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Summary 

Steroid sulfatase (EC 3.1.6.2) is an important enzyme involved in 

steroid hormone metabolism. It catalyzes the hydrolysis of 

steroid sulfates into their unconjugated forms. This action rapidly 

changes their physiological and biochemical properties, especially 

in brain and neural tissue. As a result, any imbalance in steroid 

sulfatase activity may remarkably influence physiological levels of 

active steroid hormones with serious consequences. Despite that 

the structure of the enzyme has been completely resolved there 

is still not enough information about the regulation of its 

expression and action in various tissues. In the past few years 

research into the enzyme properties and regulations has been 

strongly driven by the discovery of its putative role in the indirect 

stimulation of the growth of hormone-dependent tumors of the 

breast and prostate. 
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Introduction 
 
Steroid sulfatase (STS) is an almost ubiquitous 

enzyme of steroid metabolism. It is an important factor 
influencing many physiological and pathophysiological 
processes regulated by steroid hormones. A number of 
them have been revealed recently (Stanway et al. 2007, 
Hazan et al. 2005, Weidler et al. 2005, Nakamura et al. 
2006). Below, the main information on its occurrence, 
molecular biology and actions are reviewed with 

emphasis on its physiological and pathophysiological 
consequences in brain and nervous tissue. 
 
Steroid sulfatase gene and protein 
 

Steroid sulfatase belongs to a superfamily of 
sixteen different mammalian sulfatases (Obaya 2006). 
The gene encoding STS is pseudoautosomal in mice, but 
not in humans, and escapes X inactivation in both 
species. The functional nucleotide sequence maps to 
Xp22.3-Xpter (Yen et al. 1987, Meroni et al. 1996). 

The DNA sequence coding for STS on the  
X-chromosome was cloned, sequenced and well 
characterized. The 2.4 kbp cDNA encodes a protein of 
583 amino acid residues with a short signal peptide of  
21-23 amino acids and four potential N-glycosylation 
motifs N-X-S/T. Probably two of these sites (N47 and 
N259) are used for N-linked oligosaccharide connection. 

STS is synthesized as a membrane-bound 
63.5 kDa polypeptide. Newly synthesized polypeptide is 
processed to a mature 61 kDa form. The decrease in size 
is due to the processing of the oligosaccharide chains, 
which are cleavable by endoglucosaminidase as well as 
mannosidase(s) (Conary et al. 1986). Recently, STS was 
purified and crystallized from the membrane-bound part 
of the human placenta (Hernandez-Guzman et al. 2001) 
and shortly after, three-dimensional structures of three 
human sulfatases were released (Ghosh 2005). 

Concerning membrane topology, the enzyme has 
two membrane-spanning antiparallel hydrophobic  
α-helices with proline 212 serving as a turn point at the 
cytosolic side of the endoplasmic reticulum membrane. 
The polar catalytic domain of the enzyme is situated to 
the lumen side of the lipid bilayer (Hernandez-Guzman et 
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al. 2003). Nevertheless, participation of the lipid bilayer 
in maintenance of the active site integrity, passage of the 
substrate and/or product release was still not exactly 
determined. 

Further details concerning the regulation of STS 
gene expression on transcriptional and translational levels 
are beyond the scope of this paper. These issues were 
excellently reviewed in more comprehensive and 
specialized articles (Nussbaumer and Billich 2005, Reed 
et al. 2004, Richard 2004). 

 
Enzyme activity 
 

Sulfatases are a unique group of enzymes that 
carry at their catalytic site a post-translational 
modification, an alpha-formylglycine residue that is 
essential for enzyme activity. Formylglycine is generated 
by oxidation of a highly conserved cysteine or, in some 
prokaryotic sulfatases, serine residue (Dierks et al. 1998, 
Miech et al. 1998). In eukaryotes, this oxidation occurs in 
the endoplasmic reticulum during or shortly after import 
of the nascent sulfatase polypeptide. The mechanisms 
that are responsible for the oxidation are probably 
associated with the protein translocation apparatus. 
In vitro studies for arylsulfatase A revealed short linear 
motif (CTPSR), starting with the cysteine residue, which 
acts as a target site for the post-translational modification. 
Proline and arginine play crucial roles for appropriate 
modification as well as seven additional residues 
(AALLTGR) directly following the CTPSR sequence 
(Dierks et al. 1999, Knaust et al. 1998). The proposed 
catalytic mechanism also includes the presence of 
bivalent Ca2+ rather than Mg2+ cation at the active site of 
the enzyme. Therefore, the reaction mechanism, which 
STS uses for steroid sulfate hydrolysis, closely resembles 
the mechanism that was proposed for arylsulfatases 
(Boltes et al. 2001). 

