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Summary 
Experimental and clinical studies have clearly demonstrated 
significant sex differences in myocardial structure and function, 
both under physiological and pathological conditions. The best 
example are significant sex differences in the cardiac tolerance to 
ischemia/reperfusion injury: pre-menopausal adult female hearts 
are more resistant as compared to the male myocardium. The 
importance of these findings is supported by the fact that the 
number of studies dealing with this issue increased significantly 
in recent years. Detailed molecular and cellular mechanisms 
responsible for sex differences are yet to be elucidated; however, 
it has been stressed that the differences cannot be explained 
only by the effect of estrogens. In recent years, a promising new 
hypothesis has been developed, suggesting that mitochondria 
may play a significant role in the sex differences in cardiac 
tolerance to oxygen deprivation. However, one is clear already 
today: sex differences are so important that they should be taken 
into consideration in the clinical practice for the selection of the 
optimal diagnostic and therapeutic strategy in the treatment of 
ischemic heart disease. The present review attempts to 
summarize the progress in cardiovascular research on sex-related 
differences in cardiac tolerance to oxygen deprivation during the 
last 40 years, i.e. from the first experimental observation. 
Particular attention was paid to the sex-related differences of the 
normal heart, sex-dependent tolerance to ischemia-reperfusion 
injury, the role of hormones and, finally, to the possible role of 
cardiac mitochondria in the mechanism of sex-dependent 
differences in cardiac tolerance to ischemia/reperfusion injury. 
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Introduction 
 

The most frequent (and hence the most widely 
studied) cardiovascular diseases of modern times 
undoubtedly include hypoxic states. They originate as  
a result of disproportion between the amount of oxygen 
supplied to the cardiac cell and the amount actually 
required by the cell. Degree of hypoxic injury depends 
not only on the intensity and duration of hypoxic stimuli 
but also on cardiac tolerance to oxygen deprivation.  
40 years ago, in the study comparing cardiopulmonary 
responses of male and female rats to intermittent high-
altitude hypoxia, we have observed significant sex 
differences in cardiac resistance to acute anoxia in vitro 
[1]. The myocardium of control adult female rats was 
significantly more resistant to oxygen deprivation as 
compared with males of the same age (Fig. 1). Adaptation 
to chronic hypoxia significantly increased resistance in 
both sexes, yet the sex difference was maintained. 
Unfortunately, our scientific interest was at that time 
concentrated on the protective mechanisms of cardiac 
adaptation to chronic hypoxia and the possible sex-
dependent differences remained out of our research 
program. To our surprise, starting ten years later we have 
seen repeatedly information published in the high-quality 
journals that our paper from 1984 first described sex 
differences of myocardial resistance in female and male 
rats exposed to acute hypoxia [2-4]. Mistrust to this 
statement led us to the search for objective information: 
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and really, according to data from Web of Science, the 
number of studies investigating sex-related differences in 
the cardiovascular system was negligible still in 1989 [5] 
(Fig. 2). However, the number of clinical and 
experimental studies has grown exponentially over the 
past 30 years. This trend is obviously the result of several 
facts: the number of examples of different behaviour of 
the male and female heart under physiological and 
pathological conditions is steadily increasing and there 
are controversial reports on the beneficial and adverse 
effects of hormonal replacement therapy (HRT) in 
women during menopause. Moreover, the increasing 
interest undoubtedly reflects the importance of this topic 
and the urgent need to explain underlying mechanisms 
for better understanding sex determinants of outcomes 
and to minimize bias in the management and treatment of 
ischemic heart disease (IHD) in women.  

 
 

  
Fig. 1. Sex differences in the cardiac tolerance to acute oxygen 
deprivation in rats (expressed as % of the reparation of 
contractility of the isolated right ventricle after acute anoxia). 
*p<0.01; data from [1]. 

 
 

 
 
Fig. 2. Number of clinical and experimental papers dealing with 
„sex and heart AND female heart. From 1989 to 2024. Source: 
Web of Science. 

