Similar Enhancement of \(\text{BK}_{\text{Ca}} \) Channel Function Despite Different Aerobic Exercise Frequency in Aging Cerebrovascular Myocytes

Na Li\(^{1,2\ast} \), Bailin Liu\(^{1,2\ast} \), Sharon Xiang\(^1 \), Lijun Shi\(^2 \)

*These authors and universities contributed equally to this work.

\(^{1}\)Institute for Fetology, First Hospital of Soochow University, Suzhou, China, \(^{2}\)Department of Exercise Physiology, Beijing Sport University, Beijing, China

Received June 18, 2015
Accepted January 18, 2016
On-line April 12, 2016

Summary

Aerobic exercise showed beneficial influence on cardiovascular systems in aging, and mechanisms underlying vascular adaption remain unclear. Large-conductance \(\text{Ca}^{2+} \)-activated \(\text{K}^{+} \) (\(\text{BK}_{\text{Ca}} \)) channels play critical roles in regulating cellular excitability and vascular tone. This study determined the effects of aerobic exercise on aging-associated functional changes in \(\text{BK}_{\text{Ca}} \) channels in cerebrovascular myocytes. Male Wistar rats aged 20-22 months were randomly assigned to sedentary (O-SED), low training frequency (O-EXL), and high training frequency group (O-EXH). Young rats were used as control. Compared to young rats, whole-cell \(\text{BK}_{\text{Ca}} \) current was decreased, and amplitude of spontaneous transient outward currents were reduced. The open probability and \(\text{Ca}^{2+} \)/voltage sensitivity of single \(\text{BK}_{\text{Ca}} \) channel were declined in O-SED, accompanied with a reduction of tamoxifen-induced \(\text{BK}_{\text{Ca}} \) activation; the mean open time of \(\text{BK}_{\text{Ca}} \) channels was shortened whereas close time was prolonged. Aerobic exercise training markedly alleviated the aging-associated decline independent of training frequency. Exercise three times rather than five times weekly may be a time and cost-saving training volume required to offer beneficial effects to offset the functional declines of \(\text{BK}_{\text{Ca}} \) during aging.

Key words

Aging • \(\text{BK}_{\text{Ca}} \) channel • Aerobic exercise training • Cerebral artery • Biophysical properties

Corresponding author

L. Shi, Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, P. R. China. E-mail: l_j_shi72@163.com

Introduction

The rate of age-specific mortality from heart diseases and stroke increases exponentially with age throughout later years of life (Murray et al. 1997, Kearney et al. 2005), which leads to 40-60% of all deaths among people aged ≥65 years (Ungvari et al. 2010). During the process of aging, the vascular system undergoes a series of deleterious adaptations that may cause vascular diseases (Toro et al. 2002). Aging-related vascular changes may occur at the endothelium or smooth muscle cells (SMCs). \(\text{BK}_{\text{Ca}} \) channels are key regulators of arterial tone in many regions of the vascular tree. Because of its abundant expression and high conductance (~240 pS), \(\text{BK}_{\text{Ca}} \) activity serves as a critical hyperpolarizing and vasorelaxing force to buffer vascular constriction and maintain normal levels of vascular tone (Knot et al. 1998). Recent studies showed that the number of \(\text{BK}_{\text{Ca}} \) channels was reduced with aging as well as the \(\text{BK}_{\text{Ca}} \) current density was decreased along the arterial tree (Marijic and Toro 2001, Marijic et al. 2001, Nishimaru et al. 2004, Shi et al. 2013). However, chronic aerobic exercise may promote peripheral vascular health by “reversing” some of the age-declined effects, e.g. restoring the nonparallel down-regulation of the molecular components of \(\text{BK}_{\text{Ca}} \) channels, therefore, enhancing vascular functions in aged mesenteric arteries (Shi et al. 2014). Moreover, there has been increasing evidence showing a more efficient cerebral perfusion by aerobic exercise in prevention of stroke (Aengevaern et al. 2013, Colcombe et al. 2006, Pantano et al. 1984). It is rational to hypothesize that aerobic exercise also may
impact on BK_{Ca} channels in central arteries, which could be an important contribution against development of stroke.

