [Ca2+]i, while vasorelaxation, as
occurs in response to NO and PGI,, was accompanied by

a reduction in [Ca®']; (Cornfield ef al. 1993, Bakhramov
et al. 1996, Guibert et al. 1996, Yuan et al. 1996,
Shimoda et al. 2000). In the absence of external stimuli,
however, inhibition of K* channels and depolarization
may contribute to the development of pulmonary
hypertension by increasing cytosolic Ca®* concentration.
Pulmonary arterial smooth muscle cells from
animals exposed to chronic hypoxia exhibited membrane
depolarization (Suzuki and Twarog 1982, Smirnov et al.
1994, Shimoda et al. 1999a) and attenuation of voltage-
gated K* (Ky) current (Smirnov et al. 1994, Shimoda et
al. 1999a), which may be the result of reduced expression
of Ky channel a subunit proteins (Wang et al. 1997).
Furthermore, Ca’*-activated K (Kc,) channel activity
was reduced in pulmonary artery smooth muscle cells
(PASMC:s) cultured under hypoxic conditions (Peng et al.
1997). Inhibition of K* channels by hypoxia may explain
why agonists that cause relaxation by activating K*
channels were more effective in pulmonary arteries from
chronically hypoxic (Rodman 1992). In
PASMCs, resting membrane potential appears to be
regulated predominantly by specific subtypes of voltage-
gated K* (Ky) channels, which are 4-aminopyridine
(4-AP)-sensitive and charybdotoxin (ChTX)-insensitive
since 4-AP, but not ChTX, caused membrane
depolarization and increased [Ca*']; (Yuan 1995, Archer
et al. 1996, Shimoda et al. 1998). Consequently, the
reduction in Ky current observed following prolonged
hypoxia may contribute to the observed depolarization.
Both acute hypoxic vasoconstriction and in vitro
smooth muscle proliferation were associated with a rise
in [Ca®"); (Cornfield ef al. 1993, 1994, Harder et al. 1985,
Madden et al. 1985) and were prevented by voltage-gated
L-type Ca®" channel antagonists (McMurtry et al. 1976,
Kruse et al. 1994). Since pulmonary smooth muscle cells
from chronically hypoxic animals are depolarized, it has
been speculated that an increase in [Ca®]; due to
activation of voltage-gated Ca®* channels is the
mechanism underlying chronic hypoxic pulmonary
hypertension. This speculation is contradicted, however,
by data indicating that voltage-gated Ca®* channel
antagonists did not prevent development of hypertension
secondary to chronic hypoxia (Johnson et al 1986,
Michael et al. 1986, Oka et al. 1993). Furthermore, acute
administration of vasodilators (MacNee et al 1983,
Michael et al. 1986, Jin et al. 1989, Jones and Evans
1997), but not voltage-gated Ca®* channel antagonists
(Brown et al. 1983, Johnson et al. 1986, Singh et al.
1985), reduced pulmonary artery pressure in patients with
COPD. Recent findings also indicate that although resting

animals
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[Ca*"); is elevated in PASMCs from chronically hypoxic
rats to levels twice greater than those observed in
PASMCs from normoxic animals, L-type Ca®* channel
antagonists were not effective in reducing [Ca]; in these
cells (Shimoda et al. 1999b). These findings indicate that
activation of other Ca®* regulatory pathways such as
nonselective cation channels, Na'/Ca>* exchange or ATP-
dependent plasmalemmal Ca** pumps may be affected by
chronic exposure to hypoxia, and suggest possible areas
for future investigation.

It is unclear whether the changes observed in
chronically hypoxic pulmonary vascular smooth muscle
were due to alterations in a single subtype of pulmonary
arterial smooth muscle cells or reflect the growth of a
new phenotype. Hypoxia stimulates smooth muscle cell
growth both in vivo, as evidenced by medial thickening in
small pulmonary arterioles during prolonged hypoxia, as
well as in cell culture systems (Rabinovitch et al. 1979,
Hales e al 1983, Meyrick and Perkett 1989,
Kourembanas et al. 1993, Chen et al. 1995, Quinn et al.
1998). It has been suggested that the vascular wall is
comprised of at least four subtypes of pulmonary arterial
smooth muscle cells (Frid et al. 1994), which may have
different electrophysiological profiles (Archer et al.
1996), and that hypoxia induced the growth of specific
phenotypes (Dempsey et al. 1997, Frid et al. 1997).
Further experimentation is required to delineate the
etiology of the functional changes induced by hypoxia in
pulmonary vascular smooth muscle.