The present review attempts to summarize the 
progress in cardiovascular research on sex-related 
differences in cardiac tolerance to oxygen deprivation 
during the last 40 years, i.e. from the first experimental 
observation. Particular attention was paid to the  
sex-related changes of the normal heart, sex-dependent 
tolerance to ischemia-reperfusion injury, role of 
hormones in sex-dependent variation in cardiac 
sensitivity to ischemia and, finally, to the possible role of 
cardiac mitochondria. 

 
Sex differences of the normal heart 
 

Sex-related cardiac differences are apparent even 
in healthy individuals (reviewed in [6]). Although there 
are no differences in the weight of the cardiac muscle 
during early phases of ontogenetic development,  
an increase in myocardial weight occurs in males at 
puberty; this change makes the male heart 15-20 % 
heavier than female heart [7]. The initial number of 
cardiomyocytes is comparable in both sexes; however, 
during ontogenetic development the number of cardio-
myocytes in female hearts remains stable, whereas the 
number of myocytes in the male hearts decreases 
significantly [8]. The loss of cells is accompanied in the 
male myocardium by an increase in their diameter (by  
51 % in male monkeys compared to 8 % in females [9]). 
This hypertrophic growth response can compensate to 
some extent for the decrease in the number of cardiac 
cells, but as the cells enlarge, the distance between the 
capillaries also increases, creating a potential source of 
insufficient oxygen supply to the cells. Surprising is the 
finding that the incidence of programmed cell death - 
apoptosis - is three times higher in the heart and coronary 
arteries of healthy men than in women; age did not 
influence this difference [10,11]. The average heart rate 
for women is approximately 3-5 beats/min more than for 
the males [12,13]. Moreover, the female heart has longer 
action potential duration, longer QT interval and a shorter 
sinus node recovery time as compared to the male heart 
[14]. In men under the age of 60 years, the average 
systolic and diastolic pressure is higher by 6–7mm Hg 
and 3-5mm Hg respectively, as compared to age-matched 
women. In post-menopausal women, the systolic blood 
pressure increases, to the extent that the incidence of 
hypertension is more prevalent in women than in men 
[15, 16]. 

Data on the myocardial contractile performance 
are controversial and not concise. For example, Schwertz 
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et al. [17 - 18] and Machuki et al. [19] have observed that 
female cardiomyocytes have a larger contraction and 
greater Ca2+ transient amplitude as compared to male 
cardiomyocytes, whereas Farrel et al. [20] have failed to 
confirm these findings. These contrasting observations 
were suggested by Machuki et al. [19] to be, at least 
partly, due to the use of whole ventricular myocytes 
versus left ventricular apical cardiomyocytes, particularly 
since differences in apical versus basal Ca2+ current have 
been reported in rabbit heart [21]. An important element 
of cardiomyocyte contraction is the cAMP-PKA-L-type  
Ca2+ channel pathway. Machuki et al. [19] have reported 
that intracellular cAMP, Ca2+ channel density and  
Ca2+ transient were larger in female than in male 
cardiomyocytes. These authors have also suggested that 
estrogen can regulate the expression of genes for the 
cAMP–L-type calcium channel pathway and contribute to 
sex differences in cardiac contraction.   

Over the last years, the number of studies 
describing myocardial sex differences at the molecular 
and cellular level has increased (for rev. see [22]); their 
enumeration exceeds the possibilities of this review.  
For the purpose of this chapter, we have briefly 
summarized sex differences in cardiac calcium 
metabolism. It may be noted that Ca2+ homeostasis is 
regulated as a function of the estrous cycle [23], and 
myofilament Ca2+ density is increased in hearts  
of ovariectomized female rats. Interestingly, Ca2+ homeo-
stasis is also regulated by testosterone, which activates 
phospholipase C and subsequent production of inositol-3-
phosphate, which in turn mediates the release of  
Ca2+ from the sarcoplasmic reticulum and increases 
intracellular Ca2+ [24]. Higher expression of sarcolemmal 
and mitochondrial ATPsensitive potassium (KATP) 
channels has been reported in the female myocardium; 
their inhibition during ischemia increases the extent of 
tissue injury [25]. Estrogen regulates also the expression 
of phospholamban and ryanodine receptors. In this 
regard, the higher levels of ryanodine receptors in female 
cardiomyocytes are linked to higher Ca2+ release from the 
sarcoplasmic reticulum [26]. Interestingly, no sex 
differences have been observed in SERCA (Ca2+-pump 
ATPase) expression level [18]. Compared to myocytes, 
little is known about cellular sex differences in the non-
myocytes of the heart [21]: while cardiac myocytes 
constitute 70 %, they constitute only about 30 % of the 
total cell number.   

