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Summary

Expression of the muscle phenotype is the result of interaction between intrinsic and extrinsic factors, the latter
including innervation, mechanical influences and hormonal signals. This minireview summarizes some of the current
knowledge regarding the regulation of myosin heavy chain (MHC) isoform transitions during muscle development and
regeneration. It describes the role of genetic factors, neural and mechanical influences and it focuses on the contribution
of thyroid hormones to the differentiation of muscle fiber phenotypes as shown by the regulation of the expression of
MHC isoforms and development of myofibrillar ATPase activity. Finally, it shortly summarizes results regarding the
differentiation of MHC isoforms in regenerated muscle fibers of the graft after heterochronous isotransplantation in rats
with different thyroid status.
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Diversity of mammalian skeletal muscles and
myosin heavy chain (MHC) isoforms

Myogenesis and regeneration of skeletal muscles
are characterized by fusion of replicating mononucleated
myoblasts or satellite cells into syncytial myotubes and
by their maturation into differentiated muscle fibers. This
differentiation involves activation of cell-type specific
genes which induces the synthesis of muscle-type specific

proteins. The resulting ratio between phenotypically
diverse fiber types differs from muscle to muscle
physiological
Furthermore, the fiber population of a given muscle is in

reflecting their function and usage.
a dynamic state, constantly adjusting to altered functional
demands, hormonal signals and changes in neural input
(for review see Miller and Stockdale 1987, Syrovy 1987,
Hausman and Watson 1994, Buonanno and Rosenthal
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1996, Schiaffino and Reggiani 1996, Haddad et al. 1997,
Pette and Staron 1997).

Many muscle specific proteins,
multiple, tissue-specific and
developmentally regulated isoforms encoded by families
of genes. While studying the expression of genes
encoding myofibrillar proteins, it has been revealed that
selection of the optimal - phenotype is based on the

activation of one gene — encoding the appropriate isoform

including

myosin, exist in

— from a given gene family. These experiments have also
confirmed that regulation of this expression can occur at
the level of transcription, alternative splicing of primary
transcripts, mRNA stability and/or translation (for review
see Gunning and Hardeman 1991, Buonanno and
Rosenthal 1996, Schiaffino and Reggiani 1996). The best
known 1is the highly conserved multigene family
encoding the MHC isoforms (Buckingham et al. 1986).
Up to date, eight sarcomeric MHC genes, two cardiac
(alfa and beta) and six skeletal (embryonic, perinatal, Ila,
IIx/d, IIb and extraocular), have been identified in tightly
linked clusters on human chromosomes 14 and 17, mouse
14 and 11, and rat 14 and 10 (Weiss et al. 1999). The
individual MHC genes can be differentialiy expressed
during development and respond to neural, hormonal and
other physiological signals.

The structural and functional diversity of
skeletal muscles reflects the content of distinct MHC
isoforms, which are responsible for different myofibrillar
ATPase (mATPase) activity and the maximum intrinsic
velocity of shortening (V.x) of muscle fibers. In skeletal
muscles of adult mammals such as mice, rats, rabbits and
guinea pigs, four major extrafusal fiber types have been
described: slow-twitch or type I and three fast-twitch
fiber types, IIA, IIX/D and IIB. Each histochemical fiber
type contains a corresponding MHC isoform: I, Ila, IIx/d
and IIb (for review see Pette and Staron 1990, 1997,
Schiaffino and Reggiani 1994). Besides these basic
muscle fiber types, also transitional (hybrid) fibers can be
identified, which contain various combinations of MHC
isoforms. The best known are fibers designated as type IC
and IIC that express both type I and type Ila MHC
isoforms in various proportions (for review see
Héaméldinen and Pette 1995). Coexpression of MHC
RNA transcripts was demonstrated in both rat (DeNardi
et al. 1993) and human (Smerdu et al. 1994) muscles.
Embryonic and neonatal (perinatal) MHC isoforms are
expressed in developing and regenerating muscle fibers
or in specific adult mammalian muscles, such as
extraocular (Wieczorek et al. 1985) or masseter muscles

(Whalen et al. 1981, Butler-Browne and Whalen 1984,
Butler-Browne et al. 1988). Other MHC isoforms, slow
tonic (slow-developmental), extraocular, superfast and
alpha cardiac-like are as a rule expressed either in highly
specialized muscles of some species, e.g. in extraocular
muscles and in muscles derived from the first branchial
arch (e.g. in masticatory and the tensor tympani muscles)
or in intrafusal fibers of muscle spindles in a great
majority of skeletal muscles (Wieczorek et al. 1985,
Pedrosa et al. 1990, Pedrosa-Domellsf ef al. 1991, 1992,
D’Albis et al. 1993, for review see Pette and Staron 1990,
1997, Soukup et al. 1995).

The expression of specific isoforms of a given
muscle fiber in the adult mammal is the result of a
combination of genetic programs intrinsic to the myoblast
lineage from which the muscle fiber had developed, and
extrinsic influences such as type of innervation,
mechanical and/or hormonal factors; the latter, however,
can change the muscle phenotype only within a
genetically predetermined adaptation range (for review
see Bandman 1985, Pette and Vrbova 1985, 1992, Miller
and Stockdale 1986, Westgaard and Lemo 1988,
Gunning and Hardeman 1991, Hoh 1991, Miller 1991,
Stockdale 1992, D’Albis and Butler-Browne 1993,
Rudnicki and Jaenisch 1995, Buonano and Rosenthal
1996, Schiaffino and Reggiani 1996, Pette and Staron
1997).