Recent results show that also N-terminal and  
C-terminal regions have important contribution to the 
STS enzyme activity (Sugawara et al. 2006). 

 
Subcellular localization 
 

In the above mentioned studies STS was found 
mainly in the rough endoplasmic reticulum. Furthermore, 
in cultured human fibroblasts, immunohistochemistry 
proved that the enzyme exists in Golgi cisternae and in 
the trans-Golgi, where it is co-distributed with lysosomal 
enzymes and the mannose 6-phosphate receptor. STS was 

also found at the plasma membrane (Kawano et al. 1989) 
and in the coated pits, endosomes and multivesicular 
endosomes. These structures may be the sites where 
sulfated estrogen and/or androgen precursors are 
hydrolyzed. It also co-localizes with lysosomal enzymes 
and the mannose 6-phosphate receptor here. Despite 
microsomal STS and lysosomal enzymes share several 
cellular compartments, in the first studies the polypeptide 
was surprisingly not detected in lysosomes (Willemsen et 
al. 1988). One year later, however, STS activity was also 
found in lysosomes (Stein et al. 1989). On the other hand, 
sulfatase activity in these compartments and the 
appropriate protein was isolated and characterized as  
N-acetylgalactosamine-4-sulfatase (Bond et al. 1997). 
The stability of sulfatases in subcellular compartments 
with low pH is possibly due to their membrane topology. 
It could be related to the high homology of the two 
luminal domains of STS with the lysosomal sulfatases, 
arylsulfatase A, and arylsulfatase B. However, the 
transport between trans-Golgi and lysosomes possibly 
uses a mannose receptor-independent mechanism. This 
was proposed as a result of the absence of mannose-6-
phosphate in STS carbohydrate moiety (Stein et al. 
1989). 

 
Occurrence in tissues 
 

Enzymatic activity of STS was demonstrated for 
the first time in rat liver microsomes (Dodgson et al. 
1954). Later, this enzyme was found in testis (Payne et al. 
1969), ovary (Clemens et al. 2000), adrenal glands, 
placenta, prostate, skin, kidney, fetal lung (Hobkirk et al. 
1982), viscera, endometrium, aorta, bone, peripheral 
blood leukocytes (Han et al. 1987) and brain tissue 
(Iwamori et al. 1976). Now STS is believed to be an 
almost ubiquitous enzyme. Tissue and organ distribution 
varies considerably between different mammalian 
species. Placenta was found to be the richest source of 
STS. However, the findings differ in dependence on 
methodological approaches. Immunohistochemistry in 
combination with reverse transcriptase polymerase chain 
reaction (RT-PCR) were largely used for STS 
localization. Biochemically, sulfatase activity was 
detected in microsome fraction and/or tissue 
homogenates. These approaches have been used for 
identification and characterization of STS activity in rat 
testis (Payne et al. 1969), ovarian granulosa cells 
(Clemens et al. 2000), leukocytes (Han et al. 1987) and 
brain tissue (Iwamori et al. 1976). More recently, a 
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biochemical approach was used for determination and 
characterization of STS activity in Macaca brain regions 
(Kříž et al. 2005) 

At first there was confusion among aryl sulfatase 
C and STS because these enzymes seemed to be different, 
but recent biochemical and genetic analyses have 
confirmed that there is only one enzyme (Keinanen et al. 
1983, Ruoff and Daniel 1991). 

Although there was found only one gene for 
STS, evidence has been found that two different isoforms 
(microsomal and nuclear) exist in rodents (Nelson et al. 
1983) and also two isoforms in humans (Chang et al. 
1990, Munroe and Chang 1987), probably due to 
different post-translational modifications. 

