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Table S1. Metabolomics and lipidomics cohort studies focused on cardiovascular disease

TG 22:1

Subjects (n) Cohort Matrix Platforms Reported Markers Outcomes Ref.
metabolites (n)
Discovery cohort: n = 4,824 (27.8% female) | Participants with 15.8 years follow-up Serum NMR 41 Isoleucine e Association with adherence to dietary [1]
Replication cohort: n = 1,716 (56.3% Leucine recommendations provided by the
female) Phenylalanine Alternative Healthy Eating Index
Glycerol
Cholesterol
Total lipid concentrations, Glycerides and other
Phospholipids, Fatty acids, Fatty acids ratios —
see the original paper.
European cohort: n =352 European participants (100% Caucasian) with Plasma LC-MS/MS 3 Choline e Association of elevated TMAO with [2]
USA cohort: n=1,777 either abdominal aortic aneurysm or sub- Trimethylamine N-oxide increased abdominal aortic aneurysm
aneurysmal aortic dilations, and healthy non- Trimethylamine incidence
aneurysm subjects
US participants (96% Caucasian) with
abdominal aortic diameter of 3.0 cm or
greater, and subjects with history of dilated
aorta with measurements of abdominal aortic
diameter less than 3 cm or no prior aortic
aneurysm, and no M, stroke or death over the
following 3 years
Low-risk cohort: n = 620 Participants with LDL levels less than 190 Plasma LC-MS/MS 50 Alanine e Association with the 10-year ASCVD risk | [3]
Borderline-risk cohort: n =110 mg/dl and no pre-existing coronary artery Arginine score
Intermediate-risk cohort: n = 225 disease or myocardial infarction Aspartic acid e |dentification of metabolic pathways
Highrisk cohort: n = 147 CAR 4:0-DC associated with the development of 10-
(53.3% female) CAR 8:1 year ASCVD events
CAR 16:0-OH
Citrulline
Glutamic acid
Glutamine
Glycine
Histidine
Phenylalanine
Threonine
Tryptophan
EPIC-Potsdam Study cohort: General population Plasma DMS-MS/MS 282 CE 20:3 e Association with cardiometabolic disease | [4]
Common reference subcohort: n = 1262 DG 16:0 risk and T2D risk
T2D subcohort: n = 1886 (775 incident Patients with estimated moderate CVD risk DG 18:0 e Dietary fat intervention as a potential
cases) FA 15:0 tool for primary disease prevention
CVD subcohort: n = 1671 (551 incident FA 20:4
cases) LPC 18:2
DIVAS study cohort: MG 15:0
CVD risk subcohort: n =113 MG 20:4
(on 3 different isoenergic diets) PC 20:3
PE 20:3
TG 16:0
TG 18:0
TG 18:2
TG 18:3




Subjects (n) Cohort Matrix Platforms Reported Markers Outcomes Ref.
metabolites (n)
Discovery cohort: n =1,162 (36.3% female) | Stable participants undergoing elective Plasma LC-MS/MS 5 N*-Methyl-2-pyridone-5-carboxamide e Association of terminal breakdown [5]
Validation cohorts: n = 2,331 (US, 33.2% diagnostic cardiac evaluation N*-Methyl-4-pyridone-3-carboxamide products of excess niacin with residual
female), n = 832 (European, 29.9% female) Phenylacetylglutamine CVD risk
Trimethylamine N-oxide
Trimethyllysine
Phase I: UK Biobank participants have undergone a Plasma NMR 111 Multiple markers — see the original paper. e Association with a healthy lifestyle [6]
Discovery cohort: n = 3,613 wide range of physical measures, provided e Association of healthy lifestyle-
Validation cohorts: n = 121,733 information on their lifestyle and medical associated metabolites with coronary
Phase Il: history (follow-up) artery disease (CAD)
n=118,120
Discovery cohort: n = 1,028 Discovery cohort: Plasma LC-MS/MS 32 LPC 18:1 e Association of MG 18:2 with coronary [7]
Validation cohort: n = 1,670 Participants free of coronary heart disease (10 LPC 18:2 heart disease
years follow-up) MG 18:2 e Association of LPCs with body mass
SM d28:1 index, C-reactive protein and with less
evidence of subclinical CVD
Discovery cohort: n =1,833 (57% female) Participants at high cardiovascular risk Plasma LC-MS 385 4-Hydroxy-3-methylacetophenone e Association of walnut consumption with | [8]
Validation cohorts: n = 1,522 Cyclohexylamine a lower risk of incident T2D and CVD in a
Low walnut intake subcohort: n = 691 Guanine Mediterranean population at high
High walnut intake subcohort: n = 467 Isocitric acid cardiovascular risk
N-Acetylaspartic acid
Piperine
Serine
Sorbitol
Succinic acid
Bilirubin
Biliverdin
CAR 10:2
LPC 14:0
LPC 16:1
MG 22:1
PC36:4
PE 36:5
PS 40:6
TG 54:6
Study cohort: n = 1,057 Participants with symptomatic coronary artery | Blood- LC-MS/MS 767 CAR 10:0 e Association of adverse cardiovascular [9]
disease platelets CAR 14:0 events with alterations in the platelet
CAR 14:1 lipidome
CAR 16:0
CAR 16:1
FA 18:1
FA 18:2
FA 18:2;20