Diversity of muscle cell precursors

Muscle fibers are formed by the fusion of
myoblasts to form myotubes that become innervated and
mature into myofibers. In higher vertebrates they arise in
at least two waves. The primary myotubes are the first to
develop from primary myoblasts, followed by the
secondary myotubes arising from secondary myoblasts.
The primary myotubes are formed in the absence of
nerves, whereas formation of secondary myotubes is
impeded by denervation (e.g. Wilson and Harris 1993).
Earlier, it was thought that all myoblasts belong to a
fairly homogeneous population. There is now, however,
considerable evidence that myoblasts are heterogeneous
and that their lineage-derived genetically fixed
differences interact with extramuscular factors to form a
distinct muscle phenotype. In birds, three lineages of
early myoblasts, each pre-programmed to express MHC
isoforms in a special manner were revealed (for review
see Miller and Stockdale 1986, 1987). Although studies
in mammals did not report such clear results as in birds, it
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is supposed that genetic differences exist between
primary and secondary, fast and slow, axial and limb or
between rostral and caudal myoblasts (for review see Hoh
1991, Miller 1992, Donoghue and Sanes 1994, Schiaffino
and Reggiani 1996). Corresponding differences were also
demonstrated among satellite cells. It was found that
cultured satellite cells derived from slow rat soleus and
fast tibialis anterior (TA) muscles differ in their MHC
(Diisterhoft and Pette  1993). Under
appropriate culture conditions, some myotubes derived

expression

from soleus satellite cells expressed slow MHC in
addition to embryonic MHC isoform, whereas expression
of the slow isoform was negligible in TA-derived satellite
cells. These differences were further enhanced by slow-
type pattern electrical stimulation of cultured cells
(Wehrle et al. 1994). Soleus satellite cells are thus
apparently predetermined (in contrast to those from fast
muscle) to express the slow-twitch MHC isoform. Studies
of mammalian muscles have also shown that the
divergence of slow and fast fibers occurs early during
fiber differentiation; the differences between myotubes
emerge while they are still multiply innervated and the
differences are not eliminated by denervation (for review
see Gunning and Hardemann 1991, Hoh 1991). Another
example of special muscle cell precursors could be
related to intrafusal fibers of muscle spindles. The
characteristic morphology and the specificity of the MHC
isoforms in intrafusal fibers could reflect a unique
pathway of muscle spindle differentiation from a special
intrafusal cell lineage committed to differentiate after
innervation by Ia afferent axons into intrafusal fibers
(Pedrosa and Thornell 1990, for review see Soukup et al.
1995, Walro and Kucera 1999).

Neural control of myofiber phenotype

The pioneer studies of Buller et al (1960)
established that muscle properties were closely related to
those of their innervating motor neurons. Subsequently,
the role of motor innervation has been investigated by
different methods among which denervation, cross-
reinnervation and nerve or muscle electric stimulation
have been frequently used (for review see Pette and
Vibova 1985). Many of the contractile and even fine-
structural properties of muscle fibers were found to
change according to the type of motor innervation
(“slow* or “fast”) received by ectopic muscle grafts not
only in mammalian (Buller ef al. 1960), but also in avian
muscles (Hnik et al. 1967, Zelena et al. 1967, Jirmanova
and Zelend 1973). Cross-reinnervation and electrical

stimulation at frequencies that resemble the normal slow-
twitch muscle motor unit activities, specify the role of
activity and experimental
transformation of muscle characteristics. These changes

motor result in the
concern their metabolic properties (Buchegger et al.
1984, Gundersen et al. 1988, Leeuw and Pette 1993) and
contractile characteristics (Eccles 1967, Salmons and
Sréter 1976, Lemo et al. 1974, Westgaard and Lomo
1988). The latter are associated with a transformation of
the spectrum of myosin isoforms and regulatory proteins
of myofilaments (Weeds et al. 1974, Sréter et al. 1975,
Srihari et al. 1981, Ausoni et al. 1990, Termin and Pette
1992; for review see Pette and Vrbova 1992). Although
the role of nerve derived factors that travel down the
axons of motoneurons has been acknowledged (for
review see Gutmann 1976), it is the pattern of nerve
impulses that could affect muscle properties, which is
now preferentially accepted (Buller et al. 1960, Vrbova
1963).

The role of motor activity was especially
stressed by Vrbovd, who initially found that the
contraction speed of the slow-twitch soleus muscle
became higher after denervation and tenotomy (Vrbova
1963). Using implanted stimulators, Salmons and Vrbova
(1969) demonstrated that the muscle contraction time
could be altered by electrical stimulation of its nerves and
that changes in the expression of contractile proteins are
accompanied by a transition of muscle properties (for
review see Pette and Vrbova 1985, 1992, Buonanno and
Rosenthal 1996, Pette and Staron 1997). As regards
extrafusal muscle fibers, many studies performed during
the last two decades have demonstrated that after
stimulation of a fast muscle at a chronic low frequency
(CLFS) not only shifts in the expression of contractile
proteins of thick and thin filaments were reported, but the
vascularization and the oxidative capacity of the muscle
was also enhanced (for review see Pette and Vrbova
1992, Buonanno and Rosenthal 1996, Schiaffino and
Reggiani 1996). In the experiments mentioned above, the
muscles were stimulated via their nerve so that the effects
of nerve derived factors could not be completely
excluded.

