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Summary 

Itch is the most common chief complaint in patients visiting 

dermatology clinics and is analogous to cough and also sneeze of 

the lower and upper respiratory tract, all three of which are host 

actions trying to clear noxious stimuli. The pathomechanisms of 

these symptoms are not completely determined. The itch can 

originate from a variety of etiologies. Itch originates following the 

activation of peripheral sensory nerve endings following damage 

or exposure to inflammatory mediators. More than one sensory 

nerve subtype is thought to subserve pruriceptive itch which 

includes both unmyelinated C-fibers and thinly myelinated Aδ 

nerve fibers. There are a lot of mediators capable of stimulating 

these afferent nerves leading to itch. Cough and itch pathways are 

mediated by small-diameter sensory fibers. These cough and itch 

sensory fibers release neuropeptides upon activation, which leads 

to inflammation of the nerves. The inflammation is involved in the 

development of chronic conditions of itch and cough. The aim of 

this review is to point out the role of sensory nerves in the 

pathogenesis of cough and itching. The common aspects of itch 

and cough could lead to new thoughts and perspectives in both 

fields. 
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Introduction 

 

Itch is a common sensation that drives an intense 

urge to scratch. Itch and scratching have persisted in 

humans and many other species, suggesting that they play 

an important role in survival (Sanders et al. 2019). 

Mammals have evolved neurophysiologic reflexes such as 

coughing and scratching to expel invading pathogens and 

noxious environmental stimuli. It is well established that 

these responses are also associated with chronic 

inflammatory diseases such as asthma and atopic 

dermatitis. However, the mechanisms by which 

inflammatory pathways promote sensations such as itch 

remain poorly understood (Oetjen et al. 2017). 

Histological analyses of tissues from atopic patients have 

revealed striking increases in innervation at sites of 

inflammation. This was identified early in the skin of 

patients with atopic dermatitis (Tobin et al. 1992) but has 

now been shown in other tissues such as the lung in asthma 

(Myers et al. 2002). This increase in sensory neuron 

density is believed to contribute to atopic hypersensitivity, 

and worsening barrier damage, potentially caused by 

chronic itching or coughing, has been shown to increase 

tissue innervation (Valtcheva et al. 2015).  

 

Sensory fibers pathways in itching and cough 

 

The sensory nervous system is tasked with 
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relaying peripheral signals to the brain. It broadly includes 

the somatosensory nervous system which transmits 

conscious perception of multiple sensations such as itch, 

nociception, mechanoreception, and proprioception 

through unique families of sensory neurons as well as the 

autonomic nervous system which transmits visceral 

sensations and homeostatic signals (Bautista et al. 2014). 

To accomplish this, sensory neurons send projections from 

their cell bodies, located in discrete ganglia throughout the 

body, toward both the central nervous system (CNS) and 

barrier surfaces. For example, conscious sensations from 

the skin of the body are carried along projecting axons of 

sensory nerves to the dorsal root ganglia (DRG) where 

their signals are then transmitted to the spinal cord and 

brain. Initiation of these signals begins in peripheral 

terminals of sensory neurons with localized depolarization 

due to activation of neuronal receptors and membrane ion 

channels. Given a sufficient stimulus, local activation can 

lead to increased action potential firing of projecting 

sensory neurons which results in CNS transmission. Thus, 

determining the function of specific receptors and 

channels expressed by sensory neurons at barrier surfaces 

is critical to understanding the mechanisms underlying 

dysregulated sensory responses (Oetjen and Kim 2018). 

Sensory neurons that play a role in itch or cough can be 

classified into two distinct fibers, the thinly myelinated 

Aδ-fiber and the unmyelinated C-fiber (LaVinka and Dong 

2013). 