Sex differences, with respect to cardiac 
structure, function and cellular mechanisms during aging, 

have been summarized by Keller and Howlett [27] and 
Sapp and Howlett [28]. Dworatzek et al. [29] observed 
agedependent sex differences also in myocardial collagen 
composition: type I, III, and VI collagens were 
significantly lower in aged female hearts. Similarly, 
Arellano et al. [30] revealed a specific down-regulation 
of sirtuins (Sirt1 and Sirt3) in aged female human hearts, 
which was accompanied by a decline in the mitochondrial 
anti-oxidative defense system.   
  
Sex differences in cardiac tolerance to 
ischemia/reperfusion injury  
  

The mentioned sex differences, characteristic of 
the normal myocardium, create a logical presumption of  
a possible different response of the heart muscle to 
various pathogenic stimuli, including ischemia/ 
reperfusion (I/R) injury. Among cardiovascular diseases, 
ischemic heart disease (IHD) is the single most frequent 
cause of death among men and women and is responsible 
for significant number from all cardiovascular events 
[31]. Even though IHD is the major cause of mortality in 
both women and men, it has largely been considered as  
a “male disease” and, therefore, the majority of 
experimental and clinical studies have been conducted in 
men. The information that women are discriminated in 
diagnostics and treatment of cardiovascular diseases was 
actually first indicated in the late 1980 [32], noting that 
women with signs of coronary artery disease required less 
intensive treatment than men. Another communication 
from the same research team [33] pointed out the 
problems associated with the indication of women for 
coronary surgical intervention. In the same year, the first 
comprehensive book on IHD in women was published 
[34].   

Epidemiological studies have unequivocally 
demonstrated that in women before menopause, IHD 
begins about 10 years later than in men, and the 
occurrence of myocardial infarction is delayed by even 
20 years. However, after menopause, the incidence of this 
disease increases more than 10 times in women, while in 
men of the same age it is only 4.5 times [35,36]. The 
cause are apparently sex differences in the development  
of atherosclerotic changes during development, which 
were already pointed out by Fejfar [37]; it is 
approximately the aforementioned 10 years; this fact is 
also supported by lower LDL-cholesterol levels and 
higher HDL-cholesterol values in postmenopausal 
women [38].  
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The vast majority of experimental studies 
confirm clinical observations (for an overview see 
[39,44]). As it has been mentioned in the Introduction, we 
found already 40 years ago [1] that the isolated right 
ventricle of the female laboratory rat is significantly more 
resistant to acute oxygen deprivation than the right 
ventricle of males. However, intensive research on this 
question began many years later. Higher resistance of 
female myocardium to I/R injury has been demonstrated 
in various species of laboratory animals (e.g. [24,44-46]). 
Females were found to have better recovery of contractile 
function and a lower incidence of reperfusion arrhythmias 
[47- 49]; Przyklenk et al. [50], however, did not observe 
this difference. Better functional recovery in females was 
accompanied by a smaller extent of ischemic damage,  
a lower level of lactate dehydrogenase and a lower 
production of inflammatory cytokines [51]. Similarly, 
transgenic females with increased expression of Na/Ca 
exchanger and β-adrenergic receptors [52,53] had less I/R 
injury and increased contractility compared to transgenic 
males. We have observed that sex differences in I/R 
injury also exist in spontaneously hypertensive rats: 
postischemic reparation of contractility was significantly 
higher in hypertensive females, despite the fact that the 
blood pressure level was comparable in both sexes [54]. 
Sex differences also exist in obese animals: infarct size 
was significantly larger in males than in females [55]. 
Experimental and clinical studies describe significant sex 
differences in remodeling after myocardial infarction  
[56-58]: in males, healing was slower with more frequent 
cardiac ruptures, apparently caused by premature 
degradation of the extracellular matrix by activation of 
metalloproteinases [57].  