The experiments, in which denervated muscles
were directly stimulated showed that such activity was
sufficient to elicit changes' in the contraction time of
muscles (Lemo et al. 1974) and resulted in a change of
MHC expression (Gorza et al. 1988). Stimulation of
denervated muscles of rats with simulated intrinsic
motoneuronal firing patterns (Hennig and Lemo 1985)
was as effective as cross-innervation in causing transition



620 Soukup, Jirmanova

Vol. 49

of muscle contractile properties (Eken and Gundersen
1988). During fast-to-slow transformation, fast-type
myofibrillar protein isoforms are replaced by their slow
counterparts and the direction of MHC isoform transition
proceeds in the following order: MHC IIb — MHC IIx/d
— MHC Ila — MHC I (Termin et al. 1989, for review
see Pette and Vrbova 1985, Mira et al. 1992, Pette and
Staron 1997). Conversely, a transformation of slow-
twitch muscles into faster contracting muscles was
provoked by phasic high-frequency stimulation (PHFS)
(Lemo et al. 1974, Eken and Gundersen 1988). PHFS
leads to an up-regulation of the fast type MHC isoforms
in the rat slow soleus muscle (Gorza et al. 1988, Ausoni
et al. 1990, Himéldinen and Pette 1996). Haméldinen and
Pette (1996) were even able to demonstrate the
appearance of MHC IIb — the fastest isoform present in
rat limb muscles.

However, in the case of intrafusal muscle fibers,
the induction and maintenance of fiber phenotypes are
completely independent of neuronal activity. Special
properties, including unusual MHC isoforms of intrafusal
muscle fibers in muscle spindles, are induced and
maintained by the trophic nonimpulse activity of Ia
sensory neurons (for review see Zelena and Hnik 1963,
Zelena 1994, Soukup et al. 1995, Walro and Kucera
1999).

Contribution of mechanical factors to fiber
type differentiation

Recent data (Goldspink et al. 1991, 1992) have
indicated that mechanical signals, such as stretch, may be
important for the expression of MHC I in the soleus
muscle. It seems possible that, at the same time, stretch in
antigravity muscles, such as the soleus, may also prevent
expression of the MHC IIb in spite of the appropriate
neural stimulation pattern experimentally imposed on
these muscles by electrical stimulation or cross-
reinnervation. Elimination of the effects of gravitational
stretch following transposition of regenerating soleus
muscle into the bed of extensor digitorum longus muscle
apparently released the MHC IIb expression in the cross-
transplanted and regenerated soleus muscle (Snoj-Cvetko
et al. 1996b). Accordingly, unloading of hindlimbs
triggered expression of MHC IIx/d and some MHC IIb in
the unloaded soleus muscle (Fauteck and Kandarian
1995).

Thyroid hormone levels and MHC gene
expression in developing and mature muscle
fibers

It is well known that striated muscles are
privileged targets for thyroid hormones (for review see
e.g. D'Albis and Butler-Browne 1993, Hausman and
Watson 1994, Haddad et al. 1997). In general, the action
of thyroid hormones on gene transcription is mediated via
their nuclear receptors. Nuclear hormone receptors
regulate gene transcription by recognizing specific
regulatory sequences, called hormone responsive
elements, situated in gene promotors, enhancers or
silencers. Heterodimers of thyroid hormone and retinoid
X receptors have a constitutive DNA-binding activity (for
review see Hatina and Reischig 2000). In the absence of
the hormone, thyroid receptor is connected with a
corepressor that decreases effectivity of transcription
initiation. Activation after binding of the hormone leads
to conformational changes represented by dissociating a
corepressor and recruiting a coactivator; the receptor
complex then switches into the transcription activator
(Chin and Yen 1997).

Regulation of the MHC gene family is complex
and the same MHC gene can be regulated by the thyroid
hormone differently in various muscles (Izumo et al
1986). In mammals, the perinatal development is
associated with a change in the plasma concentration of
the T; and T, thyroid hormones. The concentration of
active hormone T; (3,3’,5-triiodo-L-thyronine) is barely
detectable in embryonic and newborn rats, it increases a
few days after birth, reaches a peak at about 2 weeks,
then slightly declines to reach a plateau in the adult rats
(Dubois and Dussault 1977). Coincident with this
increase in T; concentration, embryonic and perinatal
MHC isoforms are progressively repressed and adult fast
MHC isoforms are accumulated (for review see Bandman
1985). During development, hyperthyroid rats display an
earlier switching from embryonic and perinatal MHC
isoforms to adult-type fast MHC isoforms, while the
contrary holds true for hypothyroid rats (Gambke er al.
1983, Butler-Browne et al. 1984, Izumo et al. 1986,
D’Albis et al. 1990, for review see Bandman 1985). This
scheme is generally true since it has been observed in
limb muscles of all investigated mammals including
humans (Hoh and Yeoh 1979, Whalen et al. 1981,
Fitzsimons and Hoh 1983, Hoh et al. 1988, D’Albis ef al.
1987, 1989, 1991, Butler-Browne et al. 1990, Diffee ef
al. 1991, Finkelstein et al. 1992). It therefore appears that
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the T; thyroid hormone represses the expression of
embryonic and perinatal myosin isoforms, while it
activates that of adult fast isoforms. Brozanski et al.
(1991) have shown that the disappearance of perinatal
myosin isoforms during postnatal development is delayed
in the diaphragm of undernourished rat pups compared to
the controls; this undernutrition is also accompanied by a
decrease in serum T; levels, which led the authors to
suggest that the alterations in MHC isoform transitions
are induced by hypothyroidism associated with the
undernutrition. In humans, excessive levels of the thyroid
hormones during fetal development have also been shown
to produce a precocious accumulation of adult MHC
isoforms as well as a precocious maturation of the muscle
(Butler-Browne et al. 1990).

