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Summary 

Bone remodeling is a tightly coupled process consisting of 

repetitive cycles of bone resorption and formation. Both 

processes are governed by mechanical signals, which operate in 

conjunction with local and systemic factors in a discrete anatomic 

structure designated a basic multicellular unit (BMU). The 

microenvironment around total joint arthroplasty is a dynamic 

and complex milieu influenced by the chemical and physical 

stimuli associated with servicing the prosthesis. A key factor 

limiting the longevity of the prosthesis is polyethylene wear, 

which induces particle disease, and this may lead to increased 

and prolonged activity of BMUs resulting in periprosthetic 

osteolysis. Several pathways regulating BMU function have been 

reported in the past, including RANKL/RANK/OPG/TRAF6,  

TNF-α/TNFR/TRAF1, and IL-6/CD126/JAK/STAT. Moreover, the 

expression and functional activity of all these molecules can be 

affected by variations in their genes. These may explain the 

differences in severity of bone defects or prosthetic failure 

between patients with similar wear rates and the same 

prosthesis. Simultaneously, this data strongly support the theory 

of individual susceptibility to prosthetic failure.  
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Introduction 
 
Total hip arthroplasty (Fig. 1) continues to be 

one of the safest and most effective surgical therapies. 
Nevertheless, the long-term outcome of this procedure is 
gradual deterioration over time in service resulting in 
increased rate of revisions due to aseptic loosening and 
osteolysis (OL). Both mechanical and biological factors 
trigger a cascade of events leading to the distortion of 
local bone homeostasis in favor of resorption. At least 
two types of periprosthetic OL may be distinguished: 
linear and aggressive. The former demarcates prosthesis 
with either a thin or a heavy fibrous membrane lying as a 
pad on the sclerotic bone surface. The latter differs from 
the former by lacking sclerotic adaptation of the bone 
surfaces. Poorly organized fibrous tissues may fill the 
bone lesions; thus, OL may be associated with loosening 
of the prosthesis.  

Particle disease theory was coined to explain the 
pathophysiology of OL and prosthetic loosening (Harris 
1994). This is based on the evidence that macrophages 
and other cells of mesenchymal origin release a multitude 
of cytokines, chemokines, metalloproteinases, and other 
agents after stimulation by prosthetic wear particles 
(Purdue et al. 2006). Ultimately, these substances 
mediate increased local concentration of mature and 
functionally competent osteoclasts that execute bone 
resorption. Simultaneously, prosthetic particles and 
substances of particle disease suppress osteoblast 
activities. Concurrently, mechanical factors such as 
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excessive forces generated at the prosthesis-bone 
interface and joint fluid produced by surface 
macrophages of the synovium are involved in the 
etiology of OL (Sundfeldt et al. 2006). Both can lead to 
direct bone resorption independently of other factors.  

The aim of this minireview is to present particle 
disease as a deviation in the balance of osteoblast-
osteoclast interactions within the BMU (basic 
multicellular unit). Furthermore, the concept of individual 
susceptibility to periprosthetic OL is introduced to 
explain the varying degrees of OL in patients with similar 
wear rates and prosthesis design. We believe this could 
lead to the development of more effective preventive and 
therapeutic strategies in the future.   

 
Particle disease: macrophage overstimula-
tion by prosthetic particles 
 

Briefly, prosthetic particles are released by the 
artificial joint surfaces through the mechanisms of wear. 
In the case of polyethylene (PE) cup and metallic ball the 
rate of release has been estimated at 100 000 - 500 000 
micron-sized particles for each step the patient takes 
(McKellop et al. 1995). After opsonization by plasma 
proteins or directly, prosthetic particles are phagocytosed 
by macrophages, which are then activated to release 