The development of cardiac resistance to oxygen 
deprivation has a characteristic ontogenetic development: 
after birth, the resistance of the hearts of male and female 
laboratory rats does not differ. From the beginning of 
sexual maturity, the resistance of the male heart 
decreases, while it does not change in females; thus, 
significant sex difference arises in adulthood [59]. It is 
interesting that interventions induced during early stages 
of ontogenetic development can significantly affect the 
resistance of the adult myocardium to ischemia in sex-
dependent manner. We have observed that perinatal 
hypoxia increases the resistance of adult female heart to 
ischemia; on the contrary, in adult males was I/R injury 
significantly more expressed than in males kept under 
normoxic conditions [5,43,59] (Fig. 3) These results 
support the hypothesis that perinatal hypoxia represents  

a primary programming stimulus for the heart that may 
lead to sex-dependent sensitivity of the adult heart to 
ischemia. This fact may be clinically important in patients 
who have undergone a prolonged hypoxic period in the 
early stages of development, e.g. in children with 
hypoxemic congenital heart disease.   

In this context, the question arises whether  
the high resistance of the female heart to hypoxia can be 
further increased by some of the known cardioprotective 
phenomena. However, the answer is not simple: the 
experimental work that dealt with this issue is rare and, 
moreover, not concise; we did not find clinical 
observations in the literature. We have observed that 
adaptation to chronic hypoxia increases cardiac resistance 
in both sexes; however, the sex difference observed in 
normoxic animals was preserved [1]. Data on the effect 
of ischemic preconditioning are contradictory: e.g. 
Humphreys et al. [61] observed the same degree of 
protection in male and female rats, whereas Wang et al. 
[62] failed to increase the resistance of female rabbit 
myocardium. Song et al. [63] found that the protective 
effect of preconditioning was lower in females than in 
males; similar conclusions were reached by Crisostomo  
et al. [64] in the case of ischemic postconditioning. 
Moreover, Lieder et al. [65] observed that sex is not 
decisive for the cardioprotective effect of pre- and 
postconditioning. The most plausible explanation seems 
to be the observation of Turcato et al. [66]: they did not 
find a protective effect of ischemic preconditioning in 
young females, whose resistance was primarily relatively 
high; with a decrease in tolerance to ischemia in older 
individuals, the effect of ischemic preconditioning 
appeared. 

 

 
 
Fig. 3. Effect of perinatal hypoxia on the number of ischemic 
arrhythmias in adult males and females. * p<0.01; data from [60]. 
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Fig. 4. Effect of estrogen on the heart; according to [68]. 
 
 

It seems to us that this observation belongs to the 
general biological phenomenon; the degree of cardiac 
resistance apparently has its threshold. Indeed, we 
observed a similar effect in the hearts of newborn rats; 
their high resistance could not be further increased  
either by adaptation to chronic hypoxia or by ischemic 
preconditioning; the protective phenomenon appeared 
only with a decrease in natural resistance during further 
stages of ontogenetic development [67]. In this context, it 
is necessary to recall the results of the CONDI-2/ERIC 
PPCI clinical study, which did not demonstrate a cardio-
protective effect of remote ischemic preconditioning in 
patients with acute myocardial infarction, regardless of 
sex [68].  

It follows that sex significantly affects cardiac 
resistance to I/R injury. However, we are still waiting for 
explanation of the pathogenetic mechanisms involved in 
this process. Let's try to briefly summarize the existing 
hypotheses. 