An effective aerobic-training program is dependent on several critical variables, including: intensity ($%V_{\text{max}}$), duration, and frequency (Garekani et al. 2011). However, more than one-third of global adult population fail to meet current public health guidelines for aerobic exercise, i.e. ≥30 min of moderate-intensity exercise on 3-5 days weekly (≥150 min/week) (Hallal et al. 2012). Moreover, older adults are more prone to live a less active lifestyle (i.e. more sedentary behavior) (Alexander et al. 2010, Avlund 2010, Eldadah 2010). Therefore, to better understand exercise-related health benefits for the older, it is necessary to investigate roles of exercise parameters (intensity, frequency, mode, and duration) in optimizing health and well-being. In young rats, it was reported that exercise could up-regulate BK_{Ca} channel functions in a manner of frequency-dependent (Li et al. 2013). However, there has no information on effects and mechanisms of different training frequency on cerebrovascular functions in aged subjects. Such knowledge is important for health and possible prevention against stroke.

Exercise is considered to be the most accessible, effective, pluripotent, and safe intervention to improve and maintain health (Pedersen and Saltin 2006, Goldstein et al. 2006, Lange-Asschenfeldt and Kojda 2008, Stewart et al. 2002). With the concept "Exercise is medicine" proposed by the American College of Sports Medicine, growing evidence implicates that exercise is as effective as drug interventions in the secondary prevention of cardiovascular and cerebrovascular mortality (Naci and Ioannidis 2013). Given the heavy societal cost of cerebrovascular diseases and the challenges of the world’s changing demographics, it is critical to fully prepare for the challenge of the world’s changing demographics and to create an equitable, affordable, and sustainable aging society for the future (Lucas et al. 2015). Thus, major efforts need to focus on prevention with emphasis on low-cost regimen such as habitual aerobic exercise. The purpose of the present study included: (1) to investigate the aging-associate functional changes in BK_{Ca} channels in middle cerebral artery (MCA) myocytes; (2) to compare the effects of 12 weeks of aerobic training with either 3 or 5 times per week on blood pressure and biophysical properties of BK_{Ca} channels in MCA myocytes in the older rats.

Materials and Methods

Animals and exercise training protocol
Male Wistar rats were purchased from Vital River Laboratory Animal Technology Co. Ltd. (Beijing, China). The rats aged 20-22 months were randomly assigned into three groups: sedentary control group (O-SED, n=10), low-frequency exercise group (O-EXL, n=10), and high-frequency exercise group (O-EXH, n=10). Young adult rats (four-month-old, n=10) rats were used as Young control. The training rats were submitted to a motor-driven treadmill training protocol (0° slope, 20 m/min, ~50-55 %VO$_{2\text{max}}$, 60 min/day, 12 weeks) (Garekani et al. 2011). The experimental protocols were approved by the ethical committee of Beijing Sport University and were performed in accordance with the Chinese animal protection laws and institutional guidelines.

Measures of cardiovascular responses
24 rats (n=6 per group) were implanted with catheters in their femoral arteries as described (Shi et al. 2012) under anesthesia with a mixture of ketamine (75 mg/kg) and xylazine (10 mg/kg; i.p., Hengrui Medicine, Jiangsu, China). Two days after surgery, blood pressure (BP) were recorded continuously in conscious/unrestrained rats by using data acquisition software (BL-420S, Chengdu Technology and Market Co., China).

Cell isolation
At the end of 12-week exercise training, animals were anesthetized with sodium pentobarbital (100 mg/kg, i.p) and sacrificed. The brain was removed immediately, and segments of the MCAs were dissected. Smooth muscle cells were isolated as reported (Maruyama et al. 1983). The cell suspensions were kept at 4 ºC and used within 8 h.

Electrophysiological experiments and data analysis
Whole-cell recording
For measurement of whole-cell K$^+$ currents, conventional whole-cell configuration was conducted. The bath solution comprised (in mM): 134 NaCl, 6 KCl, 1 MgCl$_2$, 1.8 CaCl$_2$, 10 glucose, and 10 HEPES (pH 7.4). The pipette (3–5 MΩ) solution contained (in mM): 110 K-Asp, 30 KCl, 1 EGTA, 3 Na$_2$ATP, 0.85 CaCl$_2$, 10 glucose, and 10 HEPES (pH 7.2, with KOH). Outward K$^+$ currents were elicited by a series of 400 ms depolarizing voltage steps. Voltage steps were made at
10 mV increments to +60 mV from a holding potential of −60 mV. The whole-cell patches used for analysis should be with a series resistance <20 MΩ, leakage current <100 pA. Current densities (pA/pF) were obtained for each cell by normalization of whole cell current to cell capacitance to account for differences in cell membrane surface area, using Axon700B amplifier, pCLAMP 10.2, and Clampfit 10.2 software (Axon Instruments, Foster City, CA). To assess BKCa current amplitudes, outward K + currents were elicited in the absence and presence of 100 nM iberiotoxin (IbTX).