 

A-fibers in itching and cough 

 

Itch 

Pruriceptive itch originates when specific sensory 

nerve terminals, generally located in the skin, are 

activated. Pruriceptive itch can also original from certain 

mucosal surfaces; however, a majority of research on itch 

has focused on sensory nerve fibers from the skin 

(Wallengren 2005). The excitation of sensory nerve fibers 

in the skin leading to pruriceptive itch occurs upon 

exposure of certain sensory nerve terminals to a pruritic 

substance and frequently follows skin damage or 

inflammation. Sensory nerve fibers in the skin originate 

from the distal processes of primary afferent dorsal root 

ganglion neurons. Sensory nerve fibers in the skin are 

broadly classified according to their condition of velocity 

and the sensory modalities that excite them. Fast 

conducting myelinated nerve fibers (Aβ) respond to non-

noxious mechanical stimulation of the skin, while slow 

conducting myelinated (Aδ) and unmyelinated (C) nerves 

fibers respond to noxious stimulation and temperature 

changes of the skin (McGlone and Reilly 2010). It has been 

shown in studies involving the known pruritogen cowhage 

(Mucuna pruriens), that mechanosensitive Aδ-fibers play 

a role in itch. Cowhage causes intense itching when 

injected into the skin (Shelley and Arthur 1957). In 

monkeys, cowhage activates mechanosensitive A-fibers 

while some mechanoinsensitive A-fibers are activated by 

another pruritogen, histamine (Ringkamp et al. 2011, 

LaVinka and Dong 2013). 

 

Cough 

Aδ-fibers fibers are unique in their lack of 

response to tissue distension, airway smooth muscle 

contraction and inflammatory mediators. They are, 

however, exquisitely sensitive to punctate mechanical 

stimulation (touch) of the epithelium. These terminals are 

also sensitive to acid, but only when there is a rapid drop 

in pH (Kollarik and Undem 2002). The unique structures 

of these terminals have been described in guinea pig 

trachea, and nerves with similar structures have recently 

been described in human bronchi (Mazzone et al. 2009, 

West et al. 2015). Physiological studies have revealed that 

stimulation of these fibers cause a strong cough response, 

even when an animal is anaesthetized (Canning et al. 

2004). It stands to reason that these bona fide “cough 

receptors” provide a selective advantage by reducing the 

potentially lethal complications of aspiration (Mazzone 

and Undem 2016). 

Aβ-fibers (rapidly adapting receptors - RARs, 

slowly adapting receptors - SARs, stretch receptors). The 

vagal afferent fibers terminating in the respiratory tract 

that conduct action potentials in the Aβ range are by in 

large sensitive to the lung distention evoked by inspiration 

(Lee and Yu 2014, Sant'Ambrogio 1987). A subset is also 

sensitive to the mechanical forces caused by lung deflation 

(Liu and Yu 2013).  

The role of myelinated fibers in cough is much 

more defined and explored when compared to myelinated 

fibers’ role in itch. What is interesting in both is that these 

myelinated fibers are not solely responsible for the genesis 

of itch or cough. In both itch and cough, C-fibers play 

a role in setting the threshold, controlling the sensitivity of 

the system (LaVinka and Dong 2013). 

 

C-fibers in itching and cough 

 

Itch is primarily mediated by slower conducting 

C-fibers innervating the dorsal horn of the spinal cord. 
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Early itch studies used spicules of cowhage to show that 

the strongest itch is felt in the dermo-epidermal juncture 

area, the area where unmyelinated sensory fibers innervate 

(LaVinka and Dong 2013). Two itch-sensitive pathways 

exist: a histamine-stimulated pathway that uses 

mechanically insensitive C-fibers, and a cowhage-

stimulated pathway primarily involving polymodal C-

fibers. In typical circumstances, pruritogens stimulate skin 

receptors and activate the peripheral pathway of itch. This 

provokes a signalling cascade and action potentials in at 

least two types of C-fibers. These nerve fibers conduct the 

action potential to the dorsal horn of the spinal cord. The 

itch pathways are stimulated by histamine and cowhage 

skin receptors in the epidermis and dermis, respectively. 

Impulses are transmitted primarily via mechanically 

insensitive C-fibers and polymodal C-fibers, respectively, 

to secondary neurons in the dorsal horn. One means of 

modulation by the pain pathway is through a Bhlbb5 

interneuron (Dhand and Aminoff 2014). 