matrix metalloproteinases, chemokines, and cytokines 
(Purdue et al. 2006). The released factors increase 
vascular permeability, recruit other monocytes, activate 
innate and adaptive immunity, and support 
multinucleated osteoclast formation and activation – all 
of them leading ultimately to a shift in bone homeostasis 
towards resorption. In reality, macrophages are not the 
only cells endowed with the ability to phagocytose wear 
particles. Interface tissue fibroblasts (ITF), osteoblasts, 
and some other cell populations have the same ability. If 
particle size is over the phagocytosable limit, 
multinuclear foreign-body giant cells are formed (Ma et 
al. 2005). It remains to be elucidated whether the 
multinuclear cells represent a source of alternative 
osteoclast precursors induced by non-phagocytosable 
wear particles, or if they play another role in particle 
disease. 

The monocyte/macrophage cell line is not only 
an initiator of osteoclast differentiation. It also serves as 
precursor for osteoclast lineage. The most important 
pathway involved in osteoclast maturation and activation 
is mediated by receptor activator of nuclear factor-κB 
(RANK) and RANK ligand (RANKL) (Boyle et al. 
2003). Activation of RANK by its ligand leads to the 
initiation of osteoclast-specific genes. Both TNF-α 
(tumor-necrosis factor) and IL-1 (interleukin) promote 

 
Fig. 1. Total hip replacement and periprosthetic OL. Acetabulum after removing of femoral hip moiety (A) is prepared – white 
dotted line (B) to fit with cementless cup which is positioned (C) before assembling total hip replacement (D). In case of OL the wear
debris and proinflammatory and osteoclastogenic substances are spread out over the prosthesis (E) resulting in development of
osteolytic granuloma that causes OL - as demarked by red arrows in perioperative picture (F) or in X-ray photograph (G).  
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RANKL expression on marrow stromal cells,  
T-lymphocytes, ITF, and osteoblasts and this appears to 
be an inevitable precondition for osteoclast maturation 
(Fig. 2). In contrast, osteoprotegerin (OPG) blocks 
osteoclast formation by binding to RANKL (Boyce et al. 
2006). The most potent secretors of OPG are dendritic 
cells, ITF, osteoblasts and their precursors (Koreny et al. 
2006). A number of studies have recently shown that the 
local ratio between RANKL and OPG significantly 
influence the size of periprosthetic OL (Holding et al. 
2006, Mandelin et al. 2003, Veigl et al. 2007). Using 
cDNA microarrays, induction of gene expression in 
macrophages and other involved cells has been found to 
be much more extensive and more complex than had been 
thought until recently (Garrigues et al. 2005, Guenther et 
al. 2005). Further progress may be expected in relation to 
pathway-focused DNA microarrays designed specifically 
for studying gene expression associated with particle 
disease.  

Pure particle disease theory, however, cannot 
explain irregularities such as different rates of failure 
(OL) in patients with the same prosthesis and wear rate 
(Gallo et al. 2006; Wilkinson et al. 2005). Surprisingly, 
the number of particles released into the periprosthetic 
tissues can achieve levels in the order of 1012 even if the 
rate of prosthetic wear is 0.1 mm per year (Pokorný et al. 
2006). Such a quantity of particles would undoubtedly 
trigger particle disease. Thus, not only particles per se but 
other factors must also be involved in the 
pathophysiology of OL. These may include 
hypersensitivity to prosthetic materials (Willert et al. 
2005) or polymorphisms in the genes encoding for 
molecules involved in the pathways associated with OL 
(cytokines, enzymes, chemokines) (Ambruzová et al. 
2006, Malik et al. 2006, Wilkinson et al. 2003). In 
addition, adherence of endotoxins to prosthetic particles 
markedly increases their biological activity. Hence,  
Nalepka et al. (2006) has proposed low-grade sepsis or 
systemic bacteriemia as another important factor in OL 
development. 