 
STS and cholesterol supplementation 
 

It is necessary to mention the involvement of 
STS in steroidogenic acute regulatory protein (StAR) 
activity regulation. This 30 kDa phosphoprotein which is 
derived from its larger precursor plays a crucial role in 
the intramitochondrial transport of cholesterol (Stocco 
2001). Cholesterol can be further cleaved to 
pregnenolone, which serves as a precursor in steroid 
hormone synthesis and itself also acts as neuroactive 
steroid. The process occurs in the mitochondrial matrix 
and is associated with the inner membrane. Experiments 
on monkey kidney COS-1 cells showed that STS in the 
presence of StAR and cytochrome P450 (CYP11A1) 
significantly increased pregnenolone production in the 
reaction medium. It is a result of both an increase in 
StAR translation and prolonged StAR half-life (Sugawara 
and Fujimoto 2004). The importance of STS lies in 
conversion of cholesterol sulfate to free cholesterol which 
is a substrate for CYP11A1. Furthermore, cholesterol 
sulfate has an inhibitory effect on steroidogenesis in rat 
adrenal mitochondria by inhibiting the cholesterol 
transport inside the mitochondrion (Xu and Lambeth 
1989, Lambeth et al. 1987). Therefore, STS prevents 
inhibitory effect of cholesterol sulfate on cholesterol 
intramitochondrial transport. Prolonged StAR half-life 
might also be explained by STS action on cholesterol 
sulfate. Released intracellular cholesterol binds StAR and 
may slightly change its conformation and therefore 
increases protein half-life. The same effect was observed 
in MLN 64 transfected cells. This gene contains StAR-
homology domain and is expressed in placental 
mitochondria and lysosomes (Bose et al. 2000, Zhang et 
al. 2002). 

This phenomenon is probably not only limited to 
steroidogenic tissues but occurs widely throughout the 
body. For advances in intracellular cholesterol trafficking 
and the role of StAR see a recent review by Strauss et al. 
(1999).  

 
STS and central nervous system 
 

Steroid hormones, regardless of their origin, 
exert a wide variety of biological effects on the nervous 
system. They play an important role in the growth, 
development, maturation and differentiation of the central 
and peripheral nerves. Furthermore, it was demonstrated 
that there is an association between STS activity and 
behavior, as shown for instance in male mice (Le Roy et 
al. 1999). Evidence has been found that brain tissue was 
able to synthesize various steroid hormones such as  
pregnenolone and DHEA from cholesterol in situ 
(Baulieu and Robel 1990). In brain tissue, steroids act 
mainly in autocrine and/or paracrine ways. It was found 
that cerebral concentrations of pregnenolone and DHEA 
neither respond to the administration of 
adrenocorticotropic hormone nor undergo circadian 
variations as do circulating adrenal steroids (Corpechot et 
al. 1981). A new term neurosteroids was suggested for 
these steroids. 

Neurosteroids include steroid hormones or their 
precursors that are newly synthesized from cholesterol or 
other early precursors in the nervous system. These 
steroids could be detected in measurable amounts even if 
peripheral steroidogenic glands were removed (Robel and 
Baulieu 1995). 

Neurosteroids occur in the nervous system as 
free unconjugated steroids, sulfate esters or fatty acids 
esters (Jo et al. 1989). The conjugated forms of steroids 
frequently exceed those of free steroids and differ in their 
metabolic, behavioral and also psychological effects such 
as stress, anxiety, cognition and sleep (Baulieu and Robel 
1996, Majewska 1992). Besides the action of 
neurosteroids at the transcriptional level, these steroids 
may affect the nerve cells in a nongenomic way via 
alteration of neuronal excitability by modulating the 
activity of several neurotransmitter receptors such as  
γ-amino butyrate (GABAA) receptors, N-methyl-D-
aspartate (NMDA) receptors, α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptors, 
kainate receptors, nicotinic, muscarinic and σ-receptors 
(Klangkalya and Chan 1988, Monnet et al. 1995, Valera 
et al. 1992, Wu et al. 1991, Shirakawa et al. 2005, Wu 
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and Chen 1997). 

Concerning the role of STS, it maintains the 
balance between sulfated neurosteroids and their 
unconjugated forms, which in many cases act in opposite 
ways. The assumption of a steroid binding site at these 
ligand-gated channels is based on pharmacological 
studies concerning the strong stereoselectivity and the 
structure-activity relationship of the action of neuroactive 
steroids at these neurotransmitter receptors (Lambert et 
al. 1995). In addition, neurosteroids affect these receptors 
as non-competitive antagonists. It means that steroid-
binding sites are neither situated inside the ion channel 
nor compete with receptor agonists for their binding sites 
(Dingledine et al. 1999). These various sites, located on 
the outer receptor surface, may be occupied by various 
steroids resulting in enhancing or decreasing leakage of a 
particular ion channel. STS maintains the levels of 
DHEA/DHEAS and pregnenolone/pregnenolone sulfate 
(PregnS), which are the most common neuromodulators. 
Furthermore, unconjugated and sulfated steroid 
molecules act in many cases in opposite ways on the 
same receptor. This fact further emphasizes the role of 
STS in regulation of the equilibrium between sulfated and 
free neuroactive steroids in brain. 