 
Role of hormones in sex-dependent 
differences in cardiac sensitivity to ischemia-
reperfusion injury 
 

The most frequently mentioned cause of 
differences are sex hormones, especially estrogen. Its 
level changes during the ovarian cycle, during pregnancy, 
during hormonal contraception; it affects, among others, 
the function of blood vessels, the inflammatory response, 
the sensitivity of myocytes to insulin or the degree of 

development of cardiac muscle hypertrophy [69]. It is, 
therefore, understandable that experimental studies have 
focused on elucidating the role of estrogen in the cardiac 
tolerance to oxygen deprivation (Fig. 4).  

There is clear evidence that ovariectomy in 
female rats increases the infarct size; on the contrary, the 
administration of estrogens has a protective effect on the 
male cardiac muscle [51]. Most of the protective effects 
of estrogens are attributed to their binding to estrogen 
receptors α and β, which have been demonstrated in 
female and male heart cells, fibroblasts and vascular 
smooth muscle [69,70], but are also found in cell 
membranes and mitochondria [71]. Their affinity for 
binding to 17βestradiol is the same in both sexes. 
Experimental studies show that these receptors play  
an important role in protection against I/R damage [72]. 
Unfortunately, there is still no consensus on which of the 
two receptors is responsible for the higher resistance of 
the female heart. However, there is a third membrane 
estrogen receptor, identified as G-protein-coupled 
estrogen receptor (GPER) [73]; it was found to inhibit the 
opening of the mitochondrial permeability transition pore 
(PTP) localized on the inner mitochondrial membrane 
[74]; the latter is involved in the development of ischemic 
damage (see later).   

The binding of estrogens to receptors induces 
gene expression of a number of functional and structural 
proteins (the so-called "genomic effect"). In addition to 
the genomic effects, there are also the so-called 
"nongenomic" effects of estrogen; they occur rapidly and 
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independently of protein synthesis [75]. One of the many 
factors that can influence the response of the female 
myocardium is nitric oxide; its concentration is higher in 
female than in male myocardium. Blockade of NO 
synthase (eNOS) with L-NAME abolishes sex differences 
in susceptibility to I/R injury. It should be mentioned that 
a higher concentration of eNOS is also associated with 
Snitrosylation of L-type calcium channels, which 
significantly reduces I/R injury in females by decreasing 
the calcium overload of the cell [76]. In addition, 
estrogen activates phosphatidylinositol 3-kinase (PI3K) 
activity, which is considered to play a role in 
cardioprotection in females [77]. Taken together, it can 
be suggested that the protective effect of estrogen could 
be attributed to changes in the expression of specific 
proteins or altered post translational protein 
modifications. However, these are apparently not the only 
mechanisms involved in the cardiac ischemic protection 
in females. It seems that also e.g. sarcolemmal and 
mitochondrial KATP channels [78], higher activity of 
serine/threonine protein kinase (Akt), protein kinase Cε 
(PKCε) levels [79] or inhibition of proinflammatory 
tumor necrosis factor α (TNF α) in ischemic myocardium 
[80,81] may play a significant role. In all these 
considerations we must take into account the possible 
role of significant sex differences in cellular calcium 
metabolism, as discussed above.  

The vast majority of experimental laboratories 
have chosen only one of the sex hormones - estrogen. It is 
clear that the cardiovascular system is influenced by at 
least one other powerful player, androgen. Both 
estrogenic and androgenic hormones are present in both 
sexes, although in different concentrations and ratios. 
Testosterone activates androgen receptors, which are 
expressed in myocytes; it increases the level of 
homocysteine and endothelin-1 and, by stimulating 
thyroxine hydrolase, increases the synthesis of 
catecholamines. Opinions on the effect of testosterone on 
cardiovascular function vary, both adverse and beneficial 
effects of testosterone on the heart have been reported 
[82,83]. It has been found that testosterone can increase 
the susceptibility to IHD in men [84], higher doses of 
androgenic steroids increased the development of 
atheroma [85]. However, there is no experimental 
evidence that physiological concentrations of testosterone 
induce myocardial ischemic damage. In contrast, other 
clinical work shows that testosterone can have a positive 
effect on the heart muscle [84]. This effect is apparently 
caused indirectly by conversion to dihydrotestosterone or 