 
Bone remodeling: lessons learned from 
academic discussions 
 

Bone remodeling is the process by which the 
bone adapts its shape to external forces. It takes place at 
the bone surface, and key players are osteoblasts and 
osteoclasts (Sims and Baron 2002). The complete bone 
remodeling cycle consists of activation-resorption 

followed by activation-formation sequences both of them 
closely coupled and balanced at each BMU, thus 
guaranteeing the functional capacity of the bone under 
physiological conditions (Parfitt 2002). Formerly, it was 
thought that osteoblasts control the formation and activity 
of osteoclasts, and “make all decisions” in the BMU. 
Recently, it has been postulated that osteoclasts also 
contribute significantly to the local homeostasis by 
stimulating the osteoblast cell lineage (Martin and Sims 
2005). Osteoblasts, osteoclasts, their precursors and other 
present cells are engaged in cell-cell interactions via a 
variety of mechanisms including secretion of long-range 
(hormones) and short-range signalling molecules  
(BMP-2, Wnt, M-CSF, RANKL, IL-6, IL-1β, and IFN-γ), 
and direct cell-cell contact (communicating gap junctions, 
RANKL:RANK) (Stains and Civitelli 2005). In addition, 
each BMU is influenced by the immune system through 
both soluble and membrane-bound cytokines, and growth 
factors (Yeung 2005). 

In contrast, uncoupling occurs when the 
balanced link between formation and resorption is 
disturbed (Martin and Sims 2005). In this regard, particle 
disease may be an example of a factor that profoundly 
changes parameters in favor of resorption. Within the 
context of particle disease, the final degree of bone loss 
depends on the number of uncoupled BMUs present at 
one time. Theoretically, this may be brought into effect 
by either increasing the lifespan of existing BMUs and/ or 
the origination of new BMUs (Parfitt 2002). Thus, the 
underlying mechanism for uncoupling of bone resorption 
from formation may lie in the number of functional 
osteoclasts and osteoblasts inside each BMU, which 
depends on perturbations in cytokine/chemokine milieu, 
vascular supply and concentration of osteoclast 
precursors in the blood.  

Apoptosis is the key mechanism of cell number 
regulations with many positive and negative regulators 
including the above-mentioned soluble signals and cell-
to-cell interactions. PE-particle-induced cytokines such as 
IL-1, M-CSF, and notably TNF-α and RANKL support 
osteoclast survival mostly by stimulation of TRAF-
activated pathways (NF-κB, ERK, PKB/Akt) (Blair et al. 
2005, Xing and Boyce 2005). This stimulation may be so 
strong that can even protect osteoclasts from 
bisphosphonate-induced apoptosis (Zhang et al. 2005). 
Moreover, TNF-α induces apoptosis much easier in less 
mature osteoblasts than in mature ones (Xing and Boyce 
2005). Simultaneously, prosthetic particles and agents of 
particle disease suppress the osteogenic activity of 
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Fig. 2. Schematic representation of pathways participating in development of periprosthetic OL. Microenvironment of the 
bone multicellular unit (BMU) is regulated by signals arising either from BMU cells (osteoblasts, osteoclasts, stromal cells) or from 
attracted cells (macrophages, lymphocytes, neutrophils, ITF and dendritic cells). These signals can either stimulate (M-CSF, RANKL, 
TNF-α, IL-1β, wear particles, CD40L) or dampen (OPG, IL-6, IFN-γ, TGF-β, Wnt, BMP-2, IL-4) the osteoclasts formation and activity. 
Separately prostanoid pathway components (PGE2, COX-1, COX-2) involved in osteoclast stimulation and chemokines (MCP-1, MIP-1, 
IL-8, CXCL-12) attracting immune cells are depicted. 
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residual osteoblasts. In addition, prosthetic particles 
provoke the expression of chemokines MCP-1, MCP-2, 
IL-8, which attract monocytes, T cells, and neutrophils. 
Intense local accumulation of such cell types not only 
creates conditions for continuation of inflammatory 
pathways but also increases the degree of tissue damage 
caused by necrosis. 