 

Cough 

In the respiratory tract, C-fibers are often 

subclassified as pulmonary C-fibers or bronchial C-fibers, 

depending on whether the terminations receive blood 

supply from the pulmonary or bronchial circulation 

(Coleridge and Coleridge 1984). Operationally a C-fiber is 

considered to be a pulmonary C-fiber if it responds to 

a chemical stimulant with short latency when delivered by 

right atrial injection to the pulmonary circulation. A C-

fiber is termed “bronchial” if it is located in the large 

airways or if it responds with short latency to a chemical 

stimulant injected directly into the systemic circulation, 

i.e., into the bronchial artery. Pulmonary C-fibers are 

thought to terminate largely in the lung interstitium close 

to the pulmonary capillaries. For this reason, these fibers 

were referred to as juxtacapilliary receptors or J-receptors 

(Paintal 1969, Mazzone and Undem 2016).  

Vagal C-fibers innervating the respiratory tract 

have been subclassified based on whether the cell body is 

situated in the jugular (neural crest-derived) or nodose 

(placodal-derived) ganglia (Undem et al. 2004). Extensive 

studies in mice and guinea pigs reveal the C-fiber nerve 

phenotype is distinct between nodose and jugular C-fibers. 

The jugular C-fibers are more apt to contain sensory 

neuropeptides than nodose C-fibers. The nodose C-fibers 

can be stimulated by a wider range of chemical stimuli 

than jugular C-fibers (Nassenstein et al. 2010).  

The majority of C-fibers terminating in the large 

extrapulmonary airways of guinea pigs are jugular C-

fibers, with nodose C-fibers comprising only 10-20 % of 

tracheal C-fibers (Riccio et al. 1996). In contrast, similar 

numbers of nodose and jugular C-fibers terminate in the 

intrapulmonary tissues (Undem et al. 2004). Importantly, 

where it has been studied, the C-fiber phenotype of 

a nodose and jugular C-fiber remains constant regardless 

of where it terminates within the respiratory tract. 

Therefore, when describing phenotypic subsets of C-

fibers, the embryonic history has advantages over the 

location of the terminations. That embryonic history is 

important is verified by the observation that the jugular 

C-fiber phenotype is similar to the C-fibers that arise from 

neurons within the dorsal root ganglia (like jugular 

neurons, they too are derived from the neural crest) 

(Surdenikova et al. 2012). 

Nodose and jugular C-fibers respond to 

potentially damaging mechanical forces in a graded 

fashion. They also respond to inflammatory mediators and 

tissue acidification (Mazzone and Undem 2016).  

Unmyelinated C-fiber afferents comprise the 

majority of afferent nerves innervating the airways 

(Coleridge and Coleridge 1984). Afferent C-fibers are 

distinguished from mechanically sensitive afferents by 

their conduction velocity and their direct responsiveness to 

a wide variety of chemical substances acting at both 

ligand-gated ion channels and G protein-coupled receptors 

(Widdicombe 2001). The direct sensitivity of this class of 

afferents to chemical stimuli is inferred by the observation 

that chemical activation of C-fiber endings in the airways 

is not inhibited by pretreatment with a bronchodilator. 

Furthermore, this is supported by expression studies in 

vagal ganglia preparations which show a wide variety of 

ion channels and receptors in C-fiber afferents and by the 

ability of ligands of these receptors to produce action 

potentials in patch recordings of acutely isolated vagal 

neurons in culture (Mazzone and Undem 2016). Indeed, 

bronchodilators such as prostaglandin E2 (PGE2) and 

epinephrine actually enhance afferent C-fiber excitability 

rather than inhibit it (Lee and Pisarri 2001). C-fibre 

endings are polymodal, and thus can respond to both 

chemical and mechanical stimulation; their high threshold 

for mechanical activation means that C-fibers generally 

don't fire action potentials throughout the respiratory cycle 

but rather are recruited in times of tissue 

injury/inflammation or in the presence of noxious 

chemicals. Indeed, in addition to the long list of chemicals 

that can activate C-fibers, many inflammatory mediators 

can additionally sensitize C-fibers and lower their 

threshold for activation such that more physiological 
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stimuli (e.g., bronchoconstriction) may activate C-fibers in 

the diseased airways (Mazzone and Undem 2016). 