Single channel recording

BKCa single channel current was recorded in excised inside-out membrane patches under symmetrical K+ (145 mM) as previously described (Maruyama et al. 1983). The pipette solution contained (in mM): 145 KCl, 1 EGTA, 10 HEPES, and 5 glucose (pH 7.4 with KOH). The bath solution contained (in mM): 145 KCl, 1 EGTA, 10 HEPES, and 5 glucose (pH 7.4 with KOH). CaCl2 was added to achieve the desired value of free Ca2+ in solution (determined using WinMAXC software; Chris Patton, Stanford University). Currents were sampled at 10 kHz and filtered at 2 Hz via eight-pole low-pass Bessel filter. The identity of BKCa currents was confirmed by the IbTX sensitivity (100 nmol/l, data not show) and by the high single-channel conductance that is typical of BKCa (Maruyama et al. 1983, Toro et al. 1998, Magleby and Pallotta 1983). The Npo was normalized to the max probability. The number of BKCa was estimated from the maximum observed current level at relatively higher voltage and/or bath Ca2+ concentration. Continuous recordings of no less than 10 s were used for P0 and kinetics analysis. The Po-voltage relationships were fitted by Boltzmann equation to obtain the voltage for half-maximal channel activation (V 1/2), and Ca2+-dependent activation was fitted with the Hill equation (Li et al. 2013). Single exponential function was used to construct histograms showing the open/close time of BKCa channels at +40 mV with 1 μM Ca2+. All electrophysiologic studies were performed using Axon700B amplifier, pCLAMP 10.2, and Clampfit 10.2 software (Axon Instruments Inc., Foster City, CA).

Transient BKCa currents

Spontaneous transient outward currents (STOCs) were measured using the perforated whole-cell patch clamp technique. The bath solution was the same as that for whole-cell recording described before. Patch pipettes (3-5 MΩ) were filled with an internal solution containing (mmol/l): 110 potassium aspartate (K-Asp), 30 KCl, 1 MgCl2, 10 HEPES, 0.5 EGTA, 3 Na2ATP, and 0.2 amphotericin B (pH 7.2 with KOH). STOCs were recorded over a range of holding potentials from −50 to 0 mV. Signals were sampled at 10 kHz, filtered at 2 kHz. Data were captured on-line using a Digidata 1440 interface run under the pClamp 10.2 program (Axon Instruments, Foster City, CA). STOCs were analyzed and plotted using Mini Analysis Program (Synaptosoft, Inc., Decatur, GA).

Chemicals

All chemicals were purchased from Sigma-Aldrich (Mainland, China) unless otherwise stated.

Statistical analysis

Data are represented as mean ± SEM. When appropriate, t test or ANOVA were used to determine the significance of the differences among groups. A probability value of <0.05 was considered statistically significant.

Results

Basal blood pressure and body weight

After exercise training for 12 weeks, body weight (BW) in both exercise groups were significantly lower, however, there were no significant differences in BW between the O-EXL and O-EXH (602.8±11.67 vs. 611.4±14.4 g). As shown in Table 1, the baseline systolic BP (SBP) increased and the diastolic BP (DBP) decreased with aging. After exercise training, the SBP in O-EXL (135.8±2.9 mm Hg) and O-EXH (135.9±2.6 mm Hg) decreased compared with that in O-SED (145.6±4.0 mm Hg), although still higher than that in Young; the DBP in both exercise groups was increased compared with that in O-SED (145.6±4.0 mm Hg), although still higher than that in Young (125.6±2.8 mm Hg); the DBP in both exercise groups was increased compared with that in O-SED (104.0±3.5 mm Hg) and lower than that in Young. Neither SBP nor DBP was changed with an increase in training frequency (95.2±3.3 vs. 99.5±4.0 mm Hg). Pulse pressure (PP) showed the highest in O-SED (52.4±4.7 mm Hg) and the lowest in Young (22.0±3.4 mm Hg). No significant changes in (PP) were observed between training three times a week vs. five times a week (38.0±1.2 vs. 40.3±2.8 mm Hg).
Table 1. Effects of exercise training on BW and basal arterial BP of aged rats.