17β-estradiol. It was found, for example, that admini-
stration of testosterone to ovariectomized females 
reduced the extent of ischemic damage [86]. Furthermore, 
Ghimire et al. [87] showed that low doses of testosterone 
have a protective effect against I/R injury in older mice. 
Cavasin et al. [88] demonstrated in a mouse model of 
myocardial infarction that whereas estrogens prevent 
maladaptive chronic remodeling and further deterioration 
of cardiac performance, testosterone adversely affects 
myocardial healing (as indicated by a higher rate of 
cardiac rupture), and thus contributed to cardiac 
dysfunction as well as to adverse cardiac remodeling. On 
the other hand, Tsang et al. [89] observed that 
testosterone conferred cardioprotection by up regulating 
the cardiac α1adrenoceptor; this beneficial effect was 
abolished or attenuated by blockade of androgen 
receptors. These conflicting results obviously need 
further experimental analyses under precisely defined and 
thus comparable conditions: experimental model, form of 
steroid hormone, dosage, timing and evaluation. It is, 
however, necessary to stress, that precise understanding is 
complicated also by the fact that steroid hormone 
receptors do not act alone but interact with a broad 
spectrum of co-regulatory proteins to alter transcription 
[90].  

 
Possible role of mitochondria  
 
  The number of different hypotheses trying to 
explain the causes of sex differences in the cardiac 
resistance to oxygen deficiency is increasing. In recent 
years a new promising opinion has appeared, suggesting 
that mitochondria, organelles responsible for oxygen 
handling, may be significantly involved in this effect  
[91-93]. Mitochondrial sexual dimorphism has been 
described in a number of organs such as liver, heart, brain 
and adipose tissue.   

Cardiomyocytes from female rats exhibit lower 
mitochondrial content, but are more efficient and more 
differentiated than male mitochondria [94]. Moreover, 
they generate less reactive oxygen species (ROS) than 
male ones and have higher capacity of antioxidant 
defence [51]. At baseline, no difference in oxygen 
consumption rate and cardiolipin content is observed  
between mitochondria from male and female  
rats [95]. Subsarcolemmal and intermyofibrillar isolated 
mitochondria from female hearts have the same 
respiration rates as the male ones except for glutamate-
malatestimulated respiration which is lower in females, 
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while the ADP/O ratio is higher [96]. Taken together, 
these results suggest that cardiac mitochondria from 
females have higher specific activity than the male ones 
but lower mitochondrial content, explaining the similar 
oxidative capacity in males and females [92]. Recently, 
Cao et al. [97] have observed that cardiac mitochondrial 
DNA levels and function tend to be reduced in females as 
compared to males; on the other hand, the expression of 
genes, encoding mitochondrial proteins, are higher in 
males than females.   

Murphy and Steenbergen [45] suggested that 
mitochondria are major targets of cardioprotective 
signalling. Lagranha et al. [51] have observed that 
cardioprotection in females was associated with altered 
mitochondrial proteins. They found that mitochondria 
isolated from females exhibited a number of post-
translational modifications in mitochondrial enzymes 
involved in regulating the generation of ROS and 
oxidative metabolism. Therefore, females exhibit reduced 
ROS generation and oxidative metabolism. Morkuniene 
et al. [98] and Pavón et al. [99] described the relevance of 
estrogens in maintaining proper mitochondrial function in 
response to the instability of mitochondrial membrane 
potential and PTP opening after I/R. They observed that 
the opening of this pore can be blocked by physiological 
concentrations of estrogens, similar to blockade with the 
classic inhibitor cyclosporine.   

