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Summary

Short-term fructose exposure may perturb the nitric oxide
(NO)/reactive oxygen species (ROS) balance before hemodynamic
Wistar (WKY) and
spontaneously hypertensive rats (SHR) rats received 10 %

changes development. Male Kyoto
fructose in drinking water for 3 weeks or remained on tap water.
We assessed systolic blood pressure (tail-cuff), plasma lipid levels,
tissue conjugated diene concentrations, protein expression of
NADPH oxidase, NF-kB, and SOD (Western blot), and total NO
synthase (NOS) activity ([3H]-L-arginine to [3H]-L-citrulline).
Fructose did not change blood pressure in either strain, but
increased kidney-to-body-weight ratio in SHR. In WKY, plasma
HDL level decreased; in SHR, total cholesterol, VLDL, and
triglycerides increased. Conjugated diene concentration increased
in the kidney of WKY but not in the heart. Fructose upregulated
renal NADPH oxidase and downregulated renal SOD in SHR, with
no change in cardiac NADPH oxidase. NF-kB protein expression did
not change in either tissue. NOS activity decreased in the heart
and kidney of WKY and in the kidney of SHR. We can conclude
that even moderate, short-term fructose intake induces strain-
dependent dyslipidemia and an early shift of the renal redox milieu
toward oxidative stress, accompanied by reduced NOS activity,
while leaving blood pressure unchanged. The kidney appears more
susceptible than the heart, particularly in the hypertensive
background, highlighting the NO/ROS axis as an early target for

intervention.
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Introduction

Fructose is a monosaccharide that is widely
available in natural food sources such as fruits, vegetables,
and honey. However, in modern diets most exposure
comes from added sugars (sucrose or high-fructose corn
syrup) in processed foods and sugar-sweetened beverages.
Large prospective analyses and recent global burden
assessments consistently link higher intake of sugar-
sweetened beverages with increased risk of type 2 diabetes
and cardiovascular disease [1,2].

Fructose metabolism differs fundamentally from
that of glucose. After intestinal absorption, primarily via
the fructose-specific transporter GLUTS with context-
dependent apical recruitment of GLUT2, fructose enters
the portal circulation and is rapidly phosphorylated by
ketohexokinase (KHK) [3,4]. Unlike glucose, acute
fructose ingestion elicits minimal insulin and leptin
responses, a hormonal profile that may favor positive
energy balance [4]. The small intestine is now recognized
as a major site of first-pass fructose metabolism that can
shield the liver from fructose exposure at modest doses.
When this capacity is exceeded, fructose “spills over” to
the liver and colonic microbiota, amplifying metabolic
perturbations [5]. In hepatocytes, unregulated fructolysis
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bypasses phosphofructokinase control, driving de novo
lipogenesis, hypertriglyceridemia, and ectopic fat
accumulation through ChREBP/SREBP-1c—dependent
programs [6].

A key biochemical consequence of rapid
ketohexokinase-mediated fructolysis is ATP depletion
with uric acid generation. Elevated hyperuricemia is
mechanistically linked to endothelial dysfunction through
nitric oxide (NO) depletion and redox-inflammatory
signaling, thereby connecting high fructose exposure to
cardiometabolic risk [7,8]. Gersch et al. [9] demonstrated
that uric acid reacts directly with NO in a rapid,
irreversible reaction, resulting in the formation of 6-
aminouracil and depletion of NO.

Further evidence demonstrates that high-fructose
diets cause disruption in the ratios of acetyl-coenzyme A
to coenzyme A and nicotinamide adenine dinucleotide
[10,11]. Fructose may also elevate concentrations of
angiotensin II [12] - a potent activator of NAD(P)H
oxidase contributing to the production of reactive oxygen
species (ROS) [13,14]. An increase in cellular production
of ROS leads to activation of intracellular signaling
pathways [15], including the transcription factor nuclear
factor-kB (NF-kB), which regulates the expression of
numerous genes, including those encoding superoxide
dismutase (SOD), endothelial NO synthase (eNOS), and
inducible NO synthase (iNOS) [16,17].

The kidney is an important site of fructose
disposal, and recent studies suggest that metabolic
syndrome is a sequential risk factor for chronic kidney
[18,19]. The kidney metabolizes fructose
(proximal tubule KHK/GLUTS5 expression) and is
fructose-induced

disease

vulnerable to oxidative  stress,
inflammation, and fibrosis - pathways relevant to chronic
kidney disease [18].

Given the interplay between oxidative stress and
NO bioavailability in cardiovascular-renal pathology, we
investigated whether short-term fructose intake alters
oxidative status and NO production in the heart and kidney

of normotensive and spontaneously hypertensive rats.
Material and Methods

Chemicals and drugs
All the chemicals used were purchased from
Sigma Chemicals Co. (Germany) when not specified.

Animals

In this study, 24 male 6-week-old rats were used.