Glutamate receptors may have also other 
outputs: soluble tyrosine kinases activation and/or 
mitogen-activated protein kinase pathways activation. 
Furthermore, NMDA receptors in plasma membranes 
could be coupled to NO synthase (NOS) through the 
postsynaptic density protein 95 scaffold (Tochio et al. 
2000). Treatment with DHEA causes NMDA stimulation 
which leads to a decrease in Ca2+-sensitive NOS activity. 
Therefore, NO production is inhibited and as a 
consequence DHEA exerts a neuroprotective effect on 
cultured rat hippocampal neurons (Kurata et al. 2004). 

Imbalance in the ratio of unconjugated steroid/ 
steroid sulfate was shown to influence memory and long-
term potentiation in the hippocampus (Flood et al. 1992, 
Yoo et al. 1996). Experiments on rats suggest that STS 
inhibition may become an important tool for enhancing 
neuronal functions, such as memory, mediated by 
excitatory neurosteroids. This is caused by increased 
DHEAS rather than DHEA level, which positively 
influences brain cholinergic function and leads to 
memory enhancement (Rhodes et al. 1997, Li et al. 
1997). 

PregnS and DHEAS were found to display 
completely different (antagonistic) action on GABAA 
receptors. Both also exert complex effects at NMDA 

receptors (Zorumski et al. 2000). Therefore, these 
steroids might possess nootropic properties. Indeed, some 
studies suggested that intracerebroventricular 
administration of pregnenolone led to better results in 
various memory tasks in rodents (Flood et al. 1992). 
Furthermore, DHEA was also found to enhance memory 
retention in mice (Flood et al. 1988). These results are 
likely related to STS levels in used animal models. 

It is well known that in humans DHEA serum 
levels decreases with age (Šulcová et al. 1997). This 
phenomenon was also reported for DHEAS in patients 
suffering from Alzheimer’s disease and multi-infarct 
dementia (Sunderland et al. 1989, Yanase et al. 1996). 
Unfortunately, direct information on DHEA/DHEAS 
ratio and STS levels is still missing. To date no study is 
available concerning STS activity and its relationship to 
dementia disorders. Studies on the determination of 
neurosteroids in cerebrospinal fluid may be promising 
(Kim et al. 2003). 

PregnS and DHEAS were also suggested to be 
involved in the development of tolerance to ethanol in 
mice (Barbosa and Morato 2001). Nevertheless, a 
connection between ethanol tolerance and STS activity 
was not demonstrated. 

DHEA was also found to have important effects 
in differentiation of glia and neurons during their 
development (Roberts et al. 1987) and in neocortical 
organization during development suggesting that DHEA 
may have trophic factor-like activity (Compagnone and 
Mellon 1998). Neuronal remodeling can also be 
explained by DHEA interaction with various 
neurotransmitter systems (Lapchak and Araujo 2001). 

Furthermore, it was proposed that neurosteroids 
could act on nerve cells via hypothesized surface 
receptors coupled with G-proteins or through specific 
membrane sites using calcium as an intracellular 
messenger (Orchinik et al. 1992, Ramirez and Zheng 
1996). Recently, it was showed that σ1 receptor-like 
protein activity was modulated by PregnS. This protein is 
coupled with Gi/o protein, and this interaction results in 
enhancement of short-term presynaptic facilitation onto 
adult hippocampal CA1 neurons (Schiess and Patridge 
2005). As was previously mentioned, PregnS levels are 
among others under the control of STS. 

The detailed STS localization in brain tissue has 
not been exactly determined. Most studies are limited 
only to major brain regions (Steckelbroeck et al. 2004, 
Kříž et al. 2005). Subcellular localization of STS activity 
in brain tissues has not been clearly identified. However, 
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it is generally supposed that subcellular STS activity 
distribution does not differ significantly from the 
distribution in other cells. 