A subpopulation of C-fibers synthesize 

neuropeptides that are subsequently transported to their 

central and peripheral nerve terminals (Mazzone et al. 

2009), and this has been exploited to describe the 

morphology of C-fibers in a variety of species, including 

rats and guinea pigs. Neuropeptide staining of large airway 

wholemount preparations or of tissue sections of the lung 

shows a vast plexus of fine varicose fibers innervating the 

airway epithelium and effector structures such as airway 

smooth muscle, glands, the vasculature, and autonomic 

ganglia within the airway wall. It is important to note that 

the expression of neuropeptides in C-fibers is both species-

dependent (for example, human vagal afferents contain 

fewer neuropeptides than do guinea pigs or rats) and 

dependent on the ganglionic origin of the C-fiber (nodose 

C-fibers largely do not express substance P or CGRP), and 

as such, it is not clear if the described morphology is true 

of all C-fibers and in all species (Mazzone and Undem 

2016). 

The absence versus presence of neuropeptide 

expression in subsets of C-fibers represents one example 

of heterogeneity among chemically sensitive afferent 

neurons. In dogs, airway C-fibers have been classified as 

“bronchial” or “pulmonary,” a distinction based partly on 

anatomical termination sites and supported by differences 

in functional responsiveness to stimuli (Coleridge and 

Coleridge 1984). For example, bronchial C-fibers in dogs, 

but not pulmonary C-fibers, are responsive to histamine. 

However, this is not true in guinea pigs, as histamine is 

without direct effect on any airway C-fibers (Coleridge et 

al. 1978). Nevertheless, C-fiber subtypes have been 

identified innervating the airways and lungs of mice, rats, 

and guinea pigs, distinguished based on their ganglionic 

origin, molecular phenotype, responsivity, and termination 

sites within the airways (Ricco et al. 1996, Mazzone and 

Undem 2016).  

Knowing that itch and cough are mediated by 

similar sensory neurons, the specifics of activating these 

fibers can be examined and compared. Two types of 

receptors are activated on sensory fibers, ionotropic and 

metabotropic. In both of these categories, itch and cough 

work through the same receptors in multiple instances 

(LaVinka and Dong 2013). 

 

TRPV1 receptor 

 

The transient receptor potential, vanilloid 1 

(TRPV1) receptor is a membrane-bound, ligand-gated 

channel. It is a six transmembrane spanning protein that 

undergoes a conformational change upon binding of 

a ligand, allowing cations into the nerve and resulting in 

activation of primary sensory neurons (Caterina et al. 

1997).  

 

Itch 

The most famous TRPV1 ligand is capsaicin. If 

capsaicin is applied in a punctuate manner to the 

epidermis, it causes itch (Sikand et al. 2009). TRPV1 plays 

an important role in histamine-dependent itch (LaVinka 

and Dong 2013). TRPV1 is an important component in 

multiple itch pathways (Patel et al. 2011). TRPV1 

expression is increased in itching skin lesions and its 

activation promotes itch by secreting soluble factors 

(Steinhoff et al. 2003).  

 

Cough 

Potential (TRP) family are a large family of ion 

channel proteins some of which are expressed on airway 

sensory nerve terminals (Bonvini and Belvisi 2017). 

TRPV1 is also thought to be a strong effector of the cough 

reflex in response to many different stimuli (Grace et al. 

2012). TRPV1 is found in both vagal ganglia as well as 

throughout the airway (Watanabe et al. 2006). Airway 

mucosal biopsies from patients suffering from chronic 

cough showed a fivefold increase in TRPV1 expression 

(Groneberg et al. 2004). Capsaicin is a commonly used 

tussive agent and resiniferatoxin, a strong TRPV1 agonist, 

causes cough by direct activation of TRPV1 (Laude et al. 