All muscles of the same animal respond to
endogenous changes in thyroid hormone concentrations,
but their response has been shown to vary depending on
the muscle (Gustafson et al. 1986, Izumo et al. 1986,
D’Albis et al. 1990, Petrof et al. 1992). While in the rat,
the diaphragm displays a most precocious switch to adult
fast myosin isoforms and the masseter is the last, in the
rabbit,
precocious switching (D’Albis et al. 1991). It appears

the tongue musculature displays the most

that different skeletal muscles do not contain the same
number of thyroid hormone receptors, which results in a
different sensitivity of individual muscles to this
hormone. The same explanation has also been suggested
for the MHC isoform switching in eight muscles in
developing experimentally-treated hyperthyroid rats
compared with euthyroid rats (D’Albis and Butler-
Browne 1993). Hyperthyroidism barely modifies the
MHC isoform switching in the diaphragm, which
indicates that the endogenous physiological thyroid
hormone concentration is almost optimal for inducing the
expression of fast contrary,
hyperthyroidism accelerates the MHC isoform switching

myosin. On the

in other investigated muscles, which become similar to
the diaphragm. In the masseter of young adult rats, where
the perinatal MHC isoform persists, the hyperthyroid
treatment causes it to disappear, whereas hypothyroidism
induces its reappearance (Mahdavi et al. 1987). The
effect of hyperthyroidism, induced during early postnatal
development, is not permanent and can be reversed by the
interruption of treatment (D’Albis ef al. 1990).

Thyroid hormone is also known to modulate
MHC gene expression and the MHC isoform composition
of adult skeletal muscles (Izumo et al. 1986, Kirschbaum
et al. 1990, Caiozzo et al. 1991, 1992). In general,
hypothyroidism increases the expression of slow MHC

isoform in both skeletal and cardiac muscles, whereas
hyperthyroidism inhibits slow MHC isoform expression
in the soleus and diaphragm of the rat (Ianuzzo et al.
1977, 1991, Izumo et al. 1986, Caiozzo et al. 1992). In
slow muscles such as the soleus, hyperthyroidism is
associated with an upregulated expression of Ila MHC
messenger RNA (mRNA), whereas hypothyroidism is
associated with an upregulated I MHC mRNA
expression. In fast muscles, hypothyroidism is associated
with an increase in type Ila MHC mRNA (Izumo et al.
1986). These responses to an altered thyroid state have
also been characterized at the protein level, since
hyperthyroidism was found to increase relative amounts
of fast MHC
hypothyroidism resulted in a relative increase in the slow
MHC isoform content (Fitzimons et al. 1990). In the
soleus muscle, hyperthyroidism induced in rats by

isoforms in slow muscles, whereas

injections of T every other day for 20 weeks, increased
its contractile velocity and significantly decreased the
proportion of slow myosin from 93 to 69% (Caiozzo et
al. 1991). The expression of fast type Ila MHC gene was
concomitantly increased (Izumo et al. 1986). In contrast,
no significant changes, either in the native myosin or
MHC isoform content or in contraction velocity, were
observed in the plantaris muscle, which mostly contains
fast type II MHC isoforms (Caiozzo et al. 1991). On the
contrary, experimental hypothyroidism has an overall
slowing effect on muscles, which is correlated with an
increase in the amount of both native slow myosin and
type I MHC isoform in fast-twitch and slow-twitch
muscles (Leijendekker and van Hardeveld 1987, Caiozzo
et al. 1992). Furthermore, slow muscles were found to be
much more responsive to alterations in thyroid state than
fast muscles (Fitzimons et al. 1990). Thyroidectomy also
decreases the resting EMG activity of the soleus muscle
(Hnik et al. 1985).

Interesting results were obtained on a model of
the mutant dwarf mouse, originally described in 1929 by
Snell. The hypothyroid dwarf mouse mutant provided an
excellent model system for investigating the direct
influence of thyroid hormones on MHC isoform
transitions because of the absence of a possible secondary
effect due to stimulation of growth hormone production.
In this mutant, the developmental isoform transitions are
substantially delayed in skeletal muscles and completely
blocked in the heart. A normal adult fiber phenotype
could be restored by multiple injections of thyroxine
(Whalen et al. 1985, Butler-Browne et al. 1987, Pruliére
et al. 1989). Studies using both the mutant dwarf mouse
and hormone injections have shown that the expression of
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an adult fast MHC gene is accelerated by the thyroid
hormones (Whalen et al. 1985) and that the acceleration
is independent of muscle innervation. These findings
imply that the thyroid hormones exert direct effects on
muscles (Russel ez al. 1988).