<table>
<thead>
<tr>
<th></th>
<th>BW (g)</th>
<th>SBP (mm Hg)</th>
<th>DBP (mm Hg)</th>
<th>PP (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>573.3±13.5</td>
<td>125.6±2.8</td>
<td>104.0±3.5</td>
<td>22.0±3.4</td>
</tr>
<tr>
<td>O-SED</td>
<td>702.3±20.2*</td>
<td>145.6±4.0*</td>
<td>84.8±1.5*</td>
<td>52.4±4.7*</td>
</tr>
<tr>
<td>O-EXL</td>
<td>602.8±11.7*</td>
<td>135.8±2.9*</td>
<td>95.2±3.3*</td>
<td>38.0±1.2*</td>
</tr>
<tr>
<td>O-EXH</td>
<td>621.4±15.4*</td>
<td>135.9±2.6*</td>
<td>99.5±4.0*</td>
<td>40.3±2.8*</td>
</tr>
</tbody>
</table>

BP – blood pressure, BW – body weight, DBP – diastolic blood pressure, SBP – systolic blood pressure, PP – pulse pressure. * p<0.05, compared with Young, * p<0.05, compared with O-SED group. Values are means ± SEM.

Fig. 1. Whole-cell K⁺ currents in myocytes of middle cerebral artery (MCA) measured using the conventional whole-cell configuration of the patch clamp technique. (A) Young, (B) O-SED, (C) O-EXL, (D) O-EXH. (a) Representative recordings of whole-cell K⁺ currents measured during depolarizing voltage steps. (b) Example of whole-cell K⁺ current blockade by iberiotoxin (IbTX, 10⁻⁷ M) for 10 min. (c) The mean current density vs. voltage plot, in the absence or presence of IbTX in myocytes from four groups. Group data are shown as mean ± SEM, * p<0.05, IbTX vs. without IbTX. n=18-20 cells from 6 rats in each group.

Fig. 2. Histograms showing differential blockade of middle cerebral artery (MCA) myocytes current densities by iberiotoxin (IbTX) at a holding potential of ±60 mV. (A) The BKCa current densities obtained by digital subtraction of residual currents in the presence of 100 nm IbTX from control currents. (B) The BKCa current as a percentage of the total current in the MCA myocytes of the four groups. (C) The residual currents after full blockade of BKCa currents in the four groups. Bars represent the mean ± SEM. * p<0.05, compared with Young, * p<0.05, compared with O-SED. n=20~30 cells from 6 rats in each group.
Exercise attenuated the aging-reduced whole-cell BK_{Ca} currents

As shown in Figure 1, outward K^+ current densities from the Young MCA myocytes were significantly higher than those from O-SED (35.43±1.55 vs. 12.24±2.08 pA/pF, Young vs. O-SED, HP=+60 mV). Exercise training attenuated the aging-associated reduction without significant differences: 18.92±1.28 and 20.66±1.49 pA/pF between the O-EXL and O-EXH at +60 mV. Following IbTX (100 nM) treatment for 10 min, the whole-cell K^+ currents were inhibited significantly. The residual currents were digitally subtracted from control currents. The difference between the two currents represented the magnitude of IbTX-sensitive BK_{Ca} currents. As shown in Figure 2, the peak BK_{Ca} current densities at a holding potential of +60 mV were 26.4±1.16, 4.83±0.82, 7.85±0.76, and 8.36±1.05 pA/pF in Young, O-SED, O-EXL, and O-EXH, respectively (Fig. 2A). There was no significant difference in the current density between the O-EXL and O-EXH. These data indicated that aging induced a significant decrease of functional activity of BK_{Ca} channels, which could be attenuated by exercise training. The percentage of IbTX-sensitive current was the lowest in the myocytes from O-SED (Fig. 2B). Exercise partially alleviated the reduction of percentage of BK_{Ca} currents (74.50 ±2.91, 38±2.41, 48 ±2.92, and 49.25± 3.41 % in Young, O-SED, O-EXL, and O-EXH myocytes, respectively). The residual currents of myocytes in O-SED were significantly reduced with aging (Young: 13.0±1.28; O-SED: 6.48±0.53 pA/pF; p<0.05), however, there was no significant difference in the residual currents among the O-SED, O-EXL, and O-EXH groups (O-SED: 6.48±0.53 pA/pF; O-EXL: 6.85±0.6 pA/pF; O-EXH: 6.31±0.53 pA/pF), indicating that BK_{Ca} currents contributed to the main changes of whole-cell K^+ currents in the MCA myocytes following aerobic exercise (Fig. 2C).