1993). PGE2 and bradykinin, which are known to cause 

cough, depolarize vagal sensory neurons through 

activation of TRPV1 (Grace et al. 2012). Citric acid 

evoked cough works through activation of TRPV1 and 

antagonizing the receptor with capsazepine reduces citric 

acid cough (Lalloo et al. 1995).  

 

TRPA1 receptor 

 

The Transient Receptor Potential Ankyrin 1 

(TRPA1) channel, originally called ANKTM1 (Story et al. 

2003), is an ion channel dominantly expressed in a subset 

of nociceptive somatosensory neurons where it acts as 

a polymodal sensor for diverse physical and chemical 

stimuli of extracellular or intracellular origin. There is 

progress in the identification of various signalling 

pathways involved in the sensitization of the TRP channels 

by pro-inflammatory agents (Kádková et al. 2017). 



2020  Sensory Nerves in Pathogenesis of Itch and Cough   S47 
 

 

Itch 

In the skin, histamine-dependent mechanisms 

contribute to itch; however, several distinct histamine-

independent itch mechanisms have also been described. 

One involves the Mas-gene-related G protein-coupled 

receptor family, which includes MRGPRA3 and 

MRGPRC11 (LaMotte et al. 2014). Another mechanism 

involves the bile acid receptor TGR5, also known as 

GPR130 or GpBAR1 (Alemi et al. 2013). TRPA1 has been 

shown to be important to histamine-independent itch.  

MRGPRA3 and MRGPRC11 are expressed by 

subsets of sensory DRG neurons innervating the skin. 

Activation of MRGPRA3 by the anti-malarial drug 

chloroquine, or MRGPRC11 activation by the endogenous 

pruritogen, bovine adrenal medulla 8-22 peptide (BAM8-

22), induces itch. However, it remains unclear if both 

TGR5 and MRGPR mechanisms co-exist within the same 

DRG neuronal populations or whether they exist in, and 

therefore recruit distinct populations of DRG neurons 

(Castro et al. 2019). 

 Both TRPV1 and TRPA1 are co-expressed in 

a large subset of sensory nerves, where they integrate 

numerous noxious stimuli. It is now clear that the 

expression of both channels also extends far beyond the 

sensory nerves in the skin, occurring also in keratinocytes, 

mast cells, dendritic cells, and endothelial cells. In these 

non-neuronal cells, TRPV1 and TRPA1 also act as 

nociceptive sensors and potentiate the inflammatory 

process (Gouin et al. 2017).  

While TRPV1 and TRPV4 are expressed both by 

sensory neurons and keratinocytes, it has recently been 

demonstrated that the specific and selective activation of 

TRPV1 on keratinocytes is sufficient to induce pain. 

Similarly, the targeted activation of keratinocyte-

expressed TRPV4 elicits itch and the resulting scratching 

behavior (Talagas and Misery 2019). 

 

Cough 

TRPA1 is the only member of the Ankyrin family 

of TRP channels and was first discovered in cultured 

human lung fibroblasts (Jaquemar et al. 1999) but is now 

known to be widely expressed in sensory nociceptive 

neurons in the vagal, jugular and nodose ganglia (Story et 

al. 2003).  However, unlike TRPV1, TRPA1 only seems 

to activate C-fibers and interestingly single-cell PCR 

experiments identified that although they are often co-

expressed in neurons within the jugular and nodose ganglia 

they are also found separately (Wortley et al. 2016). It is 

a polymodal ion channel shown to be a sensor of noxious 

cold (Story et al. 2003). TRPA1 channels are activated by 

a range of natural products such as allyl isothiocyanate, 

allicin and cannabinol, found in mustard oil, garlic and 

cannabis and by environmental irritants (Bonvini and 

Belvisi 2017). TRPA1 is also the molecular target for 

reactive and electrophilic by-products of oxidative stress. 