When comparing the influence of different
thyroid hormone levels with the effect of chronic low
stimulation (CLFS) on MHC
in fast-twitch muscles of hypothyroid,
euthyroid and hyperthyroid rats, it was found that the
thyroid hormone and CLFS had an antagonistic effect.
Increased neuromuscular activity resulting from CLFS

frequency isoform

expression

shifts myosin expression towards slower isoforms,
whereas the thyroid hormone has an opposite effect
(Tanuzzo et al. 1977, Kirschbaum et al. 1990). Under
euthyroid conditions, CLFS mainly elicited a IIb — IIx/d
— Ila MHC isoforms transition, but not the appearance
of I MHC isoform. On the other hand, the slow or I MHC
isoform was present in the hypothyroid state and its
expression was further enhanced by CLFS, indicating that
the “suppressive effect” of the thyroid hormones on this
isoform is stronger than the inductive influence” of
CLFS. Hyperthyroidism alone suppressed the expression
of Ila MHC and enhanced the transition of IIx/d MHC to
[Ib MHC. This shift to faster MHC isoforms was only
partially counteracted by CLFS (Kirschbaum et al. 1990).

The hypothyroid state and hindlimb suspension
are well characterized with regard to their impact on
MHC isoform expression (Johnson et al. 1980, Asmussen
and Soukup 1991). When studying the interaction of
these competing influences, it was found that the
hypothyroid state, and not mechanical unweighting
factors, has a predominating controlling role on MHC
expression in slow muscle. In the soleus and vastus
intermedius muscles of both hypothyroid control and
hypothyroid suspended groups, there was an increase in
type I MHC isoform and a decrease in type Ila MHC. On
the contrary, a decrease in I MHC and an increase in Ila
MHC isoform were found in the normal euthyroid
suspended rats (Asmussen and Soukup 1991, Diffee ef al.
1991).

These results suggest that the thyroid hormones
induce the expression of those MHC genes which are
coding for isoforms with higher ATPase activity. In the
soleus muscle, "the slow MHC isoform
predominates, the expression of [la MHC would increase
together with muscle contraction velocity, while in the
masseter, which contains Ila and IIb MHC, the latter
fibers with the highest ATPase activity would be favored.

where

It seems that changes in the concentration of the thyroid
hormones support a preferential sequence for the
transformation of MHC isoforms: I < Ila < IIx/d < IIb.
This suggests that the excess of thyroid hormones favors
the appearance of fast MHC isoforms, whereas a lack of
the thyroid hormones allows a preferential expression of
slow MHC at the expense of fast type MHC isoforms.

MHC expression in intrafusal fibers of
muscle spindles

Intrafusal muscle fiber types exhibit distinct
morphological characteristics, as they contain typical
nuclear accumulations and myofibrillar ultrastructure,
possess complex sensory and motor innervation, exhibit
specific histo- and immunocytochemical characteristics
and are surrounded by a multilayered capsule (Zelena and
Soukup 1973, 1974, Soukup 1976, Soukup et al. 1979,
for review see Zelena 1994, Soukup et al. 1995). The
three types of intrafusal fibers, nuclear bag;, nuclear bag,
and nuclear chain fibers™ are unique in co-expressing
several MHC isoforms, including special spindle-specific
ones, such as slow tonic (slow-developmental) and alpha
cardiac-like MHC. Furthermore, isoforms typical for
muscle development, such as embryonic and neonatal
(perinatal) MHC, have also been found in intrafusal fibers
of adults (for review see Soukup et al. 1995, Walro and
Kucera 1999). In the rat, each intrafusal fiber type has a
typical MHC pattern expressing several MHC isoforms
(or expressing at least isoform(s) containing antigenic
determinant(s) reacting with the specific mcAbs for each
MHC isoform); it comprises at least 6 MHC isoforms in
nuclear bag, fibers
twitch/beta cardiac, alpha cardiac-like, slow tonic/slow
developmental and fast twitch), 4 MHC isoforms in
nuclear bag, fibers (embryonic, slow twitch/beta cardiac,
slow tonic/slow developmental and alpha cardiac-like)

(embryonic, neonatal, slow

and 2 MHC isoforms in nuclear chain fibers (neonatal
and fast twitch) (for review see Soukup er al. 1995).
Although no gene analysis regarding intrafusal MHC
isoforms is known, it was recently suggested that MHC
composition in intrafusal fibers has some adaptive
significance to proprioception (Wal:o and Kucera 1999).
The distinct MHC pattern and expression of spindle-
specific MHC isoforms which are not expressed in
extrafusal fibers, distinguish intrafusal fiber types from
each other and also from extrafusal fibers in all
mammalian and human muscles (Soukup and Thornell
1999, for review see Soukup et al. 1995, Walro and
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Kucera 1999). These distinct features make intrafusal
fibers an attractive in situ model for investigating
myogenesis, myofibrillogenesis and the mechanisms
regulating MHC expression (for review see Soukup et al.
1995, Soukup and Novotova 1996, Walro and Kucera
1999).