Preliminary results from our laboratory 
concerning STS activity in several types of human brain 
tumors showed surprising differences in STS activity in 
relation to tumor type. Neither age nor sex of studied 
subjects significantly influenced obtained results. 

 
STS role in physiology and pathophysiology 

 
STS and breast cancer 

Much information concerning the role of STS in 
breast cancer and its treatment have been published 
(Sasano et al. 2006, Stanway et al. 2007, Tsunoda et al. 
2006). Besides 17β-hydroxysteroid dehydrogenase (17β-
HSD) type I and aromatase, STS belongs to the most 
important targets for potential endocrine therapy in 
humans (Suzuki et al. 2005). As such, STS has no direct 
effect on tumor progression and development. However, 
it maintains the equilibrium between sulfated and 
unconjugated steroids whose effects in breast cancer 
development are, in many cases, completely different 
(Reed et al. 2004). 

In hormone-dependent human breast cancer, 
17β-estradiol (E2) contributes highly to tumor growth 
and development. Furthermore, some carcinoma cells 
actually require estrogens (especially E2) for their growth 
(Sasano et al. 2006). The importance of STS in 
intratumoral estrogen production lies in its crucial role in 
the conversion of estrone sulfate (E1S) to estrone (E1) 
(Pasqualini 2004). E1 could be further metabolized to E2 
by the action of 17β-HSD type I (Poutanen et al. 1995). 
Sulfated estrogens are unable to bind to estrogen 
receptors and thus they are inactive as hormones 
(Pasqualini et al. 1989). On the other hand, sulfation 
rapidly changes the polarity of the hydrophobic steroid 
ring and therefore is widely used for hormone transport. 
Furthermore, sulfated steroid conjugates act as a reservoir 
of active hormones and/or their precursors via STS action 
(Reed et al. 2004). 

In postmenopausal women, a large contribution 
to estrogen level comes from the aromatization of 
circulating androgens (Reed et al. 1979). In androgen 
biosynthesis, STS also plays important role in conversion 
of DHEAS to DHEA, while DHEA serves as precursor 
for androstenedione and its further aromatization as 
shown in Figure 1 (Nakata et al. 2003, Suzuki et al. 
2003). Therefore, STS may affect E2 biosynthesis at two 

levels – conversion of DHEAS to DHEA and E1S to E1. 
The importance of STS in intratumoral estrogen 

production has prompted the development of new potent 
STS inhibitors. 

 
STS and dermatopathies 

One of the best known diseases that have been 
ascribed to STS deficiency is X-linked ichthyosis. It is a 
relatively common genetic disorder, clinically 
characterized by a generalized desquamation of large, 
adherent, dark brown scales of the skin. The majority of 
all cases are caused by a compete deletion of the STS 
gene from the distal short arm of the X-chromosome 
(Richard 2004). 

Other STS defects are usually caused by one or 
more point mutations out of seven possible defects 
(Ghosh 2004). These mutations lead to disruptions in the 
active site and/or interference with enzyme’s membrane-
associating motifs that are crucial for the integrity of the 
catalytic site. All of these mutations are located near the 
C-terminal region of the STS enzyme (Ghosh 2004, 
Alperin et al. 1997). 

On the other hand, locally enhanced STS activity 
leads to increased DHEA production, which serves as a 
precursor of active androgens such as 5α-dihydro-
testosterone (DHT) and/or testosterone (Hoffmann 2001). 
In women, local excess of DHT may cause an androgenic 
alopecia. In other target tissues (as pubic region and 
axillary follicles) it may result in hirsutism (Price 2003). 
Hence, in women with androgenic alopecia STS 
inhibition can be effective in treating both disorders. 

 
STS action and the immune system 

Concerning STS activity and the immune 
system, maintaining the DHEA/DHEAS ratio further 
emphasizes the role of STS. Studies on aged mice 
revealed that in vitro DHEA, but not DHEAS, suppressed 
the release of Th 2 cytokines and therefore enhanced Th 1 
response (Daynes et al. 1993). Thus, STS present in 
macrophages (Hennebold and Daynes 1994) may govern 
the local availability of DHEA and influence the immune 
response. It is due to the presence of macrophages in 
lymphoid tissue where Th cell maturation occurs. 