LPE 18:1|LPE 0:0/18:1
LPE 18:1|LPE 18:1/0:0
LPE 18:2|LPE 0:0/18:2
LPE 18:2|LPE 18:2/0:0
LPE 20:1|LPE 20:1/0:0
LPE 20:3|LPE 0:0/20:3
LPE 20:3|LPE 20:3/0:0
LPE 20:4

LPE 20:5

LPE 22:4|LPE 0:0/22:4
LPE 22:4|LPE 22:4/0:0
LPE 22:5




Subjects (n)

Cohort

Matrix

Platforms

Reported
metabolites (n)

Markers

Outcomes

Ref.

LPE 22:6

LPS 18:1|LPS 0:0/18:1

PC 34:2;0

PE 34:3|PE 16:1_18:2;0
P136:4|Pl 16:0_20:4
P138:5|Pl 18:1_20:4

TG 48:1|TG 14:0_16:0_18:1
TG 48:2|TG 16:0_14:1_18:1

Study cohort: n = 1,021 (48.3% female)

Participants with T2D and were followed up
for CVD over the subsequent 10 years

Serum

NMR

228

3-Hydroxybutyric acid
Acetic acid

Creatinine

Glycine

Lactic acid

Leucine
Phenylalanine

e Association with 10-year cardiovascular
risk in people with type 2 diabetes
e Metabolite-based risk score created

(10]

Malmo Diet and Cancer-Cardiovascular
cohort: n =4,067

General population followed up to 23 years
and stratified into risk groups

Plasma

DI-MS/MS

184

Sum of lipid subclasses:
Ceramide

Cholesteryl ester

Cholesterol

Diacylglycerol
Ether-phosphatidylcholine
Ether-phosphatidylethanolamine
Lysophosphatidylcholine
Lysophosphatidylethanolamine
Phosphatidylcholine
Phosphatidylethanolamine
Phosphatidylinositol

e Possible identification of lipidomic risk
before disease incidence (CVD and T2D)

(11]

Discovery cohort 1: n =99
Discovery cohort 2: n =1,162
Validation cohort: n = 2,140

Sequential stable subjects without evidence

of acute coronary syndrome undergoing
elective diagnostic coronary angiography for
evaluation of CAD with longitudinal (3-5 years)
follow-up

Plasma

HILIC-MS/MS
LC-MS/MS

Trimethyllysine
Trimethylamine N-oxide

e Association with CVD risks

(12]

Study cohort: n = 2,278 (50% female)

Participants were followed up for CVD incident
(almost 10 years)

Plasma

LC-MS/MS

790 (37)

Dimethylglycine
N-Acetylmethionine (top findings)

e Association with CVD risks

[13]

Study cohort: n =5,072

Participants with diabetes

Plasma

NMR

44

3-Hydroxybutyric acid
Acetic acid
Acetoacetatic acid
Acetone

Alanine

Citric acid
Creatinine
Glucose
Glutamine
Glycine

Histidine
Isoleucine

Lactic acid
Leucine
Phenylalanine
Pyruvic acid
Tyrosine

Valine

e Association of multiple healthy lifestyle
factors with improved circulating
metabolites from different pathways

(14]




Subjects (n)

Cohort

Matrix

Platforms

Reported
metabolites (n)

Markers

Outcomes

Ref.

Discovery cohort: n = 1,833 (57.6% female)
Validation subcohort: n = 1,522

Participants at high risk of CVD (1-year follow-
up)

Plasma

LC-MS/MS

382

1-Methylguanine
y-Aminobutyric acid (GABA)
Aminoisobutyric acid
Asparagine

Cortisol

Creatine

Cytosine
Glycodeoxycholic acid
Hippuric acid
Homoarginine
Hypoxanthine

Lactic acid

Lysine
N-Acetylspermidine
N-Acetylaspartic acid
N-Acetylornithine
N-Carbamoyl-B-alanine
Piperine
Pyroglutamic acid
Sorbitol

Sucrose
Trimethylbenzene
CAR 7:0

CAR 18:2

CAR 18:0

DG 34:3

DG 36:0

LPC 16:1

MG 22:1

PC34:3

PC36:4

PC 38:4

PE 32:0

PE 38:6

PE 40:7

SM d34:2|SM d18:1/16:1
TG 50:3

TG 50:4

TG 55:2

TG 56:2

e Association of legume consumption with
T2D incidence, but not with CVD
incidence risk