The development and regeneration of intrafusal
muscle fibers, similarly to those of the extrafusal fibers,
start from embryonic and adult myoblasts (satellite cells),
respectively. We have also suggested that the resulting
phenotype of intrafusal fibers is a combination of
genetically fixed properties of myoblast cell lineages and
of extrinsic, especially neurogenic factors (Soukup et al.
1990, 1993, Pedrosa et al. 1990, Pedrosa-Domellof et al.
1991, for review see Soukup et al 1995). We have
described differences in the reactivity using polyclonal
antibodies against MHC isoforms of intrafusal fiber types
in muscle spindles of newborn, de-efferented and adult
rats (te Kronnie er al. 1981, 1982). These and other
studies confirmed that the unique expression of slow
tonic, alpha cardiac-like, embryonic and neonatal MHCs
in limb muscles of adult mammals is restricted to
intrafusal fibers (Pierobon-Bormioli et al. 1980, Maier et
al. 1988, Pedrosa et al. 1989, 1990, Kucera et al. 1992,
Kucera and Walro 1990, Pedrosa-Domellsff et al. 1991,
1992, 1993, Pedrosa-Domelloff and Thornell 1994, for
review see Soukup et al. 1995, Walro and Kucera 1999).
We have also reported that the reactions of different
antibodies against MHC isoforms vary along the length
of intrafusal fibers (Soukup et al. 1990, Pedrosa et al.
1990, Pedrosa-Domellof et al. 1991). This finding
explains the regional differences observed earlier in the
mATPase reaction (Soukup 1976). These studies have
shown that sensory innervation is required for the
expression of ,,spindle-specific MHC isoforms, whereas
motor innervation contributes to the diversity in
distribution of the different MHCs along the length of the
nuclear bag fibers (Soukup et al. 1990, for review see
Zelend 1994, Soukup et al. 1995, Walro and Kucera
1999). It is known that a number of proteins, including
MHC isoforms, can remain localized in the vicinity of the
nuclei responsible for their synthesis (Pavlath et al. 1989,
for review see Hall and Ralston 1989). It remains an open
question, whether the concept of nuclear domains can be
applied to intrafusal fibers, as the typical regional
variations in MHC expression along their length might
reflect the existence of nuclear domains under the
influence of either sensory or motor innervation (for
review see Soukup et al. 1995).

The major question pertaining to spindle
development is whether intrafusal fibers develop from the
same pool of bipotential muscle precursor cells
(myoblasts) as extrafusal fibers or from a separate
population of myoblasts predestined to become intrafusal
fibers. Primary myotubes, which give rise to the first
generation of both extrafusal and intrafusal fibers, do not
differ in their ultrastructure at the onset of spindle
development. Hitherto, no difference in their
immunocytochemical profiles has been detected until
sensory axons had reached them. Although the expression
of MHC genes in extrafusal fibers has been analyzed at
both protein and mRNA levels, using biochemical
separation techniques or the in situ hybridization
technique with probes specific for MHC gene transcripts
(for review see Pette and Staron 1990, Gunning and
Hardeman 1991, Hoh 1991, Ontell et al. 1995), the
biochemical or clonal analyses of intrafusal fibers are
difficult due to their scarcity and corresponding
difficulties in their isolation even in differentiated
muscles of adult animals (cf. Pedrosa-Domellof et al.
1993). Corresponding studies of tiny undifferentiated
intrafusal fibers in developing muscle spindles are still
virtually impossible, also due to the general problems in
gaining access and manipulating mammalian fetuses. We
have therefore tried to induce experimentally postnatal
myogenesis and regeneration inside rat muscle spindles.
These experiments enabled us to analyze the contribution
of intrinsic myogenic (cell lineage) and extrinsic (mainly
neurogenic) factors on the ultrastructural differentiation
and expression of MHC isoforms in intrafusal fibers
(Soukup et al. 1993, Zelenda and Soukup 1993). The
anticipated results partly filled the gap resulting from the
lack of biochemical results in previous studies of
differentiation of intrafusal muscle fiber types.

Our studies of the differentiation and MHC
isoform expression of de novo formed supernumerary
intrafusal fibers in neonatally de-efferented rat muscle
spindles suggested the existence of at least two types of
intrafusal satellite cells (Novotova and Soukup 1995,
Soukup et al. 1990, 1993, 1999b, for review see Soukup
et al. 1995, Soukup and Novotova 1996). One class of
satellite cells is related to nuclear bag (bag, and bag,)
fibers; these satellite cells give rise to supernumerary
fibers in which the sensory innervation can trigger the
expression of slow tonic MHC isoform, thus inducing the
differentiation of the nuclear bag phenotype. The other
class of satellite cells is associated with nuclear chain
fibers, but sensory innervation does not induce the
expression of slow tonic MHC isoforms in these
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supernumerary  fibers. The latter satellite cells
differentiate into fibers that exhibit the nuclear chain
phenotype irrespective of the presence or absence of
sensory innervation (Soukup et al. 1993). This property
of satellite cells parallels the behavior of those myoblasts
that give rise to, nuclear chain fibers during normal
development and Which also do not express slow tonic or
slow twitch MHC isoforms (Pedrosa and Thornell 1990),
although they bear sensory contacts from the earliest

stages of their development (Kucera et al. 1989).

Muscle grafting and differentiation of muscle
fiber types

After muscle transplantation, the sequence of
events proceeding during muscle regeneration is similar,
although not identical, to normal muscle development
(Gutmann and Carlson 1975, for review see Carlson
1976, Carlson et al. 1981, Schiaffino and Reggiani 1996).
Muscle grafting thus represents an alternative model for
examining postnatal differentiation of extrafusal and
intrafusal muscle fiber types. Furthermore, it was found
that regenerating fibers adapt more rapidly than surviving
fibers (Donovan and Faulkner 1987) and that the adaptive
range of MHC expression in regenerating rat soleus
(SOL) or extensor digitorum longus (EDL) muscles is
broader than in mature muscles (Snoj-Cvetko et al.
1996a,b, ErZen et al. 1999).