Furthermore, the balance of glucocorticoids to 
DHEA determines the further progression of Th cells to 
either Th 1 or Th 2 phenotypic line. Cortisol was found to 
favor the development to Th 2 cells, while DHEA 
promotes a Th 1 mediated response (Purohit and Reed 
2002). 
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The enzyme was also found in peripheral blood 
leukocytes (Han et al. 1987), bone (Purohit et al. 1992) 
and thrombocytes (Soliman et al. 1993). 

Concerning pathological states, many breast and 
other tumors are infiltrated by lymphocytes and 
macrophages (Kelly et al. 1988). Consequently, it is 
possible that STS activity of these cells can finally make 
an important contribution to estrogen synthesis in breast 
tumors. 

Since the STS activity is present in such 
available tissue, these cells were suggested to provide a 
relatively simple model for monitoring the efficacy of 
new STS inhibitors (Purohit et al. 1997, Reed et al. 
1990). 

 
STS action in bone 

It was suggested that local formation of estrone 
could be an important source of estrogens for regulating 
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Fig. 1. Steroid hormone metabolism and involved enzymes emphasizing the role of STS in breast cancer tissue. Abbreviations used:
3β-HSD (3β-hydroxysteroid dehydrogenase/Δ5,4-isomerase), 17β-HSD I/II (17β-hydroxysteroid dehydrogenase, type I/II), DHEA 
(dehydroepiandrosteone), DHEAS (dehydroepiandrosterone sulfate), ESTRONE-S (estrone sulfate). 
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bone formation (Janssen et al. 1999). Further 
investigations showed that HOS and MG 63 osteoblast 
cell lines expressed mRNA for STS and were able to 
convert both DHEAS and E1S (Fujikawa et al. 1997). 
This pathway involving STS was found to be active not 
only in cells derived from osteosarcoma but also in 
osteoblast-like cells cultured from bone fragments. In the 
latter STS activity was two times higher in comparison 
with osteosarcoma-derived cells (Muir et al. 2004). 

The existence of steroid sulfatase in human and 
rat osteoblast cells suggests that osteoblast cells also 
possess the capacity to convert circulating sulfo-
conjugated steroids to more active androgens and 
especially estrogens (Janssen et al. 1999). This may 
indicate an important contribution of bone in facilitating 
the hormonal action. 

 
STS activation and inhibition 

Recently explored roles of STS in many 
pathophysiological processes, especially in breast cancer, 
prompted efforts for preparation of efficient STS 
modulators, particularly inhibitors. STS inhibitors may be 
divided in three basic groups. 

Reversible inhibitors: These compounds follow 
the same strategy: replacement of 3β sulfate moiety in 
E1S with another one that mimics sulfate group. 
Attempts to synthesize these derivatives finally led to the 
preparation of a leading compound. Molecules of such 
inhibitors compete for STS active site with natural 
substrates.  

Irreversible inhibitors: This group covers the 
majority of recently reported STS inhibitors and could be 
further divided to steroidal and non-steroidal irreversible 
inhibitors. The former group contains estrone-3-O-
sulfamate and its derivatives. Despite their efficiency, 
their use in clinical practice is quite limited because of 
various side effects. Recently, attention has been focused 
on non-steroidal derivatives of coumarin and the 

exploration of a new leading compound 4-
methylcoumarin-7-O-sulfamate (COUMATE) (Purohit et 
al. 1996). Further synthetic efforts led to the preparation 
of efficient inhibitors derived from COUMATE (Woo et 
al. 2000). Some of these were found suitable for clinical 
practice and entered clinical trials. 

Dual inhibitors: The third direction of STS 
inhibitor development is focused on compounds with a 
dual mode of action. These can inhibit both STS and 
aromatase activities or act as STS inhibitors and 
antiproliferative or antiangiogenic agents at the same 
time. According to the mentioned effects they may be 
especially useful in treatment of hormone-dependent 
cancers. 

A more detailed overview concerning STS 
inhibitors is beyond the scope of this review. For detailed 
discussion of the complex molecular structures and 
mechanisms that govern STS inhibition see other 
specialized articles (Purohit et al. 2003, Nussbaumer and 
Billich 2005, Reed et al. 2004, Nussbaumer and Billich 
2004). 

It is evident that steroid sulfatase possesses a 
broad spectrum of actions, often unexpected. This may 
influence many physiological processes connected with 
steroid hormones and their genomic as well as non-
genomic effects. Development of potent agents, inhibitors 
or activators of this enzyme, represents one of the tools 
for effective treatment of various disorders caused by 
steroid hormone deregulations. 
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