[15]

Study cohort: n1 =5,991; n2 = 3,779 (38.9%
female)

Participants with an 8-year follow-up

Plasma

LC-MS/MS

342

CE 24:0
LPI 18:2
PC38:5
PC O0-34:2
PC O-36:1
PC P-40:6
PE 38:6
P138:3
SM d42:1

e Association with future cardiovascular
events and cardiovascular death

[16]

Discovery cohort: n =1,162
Validation cohort: n = 4,000

Sequential stable subjects undergoing elective
diagnostic cardiac evaluation with longitudinal
(3 years) follow-up

Plasma

HILIC-MS
LC-MS/MS

5 (top-ranked)

Phenylacetylglutamine

e Association with cardiovascular disease
and death in humans

(17]




Subjects (n) Cohort Matrix Platforms Reported Markers Outcomes Ref.
metabolites (n)
Discovery cohort: n = 1,149 Participants with preserved kidney function Plasma GC-MS N/A p-Cresol sulfate e Association with CVD risk and overall [18]
Validation cohort: n = 3,954 undergoing elective diagnostic cardiac LC-MS/MS Indoxyl sulfate mortality
evaluation with longitudinal follow-up (5
years)
Study cohort: n = 2,627 Participants were invited to attend a health Plasma HILIC-MS 79 Hex2Cer d34:2|Hex2Cer d18:2/16:0 e Association with higher CVD risk [19]
examination for additional tests and collection LC-MS/MS HexCer d36:1|HexCer d18:1/18:0
of 8-12 h fasting blood samples (mean 12.9 HexCer d34:1|HexCer d18:1/16:0
years follow-up) HexCer d42:2|HexCer d18:2/24:0
SM d34:1|SM d18:1/16:0
SM d36:1|SM d18:1/18:0
SM d36:2|SM d18:2/18:0
SM d42:1|SM d18:1/24:0
Study cohort: n1=50; n»=4,007 Healthy participants before and after Plasma LC-MS/MS 3 Betaine e Association among intestinal [20]
the suppression of intestinal microbiota with Choline microbiota-dependent metabolism of
oral broad-spectrum antibiotics underwent Trimethylamine N-oxide dietary phosphatidylcholine, TMAO
phosphatidylcholine challenge (ingestion of levels, and adverse CVD events
two hard-boiled eggs and deuterium [ds]-
labeled phosphatidylcholine)
Participants undergoing elective diagnostic
cardiac catheterization with no history of
acute coronary syndrome
Discovery cohort: n = 3,867 Participants were free of known CVD at Serum NMR N/A 1,5-Anhydrosorbitol e Association with atherosclerosis and [21]
Validation cohort: n = 3,569 baseline 1-Methylhistidine incident CVD
3-Hydroxybutyric acid
5-Oxoproline
Acetaminophen + glucuronide
Alanine
Aspartic acid
Citratic acid
Glucose
Glutamatic acid
Glutamine
Glycerol
Glycine
Histidine
Lactic acid
Lysine
Mannose
Methionine
myo-Inositol
Dimethylglycine
Phenylalanine
Glyceryl groups of lipids
Lipids (CH2-CO)
Lipids (CH2-CH2-C=, CH2-CH2-CO)
Lipids (CH2-CH2-CH=CH)
Lipids (CH3-CH2-R, (CH2)n)
Lipids (CH3-CH2-R, CH3-CH2-C=)
Discovery cohort: n = 50 Stable patients undergoing elective cardiac Plasma LC-MS/MS 18 Betaine e |dentification of markers as predictors of | [22]
Validation cohort: n =25 evaluation who subsequently experienced Choline CVD risk

a heart attack, stroke or death over the
ensuing three-year period vs. age- and gender-
matched subjects who did not

Trimethylamine N-oxide

e Discovery of a relationship between gut-
flora-dependent metabolism of dietary




Subjects (n)

Cohort

Matrix

Platforms

Reported
metabolites (n)

Markers

Outcomes

Ref.

phosphatidylcholine and CVD
pathogenesis

Discovery cohort: n = 1,157
Validation cohorts: n1 =2,149; n, = 833

Stable subjects undergoing cardiac risk
assessment

Healthy volunteers (n = 8)

Plasma

GC-MS
LC-MS/MS

N/A

Creatinine
Erythritol
Xylitol

e Association with major adverse
cardiovascular event

(23]

Discovery cohort: n = 1,157
Validation cohort: n = 2,149

Stable subjects undergoing elective diagnostic
cardiac evaluations

Healthy volunteers (n = 10)