This also includes electrophiles such as hypochlorite and 

hydrogen peroxide (Taylor-Clark 2016). TRPA1 can also 

be indirectly activated by the inflammatory mediators 

PGE2 and bradykinin (Grace et al. 2012). In the airways, 

TRPA1 is highly expressed in neuronal tissue including 

nasal trigeminals, vagal airway neurons and spinal DRGs 

(Nassenstein et al. 2008, Wortley et al. 2016), and is 

predominantly expressed on C fibers (Robinson et al. 

2018).  Activation of TRPA1 causes activation of vagal 

bronchopulmonary C fibers (Nassenstein et al. 2008) and 

causes cough in both animals and man (Birrell et al. 2009). 

Unlike TRPV1, TRPA1 has only been shown to activate C 

fibers and not the more mechanically sensitive Aδ fibers 

(Robinson et al. 2018).  

The fact placebo and active had virtually identical 

effects on the cough counting speak strongly to the idea 

that blocking TRPA1 in the periphery, and indeed centrally 

may not have any effect on clinically important endpoints. 

Similarly, the failure of TRPV1 antagonists to make it to 

the clinic having shown a high degree of target 

engagement also suggests that peripheral sensitization is at 

best a minor feature of cough hypersensitivity syndrome. 

The recent success in multiple clinical studies of the ATP 

P2X3 receptor blocker AF219 (Abdulqawi et al. 2015) 

demonstrated that hypersensitization upstream of the vagal 

nerve terminals underlies the mechanism for cough 

hypersensitivity syndrome. TRPA1 antagonists may have 

a role in other disease areas but the current evidence 

suggests that we are unlikely to fundamentally interfere 

with the mechanism of cough hypersensitivity through 

peripheral receptor blockade (Morice 2017). 

 

Inflammatory mediators 

 

Activation of TRP channels leads to release of 

inflammatory neuropeptides from C-fibers. These 

neuropeptides include the tachykinins (Substance P, 

neurokinin A, neurokinin B) and calcitonin gene-related 

peptide (CGRP) (Holzer 1998). Other inflammatory 

chemicals, such as bradykinin, may also be released. 

Neurogenic inflammation has been shown to play roles in 

both chronic itch and chronic cough (LaVinka and Dong 

2013). 
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Substance P (SP) 

 

Itch 

SP and neurokinin 1 receptor (NK1R) play an 

important role in itch signalling. This is supported by 

a large and growing body of evidence demonstrating that 

(i) NK1R is broadly expressed in multiple cell types in the 

skin, such as keratinocytes and mast cells, as well as the 

CNS; (ii) in many pruritic dermatological conditions, 

based on immunohistochemical studies, overexpression of 

NK1R is seen in the epidermis and increased numbers of 

SP-expressing nerve fibers and inflammatory cells are 

found in the skin; (iii) SP binding to NK1R-bearing 

neurons in the dorsal horn of the spine is a key relay point 

in itch signalling; and (iv) the blocking of NK1R via the 

use of NK1R antagonist interrupts transmission of the itch 

signal. SP and NK1R are overexpressed across multiple 

chronic itch-inducing conditions and that NK1R 

antagonism disrupts itch signalling and reduces itch 

provide a rationale for targeting this pathway as a potential 

treatment of chronic pruritus across multiple diseases 

(Ständer and Yosipovitch 2019).  

 

Cough 

Substance P and NK1R are implicated in chronic 

refractory cough pathophysiology. The efficacy and safety 

of orvepitant, a brain-penetrant NK1R antagonist, in an 

open-label study in patients with chronic refractory cough 

were established. Orvepitant resulted in a significant and 

sustained improvement in objective cough frequency, 

severity visual analogue scale (VAS), and quality of life; 

appeared safe, and merits further clinical investigation 

(Smith et al. 2019). 

 

Bradykinin 

 

Itch 

In humans, the subjective response to intradermal 

injection of bradykinin is intense burning pain. Bradykinin 

injection also led to mild to moderate itch in about 60 % of 

participants, but the itching was only noticed after 

cessation of the burning pain. The preference for pain over 

itch may change in atopic dermatitis where administration 

of bradykinin in lesional skin causes less pain and a robust 

itch sensation (Potenzieri and Undem 2012). Itch evoked 

by bradykinin is histamine-independent (Hosogi et al. 