Significant sex differences were also found in 
the mitochondrial uptake of Ca2+: mitochondria from 
female hearts have lower Ca2+ uptake rates and improved 
recovery of mitochondrial membrane potential from  
Ca2+ - induced depolarization [100]. They cope more 
successfully with external calcium load by decreasing the 
rate of calcium influx by the calcium uniporter (MCU). 
The interaction between MCU and calcium uptake 
regulatory proteins M1CU1, M1CU2, MCUR1, 
SLC25A23, and EMRE may be here of crucial 
importance [101]. In addition, Chweih et al. [102] have 
observed that the concentration threshold for net 
mitochondrial Ca2+ uptake was higher in the female heart 
than in male myocardium. All these findings suggest that 
female heart mitochondria are less prone to Ca2+ overload 
upon its effect [103-105].   

It has been known for a long time that 
mitochondria become leaky, uncoupled, and massively 
swollen if they are exposed to high Ca2+ concentrations, 
especially in the presence of phosphate and when 
accompanied by oxidative stress. The collapse of 
mitochondrial membrane potential due to opening of 

permeability transition pore (PTP), localized on the inner 
mitochondrial membrane, has been implicated in the 
molecular mechanism of cardiac I/R injury [106,107]. 
PTP is closed during ischemia due to the low pH (<7.0), 
but it opens during the first minutes of reperfusion, 
together with normalization of pH, ROS accumulation, 
and rise in intracellular calcium. PTP opening 
accompanied by matrix swelling, leads finally to 
myocardial cell death [107]. Initial support for the role of 
PTP in I/R injury was provided by pharmacology: the 
blockade of PTP by cyclosporine A and sanglifehrin A in 
perfused heart was cardioprotective in most animal 
models of cardiac I/R injury [108]. Cyclosporine A was 
cardioprotective also in small groups of patients with 
myocardial infarction undergoing percutaneous coronary 
intervention [108]. However, a large multicenter clinical 
trial (CIRCUS) revealed no protective effect of 
cyclosporine A on clinical outcome in patients with 
myocardial infarction [110,111]. Several factors such as 
the severity of infarction, a quite narrow window of 
protection, route of application, and timing of 
administration as well as comorbidities may be 
responsible for the lack of cardioprotection in the 
CIRCUS trial. Nevertheless, these studies challenge the 
clinical use of cyclosporine A and the possible 
cyclophiline D (CypD) inhibitors for cardioprotection, 
and emphasize the importance of further studies to clarify 
whether CypD is a feasible target for inhibition that can 
protect the heart from I/R injury [112].   

We have tested the hypothesis whether the role 
of mitochondrial PTP in the pathogenesis of I/R damage 
to the heart muscle is dependent on sex [42,93,113]. We 
found that cardiac mitochondria of females are 
significantly more resistant to swelling induced by higher 
calcium concentration, indicating their greater resistance 
to MPTP opening (Fig. 5). Since the opening of the pore 
is closely related to the development of I/R damage, the 
higher resistance of this structure to calcium is  
one possible explanation for the higher tolerance of the 
female heart. In this context, the question arises as to 
whether the protein composition of PTP is responsible for 
these sex differences. Our experiments showed that there 
is no sex difference in substrate oxidation or ATP 
formation, which indicates a comparable content of 
respiratory chain enzymes. This observation was 
confirmed by quantitative immunodetection: female and 
male mitochondria contain comparable amounts of ATP 
synthase (the protein complex responsible for 
mitochondrial PTP function), as well as the regulatory 
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protein cyclophilin D. Interestingly, we observed similar 
results in our previous study, comparing the role of the 
mitochondrial PTP in highly hypoxic resistant neonatal 
and adult hearts of laboratory rats [114]. Therefore, it 
seems that the protein composition of mitochondrial PTP 
is not responsible for sex differences in cardiac tolerance 
to oxygen deprivation, but rather reflects sex differences 
in the regulation of its function, probably together with 
regulation of CypD by posttranslational modifications 
[109]. Cyclophilin D thus remains an attractive target for 
both experimental and clinical studies looking for 
possible mitochondrial PTP blockers as a way to reduce 
myocardial I/R damage [115]. It may be, therefore, 
concluded that mitochondria are significantly involved in 
the mechanism of sex differences in cardiac tolerance to 
I/R injury.  