Plasma

GC-MS
LC-MS/MS

N/A

Creatinine
Erythritol
Xylitol

e Association with major adverse
cardiovascular event

(24]

Discovery cohort: n = 7,256
Validation cohorts: n1=2,622; n2 = 3,563

Participants were followed up for CVD incident
(15 years)

Serum

NMR

68

3-Hydroxybutyric acid
Acetic acid
Acetoacetatic acid
Alanine

Citratic acid
Glucose
Glutamine
Glycerol

Glycine

Histidine
Isoleucine

Lactic acid
Leucine
Phenylalanine
Pyruvic acid
Tyrosine

Valine

Docosahexaenoic acid (FA 22:6)

Linoleic acid (FA 18:2)
Monounsaturated FA
Omega-3 FA
Omega-6 FA
Polyunsaturated FA
Saturated FA

e Association with incident CVD

[25]

Study cohort: n = 4,007

Participants undergoing elective diagnostic
cardiac catheterization with no history of an
acute coronary syndrome

Plasma

LC-MS/MS

18

Choline
Trimethylamine

Trimethylamine N-oxide

e Discovery of increased levels of TMAO as
a predictor of incident risk for
thrombotic events

e Association between specific dietary
nutrients, gut microbes, platelet
function, and thrombosis risk

[26]




Table S2. Metabolomics and lipidomics cohort studies focused on type 1 and type 2 diabetes

Subjects (n)

Cohort

Matrix

Platforms

Reported
metabolites (n)

Markers

Outcomes

Ref.

Study cohort: n = 170 (48% female)

Children with high genetic risk for T1D

Plasma

GC-MS
LC-MS/MS

91

y-Aminobutyric acid (GABA)
Glycine
Tagatose
Arabitol
myo-Inositol
Adipic acid
Cer d38:1
Cer d39:1
LPC 18:3
LPC 20:3
LPC 20:5

SM d41:2

e Utilization of multi-omics data for the
modeling of complex, multifactorial
diseases, like T1D

(27]

Study cohort: n = 152 (47.4% female)

Children with T1D (n=76) and healthy control
children (n=76)

Cord blood
serum

LC-MS/MS

106

PC32:1
PC36:4
PC38:4
PC 38:5
PC 38:5
PC 38:6
PC40:4
PC 40:5
PC 40:5
PC 40:7
PC 40:8
PC sum
PE 38:4
PE 38:4
PE 40:4

e Cord-blood metabolic patterns may be
a valuable measure of type 1 diabetes
risk

(28]

Study cohort: n = 101 (37.6% female)

Children who progressed to T1D (PT1D; n =
30), children who developed at least one islet
autoantibody but did not progress to T1D
during the follow-up (P1Ab; n = 33), and their
age-matched controls (CTR; n = 38)

Cord blood
plasma

LC-MS/MS

232 lipid
species

CE 18:2
TG 46:2
TG 46:2
TG 48:1
TG 51:3

Identification of lipids that can be
predictive of the risk of progression to
T1D

e Comparison of lipidomic profiles of all
subcohorts

[29]

Study cohort: n =120

Children progressed to T1D; children
developed at least a single islet autoantibody
but did not progress to T1D during the follow-
up; matched controls

Plasma

LC-MS/MS

45

CE 20:5
PC33:0
TG 54:4|TG 18:2_18:1_18:1
TG 56:5

Children who progress to T1D in the
follow-up tend to have a distinct and
persistently dysregulated lipid profile as
compared to those who later progress
to islet autoimmunity but not to T1D

(30]

Study cohort: n =120

Progressors to T1D (n = 40); children tested
positive for at least one antibody in a
minimum of two consecutive samples but did
not progress to clinical T1D during the follow-
up (n = 40); control children remained islet
autoantibody-negative during the follow-up (n
=40)

Plasma

GC-MS

94

2-Ketoisocaproic acid
3,4-Dihydroxybutanoic acid
Aspartic acid

Bisphenol A

Glutamic acid
Glycerol-2-phosphate
Levoglucosan

Malic acid

Methionine

Pyruvic acid

e Association of unique metabolomic
profile with T1D

(31]

Study cohort: n =2,124

Children with high genetic risk for T1D

Plasma

GC-MS
LC-MS/MS

357

5-Methoxytryptamine
Alanine

Glutamic acid
Isoleucine

Leucine

e Studying autoantibodies and
metabolomic markers, which are
associated with the risk of progression
toT1D

(32]