"Because the muscle fiber phenotype is the result
of interactions between genetic factors intrinsic to the
myoblast lineage and including
innervation and the level of thyroid hormones, we have
introduced a model of heterochronous isotransplantation
(Jirmanova and Soukup 1995), when the slow SOL or
fast EDL muscles from young rats are intramuscularly
grafted into either EDL or SOL muscles of adult inbred
recipients. This technique enables to compare directly —

extrinsic  factors

% of type 1 fibres

20

in one model — the influence of muscle cell lineage
(depending on slow or fast donor muscle), innervation
(given by nerve axons with a low or high nerve impulse
frequency from the host muscle) and level of thyroid
hormones (hypothyroid, euthyroid or hyperthyroid state
of the host) on the muscle fiber phenotype. MHC isoform
content and mATPase activity within fibers of
regenerated muscle graft can then be analyzed using
immunocytochemical, histochemical and stereological
methods (Zachatfova and Kubinova 1995, Zachafova et
al. 1997, 1999).

When EDL and SOL muscles from 24- to 28-
day-old rats were grafted intramuscularly into the EDL
muscle and reinnervated by its nerve in adult inbred
euthyroid, hypothyroid and hyperthyroid rats, both SOL
and EDL isografts developed into fast muscle in
euthyroid rats, since they contained about 90% of fast
type II fibers. In hypothyroid rats, the slow to fast
transformation of SOL graft was less pronounced, as only
60 % of extrafusal fibers were of the fast type. But it was
accentuated in hyperthyroid rats, where the SOL graft
contained 98 % of fast type II fibers (Fig. 1). In grafted
EDL muscles, the proportion of fast or type II fibers
reached almost 99% in euthyroid rats, significantly more
than in hypothyroid rats. The hypothyroid state induced
by methimazole treatment was effective only if applied
immediately after the operation. If the treatment was
started 12 weeks after transplantation and maintained for
20 weeks, the conversion of SOL muscle into a fast
muscle was almost complete, as fast type II fibers
represented 83.0 % of all muscle fibers (Fig. 1). We
therefore concluded that after reinnervation by the fast
EDL nerve, the thyroid hormone is necessary for the
transformation of the regenerating slow soleus muscle
into a fast muscle (Soukup et al 1998ab, 1999a,
Zachatova et al. 1999).

OEDL (HOST)
8TR
BICON (TR)

Fig. 1. Pércentage of slow tpe 1
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The number and morphology of muscle spindles
in regenerated EDL muscle grafts isotransplanted from
young rats into EDL muscles of adult inbred recipients
has been described previously (Jirmanovd and Soukup
1995). We found that the regenerated ,,intrafusal“ fibers
did not express the typical spindle specific MHC
isoforms, they did not exhibit the characteristic regional
differences in MHC expression and in the mATPase
reaction (Jirmanova and Soukup 1995, Soukup and
Thornell 1997). These results have confirmed the
previous findings in standard free grafts (for review see
Carlson et al. 1981). On the other hand, the regenerated
“intrafusal” fibers expressed either fast twitch or slow
twitch MHC isoforms and exhibited an alkali- or acid-
stable mATPase reaction along their whole length,
similarly as extrafusal fast type II and slow type I muscle
fibers. Since no sensory axons could be found in
regenerated muscle spindles after heterochronous
isotransplantation (Soukup and Novotova 2000), we
concluded that intrafusal satellite cells, although derived
from distinctly different nuclear bag,;, bag, and nuclear
chain fibers, exhibited great plasticity as their MHC
expression could be shifted towards the extrafusal muscle
fiber phenotype by foreign alpha-motor innervation
(Soukup and Thornell 1997).

The proportion of
regenerated EDL or SOL muscles after isotransplantation
in animals with a different thyroid status has not yet been

iintrafusal“ fibers in

described. However, our pilot experiments of orthotopic
(EDL/EDL, SOL/SOL) and heterotopic (EDL/SOL,
SOL/EDL) transplantations in euthyroid, hypothyroid and
hyperthyroid rats show that the regenerated ,,intrafusal®
fibers (Table 1) attain a comparable proportion of fast
(type 1I) and slow (type I) fibers in all muscle grafts as
extrafusal fibers (Soukup and Novotovéa 1997, Soukup et
al. 1999a, Zachatova et al. 1999, Mrackova et al. 1999).
Regardless of the type of grafted muscle and thyroid
status of the rats, the regenerated intrafusal fibers neither
contained spindle specific MHC isoforms, nor did they
exhibit a dual mATPase reaction. Furthermore, the
characteristic regional differences in MHC isoform
expression and mATPase reaction typical for the nuclear
bag fibers have also not been found. On the contrary,
normal and host muscle spindles always contained
intrafusal fibers of three different types (nuclear bag,
nuclear bag, and nuclear chain fibers) and expressed
spindle specific (slow tonic, alpha cardiac-like and
embryonic or neonatal) MHC isoforms. Hence, intrafusal
fibers in regenerated SOL and EDL grafts isotransplanted
into fast EDL host muscles and reinnervated solely by
motor axons exhibited the same fiber type proportion as
regenerated extrafusal fibers. The percentage of both
fast fibers then varied
according to the animal’s thyroid status; it was slightly

extrafusal and “intrafusal”

increased in hyperthyroid rats and significantly decreased
in hypothyroid rats as compared to euthyroid rats.

Table 1. Percentage of intrafusal fiber types in the rat slow soleus (SOL) muscle isotransplanted into fast extensor

digitorum longus (EDL) muscle of adult inbred recipient.