 
Osteoblasts 
 

Osteoblasts are bone-lining cells derived from 
mesenchymal stem cells of the bone marrow stroma or 
periost (Sims and Baron 2002). They never act individually 
but in groups when they synthesize a number of 
substances, including bone matrix constituents, and 
participate in several pathways through regulating immune 
and non-immune factors (IL-6, IL-8, MCP-1, CXCL-12, 
COX-1, COX-2, PGE2, M-CSF, FGF-2, RANKL, OPG, 
Wnt) (Krishnan et al. 2006). Among other signals, 
osteoblasts activity are strongly regulated by surrounding 
pH and growth factors released from resorpted bone matrix 
that stimulate osteoblasts to promote bone formation 
(coupling concept).  

In vitro experiments have shown that wear debris 
alone or in conjunction with TNF-α or IL-1β stimulate 
mature osteoblasts toward the expression of chemokines 
MCP-1, IL-8, and CXCL-12 via a NF-κB pathway (Fritz et 
al. 2006). Osteoblasts can participate in the initiation of 
local inflammation by attracting monocytes, T cells, and 
neutrophils. Moreover, low concentration of particles, 
TNF-α  and IL-1β may stimulate osteoblasts toward 
expression of the membrane-bound or soluble RANKL, 
and M-CSF thus participating in osteoclast recruitment, 
maturation, and activation (Boyce et al. 2005; Tanaka et al. 
2005). On the other hand, the same cytokines can also 
induce expression of OPG, IL-6, and Wnt in osteoblasts 
(Krishnan et al. 2006) resulting in inhibition of cathepsin K 
(CATK) and tartarate-resistant acid phosphatase (TRAP) 
expression in mature osteoclasts via the JAK/STAT 
pathway (Rakshit et al. 2006). In fact, Wnt serves as an 
autocrine stimulator of OPG expression in osteoblasts. 
Furthermore, osteoblasts can actively bind immune cells (T 
cells) by surface expression of adhesive molecules ICAM-
1 and ALCAM-1 (Stanley et al. 2006).  

 
Osteoclasts 
 

Osteoclasts are multinuclear giant bone 
resorbing cells that are usually located one or two per one 

resorption site (Sims and Baron 2002). Early osteoclast 
mononuclear precursors differentiate from hematopoietic 
progenitors of the monocyte/macrophage lineage (GM-
CFU) under specific local milieu, which includes the 
presence of specific cells, and soluble factors (SCF, M-
CSF, TNF-α). Once progenitor lineage cells differentiate 
to early osteoclast precursors they express RANK on 
their surface (Boyce et al. 2006). Binding of RANKL to 
RANK molecule stimulates further differentiation toward 
osteoclasts. RANKL exist in both surface-bound and 
soluble form. The former is expressed on the particle-
stimulated osteoblasts and ITF (Mandelin et al. 2005). 
The latter is secreted by several cell lineages (T cells, 
osteoblasts, stromal cells) after stimulation by particle-
induced TNF-α, IL-1β and PGE2 (Boyce et al. 2005). At 
this stage, the osteoclast precursors may be activated to 
further differentiation by IL-1β (Blair et al. 2005). 
Simultaneously, macrophage and T cell recruitment is 
reinforced by chemokines MCP-1, MCP-2, MIP-1, and 
IL-8 released from BMU cells. These interactions result 
in a cascade of positive feedback further supporting 
osteoclast maturation and activation (Fig. 3), eventually 
leading to high concentrations of mature and active 
osteoclasts with prolonged survival in BMU. 

This differentiation and activation process is 
down-regulated by soluble RANKL-decoy factor (OPG), 
IL-6, IFN-γ,  IL-4, and other as yet not well-understood 
factors (Blair et al. 2005). OPG is secreted predominantly 
by regulatory-acting dendritic cells, ITF (see below), and 
osteoblasts as the negative feedback response to increased 
surrounding concentration of TNF-α and IL-1β. OPG 
secretion is also stimulated by regulatory anti-
inflammatory cytokines TGF-β, IL-4, and factors such as 
hormone 17β-estradiol or differentiation factor Wnt 
(Krishnan et al. 2006). The high affinity of binding 
RANKL to OPG precludes a dispersed osteoclastogenic 
environment, supporting the hypothesis that for effective 
osteoclast formation, direct cell to cell contact between 
RANKL-positive cells (ITF, osteoblasts) and precursor 
cells expressing RANK is required in interface tissue 
(Stains and Civitelli 2005).  