Subjects (n) Cohort Matrix Platforms Reported Markers Outcomes Ref.
metabolites (n)
Methionine
Proline
Valine
Vitamin E
a-Ketoglutaric acid
Study cohort: n = 166 T1D patients (n = 85) and healthy controls (n = | Serum LC-MS/MS 54 (serum) 4-(2-Aminophenyl)-2,4-dioxobutanoic acid o |dentification of altered metabolic [33]
81). All patients had a stable dose of insulin Urine 45 (urine) 4-Pyridoxic acid profiles in T1D individuals with different
usage for more than 3 months (dose change 5-Hydroxytryptophan time in range (TIR)
<10%) 5-Methoxyindole-3-acetic acid
Hypoxanthine
Thromboxane B3
Study cohort: n =286 Infants later developed T1D (n=33); infants Cord blood LC-MS/MS 137 PC32:0|PC 16:0_16:0 e Association with high risk for [34]
developed different numbers of islet serum PC32:1|PC16:0_16:1 progression to T1D
autoantibodies during the follow-up (n=110); PC34:1|PC16:0_18:1
controls matched for sex, HLA-DQB1 genotype, PC 34:3|PC16:0_18:3
city of birth, and period of birth (n=143) PC36:1|PC18:0_18:1
PC 38:3|PC 18:0_20:3
SM d34:1|SM d18:1/16:0
SM d36:1|SM d18:1/18:0
SM d38:0|SM d18:0/20:0
SM d38:1|SM d18:1/20:0
SM d42:1|SM d18:0/24:1
SM d42:2|SM d18:1/24:1
SM d42:2|SM d18:0/24:2
SM d42:3|SM d18:2/24:1
Study cohort: n =343 Children, who later developed type 1 diabetes | Cord blood LC-MS/MS 27 Aminoadipic acid e Association with T1D [35]
(n=166), and random control children in the plasma Indoxyl sulfate
Norwegian Mother, Father, and Child cohort Tryptophan
(n=177)
Study cohort: n =655 Children with high genetic risk for T1D Plasma GC-MS 139 Ascorbic acid e Association with progression to T1D [36]
Piperidone
Study cohort: n =141 Children with T1D (n=76) and gender- and age- | Serum GC-MS 70 1,5-Anhydroglucitol e Association with T1D and with the [37]
matched healthy controls (n=65) Adenine duration of the disease
Fructose
Glycerol-a-phosphate
Inosine
Levoglucosan
Pyruvic acid
Uridine
Xylulose
Study cohort: n =11,896 Participants from four prospective Serum NMR 229 3-Hydroxybutyric acid e Association with risk of developing [38]

population-based cohorts in Finland (follow-up
for 7.8-15 years)

Acetatic acid
Acetoacetatic acid
Citratic acid
Creatinine
Glutamine
Glycerol
Glycine
Histidine
Isoleucine
Lactic acid
Leucine
Phenylalanine
Pyruvic acid

diabetes

e Association with deterioration in post-
load glucose and insulin resistance than
with future fasting hyperglycemia




Subjects (n)

Cohort

Matrix

Platforms

Reported
metabolites (n)

Markers

Outcomes

Ref.

Tyrosine
Valine

Study cohort: n = 1,016

General population

Plasma

NMR

49

3-Hydroxybutyric acid
Acetatic acid

Alanine

Citratic acid

Creatine

Creatine phosphate
Creatinine

Cysteine

Glutamine
CH2CH2CO-

CH2N-

Isobutyratic acid
Isopropanol

Leucine
N-Acetylglutamine
O-Phosphoethanolamine
Phenylpropionic acid
Proline

Pyruvic acid

e Strong inverse association of healthy
lifestyle with incident T2D

(39]

Study cohort: n=1,138

Participants from four prospective
population-based cohorts

Plasma

LC-MS/MS

70

2-Methylbutyroylcarnitine
Cortisol

Deoxycholic acid
Tyrosine
y-Glutamyl-leucine
Barogenin

CerPE 38:2

LPC 20:2

MG 18:2

PC42:7

SM d33:1

SM d34:2

SM d36:3|SM d18:2/18:1

e Association with incident T2D

(40]

Study cohorts: n1=1,261; n2 = 2,580

Clinically healthy participants (follow-up for 3
years)

Plasma

LC-MS/MS

N/A

2-Hydroxybutyric acid
LPC 18:2

e Association with insulin resistance and
glucose intolerance

(41]

Study cohort: n = 2,282
Incident T2D cohort: n = 800

General population

Serum

FI-MS

163

Glycine
Hexose
Phenylalanine
LPC 18:2

PC 0-34:3

PC 0-40:6

PC 0-42:5
PC0-44:4

PC 0-44:5
PC0O-32:1
PC36:1
PC38:3

PC 40:5

SM d34:2|SM d18:1/16:1

e Association with increased or
decreased risk of T2D

[42]

Study cohort: n1 =1,813; n2 = 451

1,813 participants without any signs of T2D

451 participants with newly diagnosed T2D

Serum

FI-MS
LC-MS/MS

134

Alanine/glycine

e Association of analine/glycine ration
with T2D

(43]

10




Subjects (n)

Cohort

Matrix

Platforms

Reported
metabolites (n)

Markers

Outcomes

Ref.