Number of muscles

I+Ic/Ile IIa IIb (number of IF analyzed)
Hypothyroid rats 18.0+13.3 47.6+6.2 34.3%+13.7 5(143)
Euthyroid rats 4.5+7.8 57.7+6.4 37.7+4.4 7 (207)
Hyperthyroid rats 5.3£0.8 72.8+11.5 21.8+10.7 2 (55)

Data are means +S.E.M.
Conclusions and Aims of Future Research

Can we draw any conclusions from the results
regarding the significance of thyroid hormones for the
expression of MHC genes? We can suppose that thyroid
hormones are necessary for “opening” the fast myosin
genes to be responsive to fast nerve impulse frequency. In

this sense they can to some extent counteract the effect of
chronic low frequency nerve stimulation that would lead
e.g. in the SOL muscle, to preferential expression of slow
myosin. The establishment of a certain muscle fiber type
is first of all determined by nerve and muscle activity.
Under hyperthyroid conditions, when the organism
becomes generally hyperactive, faster MHC isoforms
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prevail, enabling “faster” contraction. If we hypothesize
that the thyroid hormone is necessary for the transduction
and decoding of “nerve or other signals“ into the cell
nucleus and/or to the MHC gene family, then a lack of
this hormone in the hypothyroid state may prevent the
transformation towards faster fiber types. The
hypothyroid state, however, apparently does not repress
the expression of the slow MHC isoform.

However, during phylogenetic development,
vertebrates, especially mammals, have developed an
elaborate system to maintain a steady-state of thyroid
hormone concentrations. Therefore, we can presume
physiological effect only after significant changes in
thyroid hormone levels under experimental or
pathological conditions. Indeed, both in animals and man,
pathological situations with increased or decreased levels
of thyroid hormones have been described and these lead
to changes in muscle fiber type composition (Whalen et
al. 1985, Butler-Browne et al. 1987, 1990, Pruli¢re et al.
1989, Brozanski et al. 1991).

It can thus be concluded that thyroid hormones
are necessary for expression of the fast muscle
phenotype, but under normal conditions their significance
is rather permissive than instructive, as the organism
prefers to maintain their concentration, for many other
reasons, within a narrow physiological range. Animals
then use other extrinsic factors, especially neural input,
for regulating the muscle phenotype to be in accord with
the physiological demands of the organism. The expected
results are thus primarily of cognitive value, as they
provide a deeper insight into regulatory processes,
controlling the expression of muscle genes. However,
controlled regulation of muscle differentiation could be of
considerable clinical importance, e.g. for muscle
transplantation in humans.

Over the past decade, significant advances in
techniques of molecular biology have substantially
increased our understanding of in vivo myogenesis.
Genes, encoding the MyoD family of myogenic
regulatory factors and those genes encoding the isoforms
of muscle proteins, as well as the role of multiple growth
factors on myogenic cell proliferation and differentiation
are now generally acknowledged (for review see Grounds
et al. 1992, Miller 1990, Yablonka-Reuveni and Rivera
1994, Rudnicki and Jaenisch 1995). As has been shown
in mice, the thyroid hormone (T;) interacts with muscle
regulatory gene MyoD in culture and thus affects
myoblast  proliferation and muscle regeneration
(Anderson et al. 1998). A further approach to the
triggering mechanisms of myoblast differentiation will be
possible when fascinating techniques of molecular

biology will be applied. Gene targeting experiments, for
instance, have revealed the hierarchical relationship
among different myogenic regulatory factors (MRFs):
MyoD or MyF-5 are probably sufficient for the myoblast
formation and their survival, whereas myogenin acts later
during development and plays an essential role in the
terminal differentiation of myotubes in vivo (for review
see Miller 1992, Rudnicki and Jaenisch 1995). It was
even found that MyoD and myogenin mRNAs
accumulate selectively in fast and slow muscles and that
this accumulation is controlled by innervation and
hormones (Hughes et al. 1993). Whether MRFs are the
genetic clues responsible for the formation of specific
muscle cell lineages, or whether the basis of genetic
predetermination occurs even earlier during myogenesis
still remains to be elucidated. The molecular mechanisms
triggering the differentiation of muscle spindles are only
poorly understood. It is clear, however, that innervation
of a subset of developing type I myotubes (whether
forming a special intrafusal cell lineage or not) by
peripheral sensory la afferents is that critical event for
inducing differentiation of nascent intrafusal fibers
(Zelena 1957, for review see Zelend 1994, Soukup et al.
1995, Walro and Kucera 1999). Mice lacking
neurotrophin NT3 (or its tyrosine kinase receptor trkC)
are devoid of muscle spindles because their Ia afferent
axons fail to form and trigger spindle differentiation
(Emfors et al. 1994, Klein et al. 1994, Kucera et al.
1995). Another example of gene-targeted experiments is
a mutant mice lacking a transcription regulating factor
EGR3 (Tourtellotte and Milbrant 1998, O’Donovan et al.
1999). In this case, different mechanism(s) was involved
in the spindle agenesis because central Ia afferents
appeared to be normal (Tourtellotte and Milbrant 1998).
Their data suggest that spindles were incapable of
differentiating because the nascent intrafusal myotubes
were unable to express autonomously the required EGR3
factor. Although specific genes regulated by EGR3 have
not yet been identified, the increasing interest for muscle
spindles suggests that also gene(s) encoding MHC
isoform(s) in intrafusal muscle fibers will soon be
recognized.

These results have shown that both extrafusal
and intrafusal muscle fibers exhibit great variability of
their phenotypic expression. Their variability can be
ascribed to the plasticity of the muscle precursor cells, as
the muscle diversification apparently depends on
heritable lineage-derived properties interacting with
environmental influences to give each muscle fiber its
distinctive characteristics.
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