Numerous agonists, including both ET-1 and
ANG 1II cause contraction, in part, by inhibition of Ky
channels (Salter ef al. 1998, Shimoda et al. 1998). Under
conditions of chronic hypoxia, the ability of ET-1 to
inhibit Ky current is lost (Shimoda et al. 1999a).
Consistent with this finding, the ability of ET-1 to cause
depolarization was also absent in PASMCs from
chronically hypoxic rats (Shimoda er al. 1999a). In
contrast, the ability of ANG II to inhibit Ky channels was
enhanced following prolonged hypoxia (Shimoda et al.
1999b). While the enhanced effect of ANG II on Ky
channels could explain, in part, the enhanced reactivity to
this agonist, the increased contraction in response to ET-1
appears to occur despite a reduction in this part of the
signal transduction pathway. ET-1 has also been
demonstrated to inhibit K¢, channels (Peng et al. 1998).
Inhibition of K¢, channels by ET-1 increased in PASMCs
cultured under hypoxic conditions (Peng et al. 1997).
However, in other studies, ET-1 was demonstrated to
either have no effect on or stimulate K¢, channels (Salter
et al. 1998, Shimoda et al. 1999a), with enhanced
stimulation of K¢, channels following in vivo exposure to
hypoxia (Shimoda et al. 1999a).

Application of ET-1, ANG II and 5-HT to
PASMCs was accompanied by an increase in intracellular
Ca®" concentrations [Ca®']; (Bakhramov et al. 1996,
Guibert et al. 1996, Sugawara et al. 1996, Yuan et al.
1997, Hyvelin et al. 1998, Shimoda et al. 2000). The
effect of chronic hypoxia on the ability of ANG II and
5-HT to increase [Ca’']; has not been studied. With
respect to ET-1, the increase in [Ca®']; was markedly
reduced following prolonged exposure to hypoxia
(Shimoda er al. 1999b). Under normoxic conditions,
ET-1 increased [Ca®'}; via both Ca® influx and release
(Bakhramov et al. 1996, Sugawara et al. 1996, Hyvelin et
al. 1998, Shimoda et al. 2000). The small rise in [Ca**];
observed in response to ET-1 in PASMCs from
chronically hypoxic rats was abolished in the presence of
nifedipine or following removal of extracellular Ca®
(Shimoda et al. 1999b). These results suggest that the
ET-1-induced [Ca*"]); increase in PASMCs from
chronically hypoxic rats was entirely dependent on Ca**
influx through voltage-gated Ca®* channels, and that
mechanisms activating Ca®* release from intracellular
stores in response to ET-1 are no longer operative in
these cells. Interestingly, the ET-1-induced activation of
voltage-gated Ca®* channels in PASMCs from chronically
hypoxic rats did not appear to result from depolarization,
since ET-1 had no effect on membrane potential in these
cells (Shimoda et al. 1999b). The activation of the
voltage-gated Ca®* channels by ET-1 may instead be due
to the ability of ET-1 to increase open probability of Ca®*
channels independent of membrane potential as, at a
given holding potential, Ca>* current in coronary arterial
smooth muscle cells was markedly enhanced in the
presence of ET-1 (Goto et al. 1989). Since membrane
potential in PASMCs from chronically hypoxic rats was
significantly depolarized, to a range where voltage-gated
Ca” channels may be activated, application of ET-1 may
be able to induce Ca®* influx through these channels in
the absence of a change in membrane potential.

In pulmonary arterial smooth muscle from
normoxic rats, blockade of voltage-gated Ca®* channels
significantly reduced maximum tension induced by ET-1
(Horgan et al. 1991, Barman et al. 1995, Shimoda et al.
1998). In contrast, maximum tension generated in
pulmonary vascular smooth muscle from chronically
hypoxic animals in response to ET-1 was only slightly
reduced by voltage-gated Ca®* channel antagonists
(Shimoda et al. 1999b). These findings suggest that
following chronic exposure to hypoxia, ET-1 caused
contraction in the pulmonary vasculature via mechanisms
largely independent of [Ca®"]; changes since the ET-1-
induced increase in [Ca’']; was completely prevented
after blockade of voltage-gated Ca>* channels. ET-1 can



554 Shimodaet al.

Vol. 49

increase the Ca’'-sensitivity of the contractile apparatus,
resulting in contraction that is independent of [Ca®'};
(Goto et al. 1989, Nishimura ez al. 1992). The signal
transduction pathways responsible for ET-1-induced
Ca®*-independent contraction are currently unknown, but
may involve protein kinase C-dependent activation of
mitogen-activated protein kinase (MAPK) (Horowitz et
al. 1996), which phosphorylates the thin filament-
associated contractile regulatory protein, calponin
(Menice et al. 1997). Unphosphorylated calponin binds to
actin, inhibiting myosin MgATPase; phosphorylation of
calponin causes its release from the actin filament and
allows cycling of cross bridges and development of
tension (Winder and Walsh 1990). ET-1 has also been
shown to induce phosphorylation of calponin (Menice et
al. 1997), lending support to this theory. Other
investigators have proposed mechanisms involving
activation of myosin light chain kinase or inactivation of
myosin light chain phosphatase (Adam et al. 1990, Abe
et al. 1991, Nishimura et al. 1992).

Conclusions

Pulmonary hypertension, whether due to active
contraction or structural remodeling, is the major
pathophysiologic characteristic of chronic hypoxia. The
pathogenesis  of  chronic  hypoxic  pulmonary
vasoconstriction is complex, and includes decreased
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