Study cohort: n = 5844 (90% female)

Female and male nurses

Plasma

LC-MS/MS

186

1-Methylnicotinamide
1-Methylguanosine
Aminoisobutyric acid
Caffeine

CAR 2:0

CAR 5:0

CAR 5:0-DC

Cortisone
Dimethylglycine
Guanidoacetic acid
N?,N%-Dimethylguanosine
N4-Acetylcytidine
N-Acetylspermidine
N-Acetyltryptophan
N-Carbamoyl-B-alanine
Piperine

Ribothymidine
Tryptophan

Biliverdin

Cer d34:1|Cer d18:1/16:0
LPE 18:2

PC 34:2

PC P-34:4

PC P-38:4

PE 36:4

PE P-36:2

SM d38:1|SM d18:1/20:0

e Association between
inflammatory and insulinemic dietary
patterns, plasma
inflammatory/insulin biomarkers,
plasma metabolomics and
risk of type 2 diabetes.

(44]

Study cohort: n = 2240

T2D participants, prediabetes participants, and
normal glucose tolerance participants

Serum

FI-MS
LC-MS/MS

123

Glycine
CAR 16:0
LPC 18:2
PC 0-36:0

e Association with incident T2D

(45]

Study cohort: n = 4,442 (61% female)

Participants without diabetes at baseline

Plasma

LC-MS/MS

Betaine

Carnitine

Choline
Crotonobetaine
y-Butyrobetaine
Trimethylamine N-oxide

e Association with incident T2D

(46]

Study cohort: n = 1571

Healthy participants (follow-up for 14 years)

Plasma

NMR
LC-MS

24

1,5-Anhydroglucitol
2-Hydroxybutyric acid
2-Oxoglutaric acid
Glycerol

Glycine betaine
Isoleucine

Lactic acid
Methionine

Pyruvic acid
Tyrosine

PC34:2;0

TG 48:0

TG 48:1

TG 50:5

e Increase of the long-term prediction
performance in combination with
classical measurements

[47]

11




Subjects (n)

Cohort

Matrix

Platforms

Reported
metabolites (n)

Markers

Outcomes

Ref.

Discovery cohort: n = 3,821
Validation cohort: n = 14,651

Participants with normal glucose regulation

Serum

LC-MS/MS

667 (discovery
cohort)
250 (validation
cohort)

CE 14:0

LPI16:1

PC34:3

PE 38:4|PE 18:0_20:4
TG 48:1 (16:0)

TG 48:1 (16:1
TG 48:2 (16:0
TG 48:2 (16:1
TG 48:2 (18:1
TG 48:3 (16:1
TG 50:0 (18:0
TG 50:1 (16:0
TG 50:1 (16:1
TG 50:1 (18:0
TG 50:2 (16:0
TG 50:2 (16:1
TG 50:2 (16:2
TG 50:2 (18:1
TG 50:3 (16:0
TG 50:3 (16:1
TG 50:3 (16:2
TG 51:0(17:0
TG 51:2 (
TG 51:3 (
TG 53:2 (

TG 53:3 (16:0
TG 54:3 (16:0
TG 54:4 (16:0
TG 54:4 (16:1
TG 54:5 (16:0
TG 54:5 (16:1
TG 54:6 (20:4
TG 54:7 (20:4
TG 54:7 (22:6
TG 55:6 (19:3
TG 56:5(18:1)
TG 56:5(22:4)
TG 56:6(22:5)

17:0
17:1
19:0

—_— — - — — e — e e e e e e e e e e e e e e T e e e — — —— —

e Association of biomarkers and lipid
pathway dysregulation with T2D onset

(48]

Study cohort: n = 2,204 (100% female)

Participants with T2D or impaired fasting
glucose + normoglycemic control participants

Plasma
Urine

LC-MS/MS
GC-MS

447

2-Hydroxybutyric acid
1,5-Anhydroglucitol
Arabinose
Citrulline
Dimethylarginine
Erythritol

Fructose

Glucose

Isoleucine

Lactic acid

Leucine

Malic acid
Mannose
N-Acetylglycine
Octanoylcarnitine
Proline

e Association with incident T2D and IFG

(49]
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Subjects (n)

Cohort

Matrix

Platforms

Reported
metabolites (n)

Markers

Outcomes

Ref.