Six Wistar Kyoto rats (WKY) and six spontaneously
hypertensive rats (SHR) were taken as controls (drinking
tap water), whereas the remaining rats were given free
access for 3 weeks to 10 % fructose solution in drinking
water. All animals were kept under standard laboratory
conditions (12 h light, 12 h darkness, 2242 °C, pelleted ST-
1 diet,
experimental protocols were approved by the Ethical

drinking ad libitum). All procedures and

Committee of the Institute of Normal and Pathological
Physiology SAS and the State Veterinary and Food
Administration of the Slovak Republic (3260/12-221).

Blood pressure and weight parameters

Systolic blood pressure (SBP) was recorded
weekly by non-invasive tail-cuff plethysmography in
conscious, warmed and gently restrained rats. For each
session, three consecutive readings were obtained and
averaged. Upon completion of the treatment period, the
animals were euthanized, and their body weight (BW),
heart weight (HW), and kidney weight (KW) were
recorded. The relative heart weight and relative kidney
weights were determined by calculating the HW/BW and
KW/BW ratio, respectively.

Lipid profile

Blood plasma was collected to measure the level
of total cholesterol (CHOL), triglyceride (TG), low density
lipoprotein (LDL), very low density lipoprotein (VLDL)
and high density lipoprotein (HDL) (ab65390, Abcam,
Cambridge, UK).

Conjugated diene concentration

To  determine conjugated diene (CD)
concentrations, heart and kidney tissues were
homogenized in 15 mmol/dm* EDTA and 4 % NaCl, as
described previously [20]. Briefly, lipid extraction was
performed using a mixture of chloroform and methanol
(1:1). The chloroform layer was evaporated under a
nitrogen atmosphere, and the residue was dissolved in
cyclohexane. CD concentrations were measured
spectrophotometrically at a wavelength of 233 nm using
the NanoDrop 2000c UV-Vis spectrophotometer (Thermo

Fisher Scientific, Waltham, MA, USA).

Western Blot Analysis
Heart
homogenized, and Western blot analysis was conducted

and kidney tissue samples were

following a previously described protocol [21]. Briefly,
membranes were incubated overnight at 4 °C with the
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following primary antibodies: anti-NADPH oxidase 4
(1:2000, Abcam, ab154244), anti-NF-xB p65 (1:1000,
Cell Signaling, 6956), anti-SOD1 (1:3000, Abcam 13498),
and anti-GAPDH (1:5000, Abcam, ab201822) as a loading
control. Subsequently, the membranes were incubated for
2 h at room temperature with a peroxidase-conjugated
secondary goat anti-rabbit antibody (1:5000, Abcam,
ab97051).

Protein bands were visualized using an enhanced
chemiluminescence system (ECL, Bio-Rad, CA, USA)
and quantified with a ChemiDoc™ Touch Imaging System
(Image Lab™ Touch software, Bio-Rad, Hercules, CA,
USA). Band intensities were normalized to GAPDH as a
loading control for heart tissue samples.

Total NO Synthase (NOS) activity

Total nitric oxide synthase (NOS) activity was
quantified in crude heart and kidney homogenates by
measuring the conversion of [*H]-L-arginine to [*H]-L-
citrulline (ARC, Saint Louis, MO, USA), as described
previously [22]. Briefly, 50 uL of 20 % tissue homogenate
was incubated in a reaction mixture containing 0.5 M Tris-
HCI (pH 7.4), 10 mM NADPH, 20 mM CaCl,, 100 uM
[*H]-L-arginine, 1 mg/mL calmodulin, a 1:1 mixture of
FAD and FMN, and 50 mM tetrahydrobiopterin (BH4), in
a final volume of 100 pL at 37 °C for 30 min. The reaction
was terminated by adding 1 mL of 0.02 M HEPES buffer
(pH 5.5) containing 2 mM EDTA, 2 mM EGTA, and 1 mM

L-citrulline. The reaction mixture was applied to 1 mL
Dowex 50WX-8 columns (Na* form) to separate [*H]-L-
citrulline. [*H]-L-citrulline was measured using a Quanta
Smart TriCarb Liquid Scintillation Analyzer (Packard
Instrument Company, Meriden, CT, USA).

Statistical analysis

Results are expressed as means = S.E.M. One-
way ANOVA and Duncan test were used for the statistical
analysis. P<0.05 value was considered as statistically
significant.

Results

Blood pressure and weight Parameters

At the end of experiment, mean systolic blood
pressure after short-term treatment with 10 % fructose
neither in WKY nor SHR was changed, when compared to
control age-matched untreated rats (Fig. 1). Body weight
did not differ between control and fructose drinking rats,
however, KW/BW ratio in SHR was increased due to the
fructose treatment (Table 1).