Exercise attenuated the aging-reduced transient BK_{Ca} currents

Activity of spontaneous transient outward currents (STOCs)

The amplitude of STOCs was depressed by aging and significantly alleviated by the exercise. At the holding potential of −40 mV, the amplitude of STOCs was: Young (24.73±1.47 pA) > O-EXL (17.09±1.91 pA) > O-SED (9.57 ±1.06 pA). It is noteworthy that a higher training frequency was equally efficient in restoring aging-associated decline of STOCs amplitude (O-EXH: 19.05±1.39 pA) compared with that in the O-EXL. There was no significant difference in the STOCs frequency among the four groups.

Kinetics of STOCs

Exercise at high frequency (O-EXH) prolonged the decay time by 43.65 % compared with that of the Young group. However, aging plays no effects on the decay time of STOCs (Fig. 3F). There was no significant difference in the rise time of STOCs among the four groups.

Exercise reversed the aging-related change of BK_{Ca} channel properties

Conductance and voltage/Ca$^{2+}$ sensitivity of BK_{Ca} channels

As show in Figure 4C, the half activation voltage ($V_{1/2}$) was rightward shifted by aging from 40.96±3.49 mV (Young) to 62.97±2.05 mV (O-SED) at 1 μM [Ca$^{2+}$], free. Exercise at different frequency equally inhibited aging-induced reduction in voltage sensitivity ($V_{1/2}$ was 50.48±2.46 and 51.71±2.37 mV for O-EXL and O-EXH). Then the Ca$^{2+}$ sensitivity in the four groups was determined. Ca$^{2+}$-sensitivity can be assessed by the calcium concentration at half-maximal activation response (K_a). The Po-Ca$^{2+}$ curve fitted by Hill equation showed a K_a value of 0.92±0.06 in Young and 5.41±0.09 in O-SED, indicating that aging reduced the Ca$^{2+}$ sensitivity of BK_{Ca} channels in the MCA myocytes. Exercise left-shifted the Po-Ca$^{2+}$ curve, however, there was no significant difference in the K_a value between the O-EXL and O-EXH (2.02±0.06 vs. 1.99±0.05, O-EXL vs. O-EXH). At 1 μM [Ca$^{2+}$], the slope conductance of BK_{Ca} channels was 239.34±9.22 pS for Young, 226.62±6.25 pS for O-SED, 240.94±18.14 pS for O-EXL, and 218.60±12.62 pS for O-EXH (n=12 patches from six animals each group) (Fig. 4E). No significant differences in single-channel conductance were observed among the four groups.

Gating properties of BK_{Ca} channels

The open time of BK_{Ca} channels in O-SED was remarkably shorter than that of the Yong SMCs (Young: 19.22±2.08 ms; O-SED: 4.05±1.68 ms; p<0.05). The mean close time was significantly increased by aging (Young: 42.6±7.34 ms; O-SED: 219.62±17.46 ms; p<0.05). Exercise at either the high or low frequency reversed those changes (open time: 9.48±1.28 vs. 11.28±2.16 ms, O-EXL vs. O-EXH; close time:
71.10±7.39 vs. 68.28±6.76 ms), indicating equally efficient for different training frequency to reverse the aging-related dysfunction of BKCa channel kinetics. Tamoxifen, a xenoestrogen, is known to activate BKCa channels only when they are associated with β1-subunit (Dick et al. 2001). We then examined the sensitivity of BKCa channels to tamoxifen (Fig. 5). Under the condition of 100 nM [Ca^{2+}]_{free}, tamoxifen (1 μM) evoked 5.15-fold of increase in the Po of BKCa channels in Young patches, whereas 1.50-, 2.89-, and 3.10-fold in O-SED, O-EXL, and O-EXH patches, respectively, suggesting that the aging-reduced Ca^{2+} and voltage sensitivity of single BKCa channel maybe resulted from a decrease in BKCa β1 functions, and this change could be removed by regular aerobic exercise without training frequency-dependent.