A gradual increase in expression of osteolytic 
substances (CATK, TRAP) during osteoclastogenesis is 
possible, owing to the large number of transcription 
factor binding sites in regulatory sequences of respective 
genes (Blair et al. 2005; Boyce et al. 2006). These 
binding sites are cumulatively occupied by transcription 
factors (PU.1, Mitf, NFATc1, AP-1, and NF-κB) whose 
intracellular level increases during the monocyte to 
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Fig. 3. Induction of the osteoclast differentiation, survival, and activity. Osteoclasts differentiate from GM-CFU progenitor in 
bone marrow. First osteoclast precursors begin to express RANK and migrate to ossificated bone (BMU) under specific signaling where 
the differentiation is completed. Mature osteoclasts require extracellular signals for survival and activity that is associated with 
osteolysis.  
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osteoclast differentiation and activation. Down-regulation 
of CATK and TRAP transcription has been observed 
during osteoblast IL-6 secretion; interestingly, IL-6 may be 
expressed by macrophages and ITF as well. Another 
down-regulator is IFN-γ, which stimulates the JAK/STAT 
pathway after binding to osteoclast surface receptor CD119 
as does IL-6. However, direct binding of wear particles on 
osteoclast surface, which causes the induction of various 
MAP kinase pathways, regulating JAK/STAT cytokine 
response, may dampen the interferon-suppressive effect. It 
has been shown that IL-6-induced JAK/STAT signaling is 
suppressed by the p38 MAP kinase pathway, which is 
activated by RANKL and IL-1 TRAF6-mediated activation 
(Rakshit et al. 2006). Thus, the wear debris is not only a 
stimulus for inflammatory and osteoclastogenic response. 
It also suppresses the naturally evolved homeostatic 
regulatory mechanisms directing the BMU (Fig. 3). 
 
Interface tissue fibroblasts (ITF) 
 

Fibroblasts are dominant cell type at the interface 
tissue membrane that play important role in the control of 
osteoclastogenesis after direct particle-induced or indirect 
stimulation (hormones or cytokines) resulting in secretion 
of chemokines including MCP-1, MCP-2,  
IL-8, matrix metalloproteinases, and cytokines such as 
TNF-α and RANKL (Koreny et al. 2006). Recently, in 
vitro experiments confirmed that the only factor that 
consistently increased RANKL production in ITF was not 
TNF-α or IL-1β but 1α, 25-(OH)2 vitamin D3. In contrast, 
OPG expression was effectively regulated by hormones 
and cytokines including TNF-α (Mandelin et al. 2005). ITF 
participate also through cell-to-cell interactions with 
osteoclast precursors. Moreover, they can contribute to 
lower pH and produce CATK (Mandelin et al. 2005). On 
the other hand, ITF can down-regulate osteoclast activation 
by IL-6 production (Konttinen et al. 2002). Thus, ITF 
actively contribute to both up- and/or down-regulation of 
the osteolytic microenvironment between prosthesis and 
bone. 
 