2006). Both kinin receptors, B1 and B2, are shown to 

contribute to itch (LaVinka and Dong 2013).  

 

Cough 

The mechanism of angiotensin-converting 

enzyme (ACE) inhibitor-induced cough remains unclear. 

Possible protussive mediators include bradykinin and 

substance P, which are degraded by ACE and therefore 

accumulate in the upper airway or lung when the enzyme 

is inhibited; and prostaglandins, the production of which 

may be stimulated by bradykinin. Bradykinin-induced 

sensitization of airway sensory nerves has been proposed 

as a potential mechanism of ACE inhibitor-induced cough 

(Fox et al. 1996). Some evidence has suggested that the 

therapeutic effect of ACE inhibitors may involve the 

activation of bradykinin receptors (Ignjatovic et al. 2002), 

and that bradykinin receptor gene polymorphism is 

associated with the cough that is related to ACE inhibitors 

(Mukae et al. 2000). A dry, persistent cough is a well-

described class effect of the angiotensin-converting 

enzyme (ACE) inhibitor medications (Dicpinigaitis 2006). 

Bradykinin’s tussive effects are tied to the activation of 

TRPV1 and TRPA1 (LaVinka and Dong 2013). 

 

Histamine 

 

Itch 

Histamine is one of the best-characterized 

pruritogens in humans. It is known to play a role in pruritus 

associated with urticaria as well as ocular and nasal 

allergic reactions. Histamine mediates its effect via four 

receptors. Antihistamines that block the activation of the 

histamine H1 receptor, H1R, have been shown to be 

effective therapeutics for the treatment of pruritus 

associated with urticaria, allergic rhinitis, and allergic 

conjunctivitis. However, their efficacy in other pruritic 

diseases such as atopic dermatitis and psoriasis is limited. 

The other histamine receptors may also play a role in 

pruritus, with the exception of the histamine H2 receptor, 

H2R. Preclinical evidence indicates that local antagonism 

of the histamine H3 receptor, H3R, can induce scratching 

perhaps via blocking inhibitory neuronal signals. The 

histamine H4 receptor, H4R, has received a significant 

amount of attention as to its role in mediating pruritic 

signals. Indeed, it has now been shown that a selective H4R 

antagonist can inhibit histamine-induced itch in humans. 

This clinical result, in conjunction with efficacy in various 

preclinical pruritus models, points to the therapeutic 

potential of H4R antagonists for the treatment of pruritus 

not controlled by antihistamines that target the H1R 

(Thurmond et al. 2015). 
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Cough 

The peripheral sensory and autonomic nervous 

system densely innervates mucosal barrier tissues 

including the skin, respiratory tract and gastrointestinal 

tract that are exposed to allergens. It is increasingly clear 

that neurons actively communicate with and regulate the 

function of mast cells, dendritic cells, eosinophils, Th2 

cells and type 2 innate lymphoid cells in allergic 

inflammation. Several mechanisms of cross-talk between 

the two systems have been uncovered, with potential 

anatomical specificity. Immune cells release inflammatory 

mediators including histamine, cytokines or neurotrophins 

that directly activate sensory neurons to mediate itch in the 

skin, cough/sneezing and bronchoconstriction in the 

respiratory tract (Voisin et al. 2017). Causing increased 

cough sensitivity can lead to chronic cough and chronic 

cough sufferers do have elevated levels of histamine in 

their sputum and lungs (McGarvey et al. 1999, Birring et 

al. 2004). 

  

Serotonin 

 

Itch 

5-HT (5-hydroxytryptamine, serotonin) is 

another endogenous biogenic amine that has been shown 

to evoke itch in humans (Potenzieri and Undem 2012). 

Consistent with this, 5-HT stimulates action potential 

discharge in a subset of human cutaneous C-fibers 

(Schmelz et al. 2003). The itch sensation evoked by 5-HT 

was weaker than the sensation of itch evoked by histamine 

(Schmelz et al. 2003, Hosogi et al. 2006). Although 

serotonin is a relatively weak pruritogen in normal non-

lesioned skin, it should be kept in mind that it is a much 

stronger pruritogen when administered to lesioned skin 

from patients with atopic dermatitis (Hosogi et al. 2006). 