 
 

 
 
Fig. 5. Calcium induced swelling by rat heart mitochondria from 
male and female rats. (A) Extent of swelling was calculated from 
the swelling curves and expressed as the decrease of absorbance 
at 520 nm during 5 min after addition of 200 µM CaCl2.  
(B) Maximum rate of swelling was calculated from curves 
obtained after derivatization of data of the extent of swelling.  
* p<0.01; data from [113]. 
 
 
Sex differences today 
 

Unfortunately, despite a growing body of 
evidence, the distinct contribution of biological sex and 
the sociocultural dimension of gender to the 
manifestations and outcomes of IHD remain unknown. 
Moreover, the relative contribution of purely biological 
factors, such as genes and hormones, to cardiovascular 
phenotypes and outcomes is not yet fully understood 
[116]. In spite of the increasing awareness of sex 
differences in the management of patients with IHD in 

Europe, a recent study by Hellgren et al. [117] confirmed 
that women still receive guideline-recommended 
therapies less often than men. Sex-based disparities in 
outcomes and quality of care were summarized by 
Aggarwal el al. [118]. They include higher morbidity and 
mortality, delayed presentation, fewer revascularization, 
less cardiac rehabilitation and less intense pharmaco-
therapy in females. Recognition of sex differences in 
presentation, pathophysiology, treatment and outcomes 
accentuates the need for sex-specific research. 
Underrepresentation of females results in male outcomes 
being extrapolated to females, which does not consider 
sex and gender differences. In conclusion, although 
women develop IHD later in life than men, the 
underestimation of women-specific IHD pathophy-
siology, including biological and sociocultural 
components, the lack of early recognition and the lack of 
women-specific treatments increase the risk and mortality 
of IHD in women [40,116].  

Similarly, sex differences are relatively 
understudied also in animal experiments; many studies 
fail to report the sex of the cells also in in vitro 
experiments. Moreover, most of experimental studies use 
exclusively males [40]. On the other hand, it is necessary 
to admit that experimental approach contributed 
significantly to our present knowledge on the 
mechanisms involved in the sex differences of the normal 
and ischemic heart. The observation that cells from males 
and females are inherently different is becoming 
increasingly clear – either due to acquired differences 
from hormones and other factors or due to intrinsic 
differences in genotype (XX or XY). In myocardial 
diseases, sex differences have been described at the tissue 
level [119]. However, in cells obtained from adults it is 
difficult to distinguish genetically determined sex 
differences that exist at birth from sex differences 
developed during the disease course and are the result of 
hormones or the environment.  

A significant progress in our understanding of 
the development of sex differences brought the promising 
studies published by Shi  et al. [120] and Deegan et al. 
[121], demonstrating that sex chromosome-specific 
differences in cardiomyocytes exist even before gonads 
are activated in the embryo. This finding confirm that 
cardiac sex-related disparities can occur at the early 
stages of heart development, before gonad formation, and 
are therefore independent of the influence of sex 
hormones or the environment. Moreover, identifying how  
hormones influence sex chromosome effects, whether 
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antagonistically or synergistically, will enhance our 
understanding how sex disparities are established. These 
studies support the view that purely biological 
mechanisms – genes and sex steroids - contribute to 
sexrelated differences in IHD and thereby emphasize the 
importance of sex-specific experimental research on 
human disease [116]. 

 
Conclusions 

 
It follows from the data available that male  

and female cardiovascular system differ significantly in 
many characteristics under both physiological  
and pathological conditions. These differences should  
be considered by the selection of optimum diagnostic  
and therapeutic procedures in clinical practice. However, 
their detailed mechanisms are still poorly understood and 
the evidence available to date regarding sex-specific 
aspects of management and outcomes in cardiovascular 
diseases is still rather limited. Nevertheless, one is clear 

already today: sex differences in cardiac tolerance to 
ischemic injury are so important that they should be taken 
into consideration both in experimental and clinical 
cardiology. 
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