Uric acid

Valine

10-Heptadecenoic acid (FA 17:1n7)
15-Methylpalmitic acid (FA iso-17:0)
3-Methyl-2-oxobutanoic acid
3-Methyl-2-oxovaleric acid
4-Methyl-2-oxopentanoic acid
5-Dodecenoic acid (FA 12:1n7)
Adrenic acid (FA 22:4n6)
Arachidonic acid (FA 20:4n6)
Cholesterol

Heptanoic acid (FA 7:0)

Myristic acid (FA 14:0)

Myristoleic acid (FA 14:1n5)
Palmitoleic acid (FA 16:1n7)

SM d34:1|SM d18:1/16:0
Pelargonic acid (FA 9:0)
Pentadecanoic acid (FA 15:0)

Study cohort: n = 1,150

Participants with normal fasting glucose
(follow-up for 20 years)

Plasma

LC-MS/MS

N/A

5-Hydroxyindoleacetic acid
Glucose

Glycine

Isocitric acid
Phenylalanine

Taurine

2-Aminodipic acid
3-Methyladipic acid

CE 20:3

DG 36:1

LPC 18:1

LPC 18:2

PC36:4

SM d42:1|SM d18:1/24:0
TG 48:0

TG 48:1

TG 52:1

TG 54:8

TG 58:11

e Association with improved prediction of
T2D beyond conventional risk factors

(50]

Discovery cohort: n = 543
Validation cohort: n = 1,044

Non-diabetic participants (follow-up)

Serum

LC-MS/MS
GC-MS

568

2-Hydroxybutyric acid
Bilirubin
Glucose
Glutamic acid
Glutamine
Histidine
Isoleucine
Mannose
Trehalose
Valine
a-Tocopherol

e Association with positive or negative
impact on progression to T2D

(51]

Study cohort: n =1,248

Participants with 6.5 years follow-up

Plasma

DMS-MS/MS
GC-MS

N/A

Lipid classes containing species with FA 15:0 and
FA 17:0:
CE 15:0
CE17:0
DG 15:0
FA 15:0

e Association with incident T2D

[52]
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Subjects (n)

Cohort

Matrix

Platforms

Reported
metabolites (n)

Markers

Outcomes

Ref.

FA 17:0

LPC 15:0

LPC 17:0

LPE 17:0

MG 15:0

MG 17:0

PC 15:0

PC17:0

PE 17:0

PL-OCFA (phospholipid species containing odd-
chain fatty acids)
TG 15:0

TG 17:0

Study cohorts: n1=1,039; n2 =520

Participants with mean follow-ups: 4.61 and
7.57 years

Plasma

LC-MS/MS

166

CE 16:1

LPC 15:0

LPC 18:2
PC33:3
PC35:3
PC40:7
PC43:6
PC44:1

SM d34:2

SM d41:2

TG 46:1 (12:0)
TG 48:1 (16:0)
TG 48:2 (14:0)
TG 49:7 (16:0)
TG 50:1 (16:0)
TG 50:2 (16:0)
TG 50:3 (18:1)
TG 51:7 (16:0)
TG 52:5(18:2)
TG 52:6 (18:2)
TG 54:3 (18:0)
TG 54:4 (18:2)
TG 54:5 (18:2)
TG 54:6 (18:2)
TG 54:7 (18:3)
TG 56:5 (20:4)

P

e Association with incident T2D

(53]

Study cohort: n =2,939

Participants without diabetes prevalence

Serum

LC-MS/MS

245

3-(4-Hydroxyphenyl)lactic acid
Asparagine

Erythritol

Isoleucine

Leucine

Trehalose

Valine

e Association with incident T2D
(protective biomarker of diabetes risk)

(54]
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Subjects (n)

Cohort

Matrix

Platforms

Reported
metabolites (n)

Markers

Outcomes

Ref.

Study cohort: n = 2,103

Participants with a 6-year follow-up

Plasma

LC-MS/MS

34

Carnitine
3-Dehydroxycarnitine
3-Dehydrocarnitine
CAR 2:0

CAR 3:0

CAR 3:0-DC
CAR 4:0

CAR 5:0

CAR 5:0-OH
CAR5:1

CAR 6:0

CAR 6:0-OH
CAR 6:0-DC
CAR 7:0-DC
CAR 8:0

CAR 8:1

CAR 10:0
CAR 10:0-DC
CAR 12:0
CAR 12:0-OH
CAR 12:1
CAR 12:0-DC
CAR 14:0
CAR 14:0-OH
CAR 14:1-OH
CAR 16:0
CAR 16:1
CAR 16:2
CAR 18:0
CAR 18:0-OH
CAR 18:1
CAR 18:2
CAR 20:0
CAR 20:4

e Association with improved predictive
ability for type 2 diabetes beyond
conventional risk factors

(55]

Study cohort: n =3,234

Participants were assigned to 1) intensive
lifestyle, 2) metformin, or 3) placebo (all
followed up for 3.2 years)

Plasma

HILIC-MS/MS

84

Betaine
Methionine sulfoxide
Serine

e Association with incident T2D

(56]
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Table S3. Metabolomics and lipidomics cohort studies focused on metabolic dysfunction-associated steatotic liver disease

Subjects (n)

Cohort

Matrix

Platforms Reported

metabolites (n)

Markers

Outcomes

Ref.