Fig. 3. Measurement of spontaneous transient outward current (STOC) activity in freshly isolated middle cerebral artery (MCA) myocytes from Young, O-SED, O-EXL and O-EXH rats. (A) Representative STOCs recorded at test potentials ranging from –40 to –10 mV in young animals. (B) Expanded time scale showing STOCs in each group. HP=–40 mV. (C-F): Bar graphs of STOCs amplitude (C), frequency (D), raise (E) and decay time (F) in the four groups. * p<0.05, compared with Young, † p<0.05, compared with O-SED, & p<0.05, compared with O-EXL. n=18~20 cells from 6 rats in each group.
Discussion

The present study investigated the effects of exercise on BK$_{Ca}$ channel functions in the MCA myocytes of aged rats (24-month-old). The main finding showed that aging significantly decreased BK$_{Ca}$ channel functions, whereas exercise training could reverse such kind of the decrease. Although BK$_{Ca}$ channel conductance, the frequency, and raise time of STOCs were unchanged in the aged and exercised groups, other characterizations of BK$_{Ca}$ channels, including whole cell currents, STOCs amplitude, voltage/Ca$^{2+}$ sensitivity, and channel kinetics were equally benefited from exercise three time a week and five times a week.

So far as we know, only very limited data are available regarding the effects of different training
frequency in elders. Even for those limited investigations, their major research objectives were resistance training (RT) and strength gaining. For example, Farinatti et al. (2013) and Nelson et al. (1995) reported that a higher RT frequency weekly increased muscle strength or hip flexibility to a greater extent than lower frequencies (Farinatti et al. 2013, Carneiro et al. 2015). On the contrary, DiFrancisco-Donoghue et al. (2007) and Taaffe et al. (2009) showed a similar increase in strength between programs with high (twice) and low (once) weekly training frequencies. However, it was largely unknown regarding effects of different aerobic training frequency on aged cerebral arteries. The present study revealed the novel information that exercise-related BW loss, BP reduction, and functional remolding of BKCa channels in the MCA were equally efficient by different aerobic training frequency (three times weekly vs. five times weekly) in aged rats, which may assist in designing rational aerobic-training prescriptions for elders.

By using in vivo measurement, we observed the effects of aerobic exercise on the resting BW and BP. Compared with O-SED group, the animals that performed 12-week aerobic exercise had a lower body weight. Moreover, a significant increase of baseline SBP and pulse pressure was demonstrated in the aged rats. Aging is associated with increased stiffness (reduced compliance) of large elastic arteries in healthy sedentary adults. As the large conduit arteries stiffen, aortic pulse wave velocity results in early return of reflected pressure wave, which produces significant systolic pressure augmentation and a decrease in diastolic pressure (Ungvari et al. 2010). The results in the present study indicated that common aging features such as arterial stiffening, following 12-week aerobic exercise, could be diminished, showing the efficacy of the training program. Three different patterns of BKCa channel currents were observed in the determination of aging-induced cellular changes and exercise-generated adaptive responses. First, no significant increase in whole-cell BKCa currents was elicited from the group of higher training frequency. The electrochemical gradient for K+ ions is such that opening of K+ channels results in diffusion of this cation out of the cells and membrane hyperpolarization (Nelson and Quayle 1995, Jackson 1998). Closure of K+ channels has the opposite effect. BKCa channel is the predominant type of K+ channel species in most arteries (Kuriyama et al. 1995), have a high conductance (~240 pS, in 150/150 isotonic K). Because of the large conductance of BKCa channels, the activity of relatively few channels can exert a relatively large influence on Em. Thus, activation of vascular BKCa channels may be a critical hyperpolarizing and vasorelaxing force to buffer vascular constriction and increased intravascular pressure (Knot et al. 1998, Anwer et al. 1993). Previous studies demonstrated that aerobic exercise could attenuate the aging-induced reduction of BKCa channel currents in various smooth muscle cells, including those from coronary (Albarwani et al. 2010), mesenteric arteries (Shi et al. 2013), and thoracic aorta (Shi et al. 2012, Zhao and Wang 2010). The present study tested MCA myocytes and revealed that the aging-declined BKCa channel currents could be partly alleviated by regular aerobic exercise in a frequency independent pattern.