5-HT also evokes scratching behavior in experimental 

animals and in rats, the scratching behavior to 5-HT is 

associated with activation of C-fibers, but not faster 

conducting myelinated nerve fibers (Hachisuka et al. 

2010). Based on studies with selective 5-HT receptor 

subtype agonists and antagonists it appears that in mice the 

5-HT2 receptor subtype is responsible for 5-HT-induced 

itch (Yamaguchi et al. 1999). 5-HT has also been proposed 

to be involved in the pathogenesis of pruritus in 

polycythaemia vera, a myeloproliferative neoplasm 

associated with intense itching (Diehn and Tefferi 2001). 

Selective serotonin reuptake inhibitors have displayed 

beneficial effects in palliative care patients with pruritus of 

different natures (Xander et al. 2013, Luo et al. 2015). 

Cough 

Serotonin stimulates respiratory reflexes 

(Coleridge et al. 1989). In dogs, phenylbiguanide, a 5-HT 

receptor agonist, activates bronchial C-fibers (Coleridge 

and Coleridge 1977). Nodose ganglia C-fibers respond to 

serotonin. The guinea pig also shows activation of the 

5-HT3 receptor on intrapulmonary nodose C-fibers (Lee et 

al. 2004). The jugular ganglion C fibers in guinea pigs do 

not respond to 5-HT (Chuaychoo et al. 2005). However, 

5-HT does stimulate jugular ganglion C fibers in mice, 

possibly through a metabotropic 5-HT receptor (Potenzieri 

et al. 2012). It is possible the metabotropic 5-HT2A 

receptor might be involved because in mouse tracheal 

preps, serotonin causes tracheal muscle contraction via the 

5-HT2A receptor (Weigand et al. 2009, Campos-Bedolla 

et al. 2019). This contrasts with activation of the nodose C 

fibers of mice, which is mediated by the ionotropic 5-HT3 

receptor (Potenzieri et al. 2012, LaVinka and Dong 2013). 

 

Conclusion 

 

Itch is described as an irritating sensation that 

triggers a desire to scratch and the chronic itch is defined 

as pruritus lasting longer than 6 weeks. The 

pathophysiological mechanisms of chronic itch are poorly 

understood but likely involve sensitization of itch-

signalling pathways. The sensory Aδ- and, more 

importantly, C-fibers play a pivotal role in itch perception. 

Tied closely to activation of these sensory fibers is 

neurogenic inflammation, which involves the release of 

inflammatory agents like SP and bradykinin as well as 

products of mast cells, all which result in itch, flares, 

wheals, and can easily become chronic conditions. All of 

these individual factors also play roles in cough and the 

similarities between itch and cough in sensing irritants 

from the environment can be seen. Cough has an additional 

factor to incorporate though, movement. While the end 

result of the itch is scratching, the muscles and joints being 

used to scratch are not receiving signals directly from the 

itching skin. With cough, smooth muscle movement is 

incorporated into the actual cough reflex in order to move 

the irritant or blockage up the airway and out. It is this 

additional motility aspect that could result in more 

specialized involvement of myelinated fibers in cough, 

a specialization not needed in itch (LaVinka and Dong 
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 2013). Realizing the similarities between itch 

and cough can lead to new ideas and even perhaps, new 

ways to apply existing medications to new conditions. 

Clinically, anti-histamines are often prescribed and have 

been shown to help with itch and cough. However, by no 

means do anti-histamines help with all conditions. This 

indicates a real need to discover the histamine independent 

pathways involved. Progress has been made recently in 

histamine-independent itch research with the discovery of 

MRGPR genes. Future investigations into vagal 

neuroscience should also provide for novel therapeutic 

targets and strategies aimed at reducing the suffering of 

those inflicted with airway-related and also skin-related 

pathology.  
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