Lymphocytes 
 

Perivascular infiltrates of lymphocytes have been 
observed in tissues from patients with aseptic loosening or 
osteolysis (Willert et al. 2005). Wear particles-activate 
macrophages which secrete MIP-1 and MCP-1 and these 
attract lymphocytes into the BMU (Purdue et al. 2006). 
Revell and Jellie (1998) found IL-15 transcription in 

macrophages retrieved from interface membrane 
suggesting specific stimulation of attracted T cells. The in 
vitro experiments have revealed active interaction between 
osteoblasts and T cells mediated by adhesion scavenger 
molecule CD6 and integrin LFA-1 (CD11a/CD18) on the 
side of T cells with their ligands ALCAM (CD166) and 
ICAM-1 detected on osteoblast surfaces (Stanley et al. 
2006). During this interaction, T cells augment IL-6 
expression in osteoblasts resulting in the above-described 
down-regulation of osteoclasto-genesis. On the other hand, 
T cells can influence BMU by expressing RANKL and 
TRAIL, which stimulate osteoclast maturation (Lee and 
Lorenzo 2006). RANKL expression on the surface of T 
cells is up-regulated by TNF-α and IL-1. However, other 
studies deny any role for T cells in OL (Li et al. 2001, Taki 
et al. 2005) demonstrating OL in lymphocyte-deficient 
mice. Although the RANKL/RANK/OPG pathway is a 
clear molecular link between the immune system and 
particle disease, the role for the clonal immune system in 
OL development remains to be elucidated.  
 
Possible sources of individual susceptibility to 
OL 
 

Although this may appear like looking for the 
proverbial needle in the haystack, detailed knowledge of 
OL pathophysiology may facilitate a more effective choice 
of treatment and preventive targets. In this context, the 
large individual variation in outcome for the same 
prostheses under comparable conditions (e.g. similar wear 
rates) strongly suggests a genetic component to OL. Thus, 
a search for the “candidate” genetic markers 
(polymorphisms) has already been initiated. Theoretically, 
any part of any pathway involved in OL may be affected 
by nucleotide variation in individual genomes. Wilkinson 
et al. (2003) have conducted a large study in which the 
carriers of the TNF-α-238*A allele had increased incidence 
of periprosthetic OL compared to non-carriers (OR=1.7). 
Moreover, they found that this variable was an independent 
risk factor for OL. Recently, a relationship between 
homozygous genotype T/T for RANK+575 and aseptic 
failure of THA (OR=1.77) was found (Malik et al. 2006). 
In our pilot collaborative study we reported an association 
of particular variants of IL-1α and IL-6 genes with 
susceptibility to or protection against OL (Ambruzová et 
al. 2006). Despite these promising results, we should keep 
in mind the complexity of OL pathophysiology and the 
hierarchical nature of numerous pathways, predispositions 
and conditions. 
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Therapeutic implications for the future 
 

Understanding the cascade of events that follow 
polyethylene wear exposure of periprosthetic tissue may 
lead to the development of new preventive and treatment 
approaches. The potential of bisphosphonates, RANKL 
antagonists, and anti-inflammatory agents are in focus at 
present (Childs et al. 2001, Shanbhag 2006, von Knoch et 
al. 2005, Yang et al. 2004). Unfortunately, there is not 
enough evidence that such approaches work when applied 
to patients with existing periprosthetic OL. Moreover, 
there are concerns about the systemic administration of 
some drugs and some kinds of gene therapy. As a result, 
there is not approved pharmacological treatment of 
periprosthetic OL so far. 

  
Conclusions 
 

The main problem in total hip or knee 
arthroplasties is polyethylene wear resulting in 
development of OL. Prosthetic wear debris influences 
periprosthetic environment complexly and there is strong 
evidence that monocytes/macrophages are central in these 
processes. Stimulated macrophages trigger a large number 
of pathways leading ultimately to uncoupling of the 
osteoblast/osteoclast balance, and OL. Individual host 
response may explain why comparable bone defects are 
not observed in individuals with similar prosthetic wear 
rate. Preventative measures such as preoperative 
identification of patients at high risk of early OL 
development (individual susceptibility) may be possible in 
the future. It could be based on identification of relevant 
functional alleles for above mentioned cytokines, adhesion 
molecules, prostanoids, or any proteins involved in 
osteoclasts maturation and activation pathways associated 
with increased OL risk. 
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