STOCs oppose vasoconstriction by hyperpolarizing BKCa currents. In arterial SMCs, STOCs generate a global hyper-polarization of the cell membrane and close voltage-dependent Ca2+ channels, as feed-back in decreasing global [Ca2+]i and arterial contraction (Nelson et al. 1995, Perez et al. 2001). Thus, the activity of STOCs is highly associated with the auto-regulation of membrane potential by BKCa channels. Localized and transient elevations in cytosolic Ca2+ (Ca2+ sparks), caused by Ca2+ release from sarcoplasmic reticulum (SR), were thought to trigger opening of BKCa channels resulting in STOCs in SMCs (Pérez et al. 1999). In the
present study using perforated patch configuration, the significant reduction in the STOCs amplitude with aging and the up-regulated effect of exercise training could conceivably reflect fundamental changes in voltage- or Ca$^{2+}$ sensitivity. The explanation for the reduced STOCs could be a decrease in percentage of Ca$^{2+}$ release from SR in activating a transient BK$_{Ca}$ current. Thus, we tested Ca$^{2+}$/voltage sensitivity of BK$_{Ca}$ channels using inside-out membrane patches. The data showed the characteristic features of the aging-associated single BK$_{Ca}$ channel activity, including a decrease of voltage/Ca$^{2+}$ sensitivity, a reduction in mean open time, and an increase in mean closed time without change in unitary conductance. However, exercise training attenuated these aging-associated changes. Previous studies reported that aerobic exercise training reversed the aging-related reduction in BK$_{Ca}$ channel voltage/Ca$^{2+}$ sensitivity in peripheral arteries (Shi et al. 2014). The present study demonstrated similar consequences occurred in cerebral arteries at cellular level as new finding. The alteration in Ca$^{2+}$ sensitivity may be the key adaption leading to a higher STOCs activity/amplitude and whole cell BK$_{Ca}$ currents.

Native BK$_{Ca}$ channel is composed of four α- and four β-subunits (Knaus et al. 1994, Tanaka et al. 1997). The β1 subunit interacts with the S0 domain and the extracellular NH2 terminus of the α-subunit, thereby increasing the apparent voltage and calcium sensitivity of the channel as well as affecting gating kinetics (Nishimaru et al. 2004, Brenner et al. 2000, Tanaka et al. 2004). Since the aging-decreased Ca$^{2+}$ sensitivity of BK$_{Ca}$ channels could be efficiently prevented by exercise training, the data suggested that exercise may reverse aging-induced down-regulation of β1 subunit. Tamoxifen, a pharmacological probe, could promote activity of BK$_{Ca}$ channels by acting on β1-subunit (Dick et al. 2001). The present study found that tamoxifen-induced BK$_{Ca}$ channel activation was almost the same in O-EXL and O-EXH, indicating a training frequency-independent manner in rehabilitation of functional BK$_{Ca}$ channel in aged MCA myocytes but not in Young myocytes as reported in previous study (Li et al. 2013).

Under most conditions in the present study, aerobic exercise performed three times weekly improved intrinsic characteristics of BK$_{Ca}$ channels as the same as those of the five times a week in the aged MCA myocytes. However, when exercise five times a week, the decay time of STOCs was prolonged greatly, even longer than that in Young group. In MCA, BK$_{Ca}$ channels are activated by micro-molar intracellular Ca$^{2+}$ delivered by local calcium release from the sarcoplasmic reticulum (Ca$^{2+}$ sparks) (Nelson et al. 1995). Our results indicate that the density of BK$_{Ca}$ currents in SMCs of MCA was obviously reduced with aging, thus, it is unlikely that the augmented decay time of STOCs was attributable to an increase in functional BK$_{Ca}$ channels. Since the kinetic characteristics is highly related to that of Ca$^{2+}$ sparks, it is tempting to speculate that the altered kinetics in the group O-EXH may reflect a prolonged decay time of Ca$^{2+}$ sparks in the MCA myocytes. Whether and how exercise could impact on kinetics of Ca$^{2+}$ sparks requires further studies with approach such as confocal scanning laser microscopy.