Study cohort: n =121,032

Participants with a mean 12.6-year follow-up

Plasma

NMR 170

3-Hydroxybutyric acid
Acetic acid
Acetoacetatic acid
Acetone

Alanine

Citric acid

Creatinine

Glucose

Glutamine

Glycine

Histidine

Isoleucine

Lactic acid

Leucine
Phenylalanine
Pyruvic acid

Tyrosine

Valine
Docosahexaenoic acid (FA 22:6)
Linoleic acid (FA 18:2)
Omega-3 FA
Omega-6 FA

e Positive and negative association with
MASLD

(57]

Study cohort: n = 10,809

Participants with and without MASLD

Plasma

NMR 123

Tyrosine

e Association with MASLD

(58]

Study cohort: n = 3,048

Participants have been followed up since birth,
including questionnaires and clinical
assessments starting from age 7 years

Plasma

NMR 154

3-Hydroxybutyric acid
Acetic acid
Acetoacetatic acid
Alanine
Creatinine
Glutamine
Histidine
Isoleucine
Leucine
Phenylalanine
Tyrosine

Valine

e Association with incident MASLD

(59]

Study cohort: n =928 (67% female)

Participants with and without MASLD

Plasma

CE-MS 94

4-Methyl-2-oxopentanoic acid
Alanine

Glutamic acid

Isoleucine

Leucine

Proline

Tryptophan

Tyrosine

Valine
Glycerophosphorylcholine

e Association with both MASLD and
cardio-ankle vascular index (CAVI)

(60]

Study cohort: n =1,479
Study subcohort: n = 447 (known age)

Participants were not treated for cancer or
infectious disease or had undergone surgery in
the previous year, and they had no history of
cancer or an infectious disease.

Serum

LC-MS/MS N/A

Oleic acid-hydroxy oleic acid (OAHOA)
Sphingosine
Uric acid

e Association with MASLD

(61]

Study cohort: n =997 (53% female)

Participants free of prevalent myocardial
infarction or congestive heart failure at the
first examination cycle

Plasma

HILIC-MS/MS | 179

Anandamide

e Association with MASLD severity, the
presence of nonalcoholic
steatohepatitis, and fibrosis

(62]
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Subjects (n)

Cohort

Matrix

Platforms

Reported
metabolites (n)

Markers

Outcomes

Ref.

Study cohort: n =559

Participants with and without MASLD

Plasma

LC-MS/MS

11

Dihydrothymine
Serine
Tryptophan
LPC18:1

LPE 20:0

e Screening tool for MASLD

(63]

Study cohort: n = 1,154 (50% female)
Control cohort: n =350

Participants with biopsy-proven MASLD and
participants from the general population with
similar gender and age to the cohort of
patients with MASLD

Serum

LC-MS
NMR

105

PC 32:0|PC 16:0_16:0
PC32:2|PC 14:0_18:2
PC34:2|PC 16:0_18:2
PC36:1|PC18:0_18:1
PC 36:3

PC 36:6|PC 18:3_18:3
PC37:5

PC 38:2|PC 20:0_18:2
PC 38:3|PC 18:0_20:3
SM d32:1

SM d39:1

TG 48:3

o Identification of three MASLD
subgroups, independent of histological
disease severity

(64]

Study cohort: n =627

Histologically characterized participants.
Participants include the full spectrum of
disease, from histologically normal liver tissue
through NAFL to NASH-F4 (cirrhosis)

Serum

LC-MS/MS
GC-MS/MS

211

Markers of fibrosis 0—1 vs. 2—4:

2-Hydroxybutyric acid
3-Hydroxybutyric acid
LPC 0-16:0

LPC P-16:0

LPC 18:2

LPC 20:4

Oleic acid

PC32:0|PC 16:0/16:0
PC32:1

PC37:4

PC 0-34:2

PC 0-34:3

PE 16:0/18:1

PE 34:2

PE 38:6

SM d42:1|SM d18:1/24:0
SM d36:0

SM d41:1

TG 56:4

TG 58:6

¢ Identification of a key metabolic
‘watershed’ in the progression of liver
damage, separating severe disease
from mild

(65]

Discovery cohort: n = 1,546
Internal validation cohort: n = 377
Prospective validation cohort: n = 749

Participants with and without MASLD (4 years
follow-up

Feces

LC-MS/MS

198

Taurocholic acid

e Positive association with both a higher
microbiome risk score and MASLD risk

(66]
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