It is known that increased arterial stiffness is a clinically important phenotype associated with vascular aging in humans (Ungvari et al. 2010). Recent studies reported that peripheral arterial stiffness was strongly relevant to perceived fatigability during physical activity due to its relationship with muscle perfusion and energy expenditure during exercise (Kizu et al. 2003, Ferreira et al. 2002). Thus, compared with young adults, the perceived fatigability during exercise may augment in older adults because of the aging-induced arterial stiffness. Therefore, it is possible that older adults more prone to feel tired when trained at a larger volume, and may reduce their daily physical activity level at the rest time of the training (Alexander et al. 2010, Eldadahba 2010). The loss of frequency dependent of channel functional remodeling may attribute to a fatigability-related physiological changes.

Increasing evidence demonstrated that regular aerobic exercise promotes brain health/cognitive functions in the aging (Colcombe et al. 2006, Shay and Roth 1992, Buchman et al. 2007, Erickson et al. 2011). Little is known about whether and how the functional adaption by exercise was promoted via the improvement of cerebral vascular re-activity. Recently, Chapman et al. (2013) investigated the effect of 12-week aerobic training (50-75 % V_{O2max}) on the brain, cognition, and cardiovascular fitness in the aging. They proposed that exercise training increased the cerebral blood flow (CBF) and lead to memory performance improvement. However, the mechanism underlying the adjustment of CBF by aerobic exercise remains unknown. Previous studies demonstrated that BK$_{Ca}$ channels can be significantly activated by high pressure leading to forced dilation of cerebral arteries (Nelson et al. 1995, Brayden and Nelson 1992). Clinical studies suggest that aging impairs auto-regulatory protection to high blood pressure.
in the human brain (Castellani et al. 2006). It is interesting to consider that a loss of the regulatory β1 subunit of BKCa channels in aged cerebral arteries may contribute to dysfunction of vasodilation that mediate the impairment of vascular autoregulation protection. Aerobic exercise partly restored the degeneration by increasing Ca\(^{2+}\)/voltage sensitivity of BKCa channels, which is substantially important in maintaining CBF on pressurized cerebral arteries. After all, cognitive functions, particularly in the domains of executive functions, processing speed, and episodic memory has been reported to be declined by aging, and could be exacerbated by cardiovascular diseases and cardiovascular risk factors. Multiple recent studies indicate that aerobic exercise programs may slow the progression of age-related neural changes and reduce the risk for cognitive impairment as well as dementia (Lucas et al. 2015, Chapman et al. 2013, Zheng et al. 2015, Thomas et al. 2013). Whether and how exercise affects cognition via improvement of cardiovascular functions is worth of further investigation.

We considered limitations in assessing the data in the present study. Although the functional β1 subunit of BKCa channels was detected according to its sensitivity to tamoxifen, there may need further evidence to determine whether molecular alteration of BKCa channels might lead to a blunted coupling between α and β1 subunit. In addition, this work focused on the electrical remodeling of BKCa channels at cell level, determination of vascular re-activity at tissue level could be helpful to verify BKCa-mediated dysfunction in the MCA. Those limitations also offer new opportunities for future investigation. Our research data showed the moderate improvement by aerobic exercise performed three times a week as the same as five time a week in older rats, which indicates that chronic moderate aerobic training at a frequency of three times a week could possibly be a more appropriate training volume required to have beneficial effects to offset the declines in BW, BP, and BKCa channels in the MCA in aged adults. Based on the preliminary data from animals, human trial is warranted for further study, the results will be helpful to design aerobic-training programs that are more time and cost efficient.

Conclusion

Regular aerobic exercise may improve BKCa channel activity in aged MCA myocytes by affecting its biophysical properties in a manner of training frequency independent, which partly underlies the beneficial effect of exercise on restoring aging-associated reduction of vasodilatory properties in the MCA. Given the key role of BKCa channels in regulation of BP and vessel dilation, exercise is a non-pharmacological intervention recommended for the prevention of vascular diseases such as stroke.

Conflict of Interest

There is no conflict of interest.

Acknowledgements

This work was supported by Beijing Natural Science Foundation (5132017), National Natural Science Foundation of China (31371201), the Chinese Universities Scientific Fund (2015ZD008, 2016RC001), Research project of General Administration of Sport of China (2015B035).

References