Lipid profile

Fructose treatment decrease plasma HDL level in
WKY, while increase total cholesterol, VLDL, and
triglyceride levels in the plasma of SHR (Table 1).
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Fig. 1. Systolic blood pressure (BP) after short-term fructose treatment in Wistar Kyoto (WKY) and spontaneously hypertensive rats

(SHR). Values represent mean £ SEM. * p<0.05 WKY vs. SHR



S198 Pechanova et al. Vol. 74
Table 1. The effect of short-term fructose treatment on weight parameters and lipid profile
WKY WKY + FRU SHR SHR + FRU

BW [g] 227.50 £ 6.56 236.50+3.33 250.8 £4.53 241.67 £ 8.40
HW [mg] 814.33 £16.67 864.83 £17.04 960.67 + 18.37 861.83 £10.33 **
HW/BW [mg/g] 3.59+0.06 3.66+0.08 3.68£0.07 3.57+0.04
KW [mg] 994.33 + 18.67 1089.83 + 18.98 = 896.33 £ 14.06 924.17 £ 17.25
KW/BW [mg/g] 438 +£0.08 4.61 +£0.09 3.57+0.04 3.82+£0.05 **
CHOL [mmol/L] 1.925 £ 0.08 1.785 £ 0.06 1.507 £ 0.02 1.741 £ 0.05 *
HDL [mmol/L] 1.616 +£0.03 1.522 £0.03 x 1.213 £ 0.02 1.28 £0.04
LDL [mmol/L] 0.138+0.01 0.093+0.01 0.077 £ 0.00 0.092 +£0.01
VLDL [mmol/L] 0.552 £ 0.03 0.728 £ 0.08 0.277 £0.01 0.740 £ 0.07 ***
TG [mmol/L] 1.252 £0.10 1.603+0.17 0.686 +0.07 1.626 £ 0.16 ***

BW- body weight, HW — heart weight, KW — kidney weight, CHOL — cholesterol, HDL — high density lipoprotein, LDL — low density
lipoprotein, VLDL — very low density lipoprotein TG — triglycerides, FRU — fructose. Values represent mean + SEM. » p<0.01 WKY vs.
WKY + FRU; ** p<0.01 SHR vs. SHR + FRU; *** p<0.001 SHR vs. SHR + FRU
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Fig. 2. The effect of short-term treatment with 10 % fructose (FRU) on conjugated diene (CD) concentration in the heart and kidney of
Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Values represent mean £ SEM. * p < 0.05 WKY vs. WKY+FRU
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Fig. 3. The effect of short-term treatment with 10% fructose (FRU) on protein expression of NADPH oxidase in the heart and kidney of
Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Values represent mean £ SEM. * p < 0.05 SHR vs. SHR+FRU

CD concentration both WKY and SHR. On the other hand, it increased
significantly CD concentration in the kidney of WKY

(Fig. 2).

Although increasing trend in WKY, fructose
treatment did not change CD concentration in the heart of
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Protein expressions of NADPH oxidase, NF-kB, and SOD

Fructose treatment significantly increased
NADPH oxidase expression in the kidney of SHR, while
had no effect in the heart of both WKY and SHR (Fig. 3).
Fructose treatment also did not change NF-«xB protein
expression in any tissue of WKY or SHR (Fig. 4).
Similarly, fructose treatment did not affect SOD protein

expression in the heart or kidney of WKY, however, it

Heart
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decreased significantly SOD protein expression in the
kidney of SHR (Fig. 5).

NOS activity

Fructose treatment significantly decreased NOS
activity in the heart and kidney of WKY and in the kidney
of SHR (Fig. 6).
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Fig. 4. The effect of short-term treatment with 10% fructose (FRU) on protein expression of nuclear factor kappaB (NF-kB) in the heart
and kidney of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR).
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Fig. 5. The effect of short-term treatment with 10 % fructose (FRU) on protein expression of superoxide dismutase (SOD) in the heart
and kidney of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Values represent mean £ SEM. * p < 0.05 SHR vs.
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Fig. 6. The effect of short-term treatment with 10 % fructose (FRU) on nitric oxide synthase (NOS) activity in the heart and kidney of
Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Values represent mean + SEM. * p < 0.05 WKY vs. WKY+FRU, resp.

SHR vs. SHR+FRU
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Discussion

In the present study, three weeks of 10 % fructose
intake produced an early cardio-renal redox imbalance
without affecting systolic blood pressure in either WKY or
SHR rats. Specifically, fructose lowered HDL in WKY,
increased total cholesterol, VLDL and triglycerides in
SHR, wupregulated renal NADPH oxidase and
downregulated SOD in SHR, and reduced NOS activity in
the heart and kidney of WKY and in the kidney of SHR.
Kidney-to-body-weight ratio also increased in SHR,
consistent with early renal hypertrophy. These findings
indicate that even short-term, moderate fructose exposure
perturbs the NO/ROS balance in a strain-dependent
manner and that the hypertensive background magnifies
renal susceptibility.

SHR are characterized by baseline oxidative
stress and reduced NO bioavailability, which can prime the
kidney for further oxidative and inflammatory hits [23-26].
Consistent with this, fructose selectively increased renal
NADPH oxidase and decreased SOD in SHR (but not
WKY), and reduced renal NOS activity in SHR. The
absence of systolic blood pressure change is unsurprising
given the relatively short exposure and moderate fructose
dose. Nevertheless, the renal ROS/NOS alterations may
precede hemodynamic manifestations and contribute to
longer-term cardio-renal risk in the hypertensive setting.
Similarly, D" Angelo et al. [27] showed that a high-fructose
diet does not elevate blood pressure in normotensive
Sprague-Dawley rats. However, Sanchez-Lozada et al.
[28] documented increased blood pressure after 8 week-
consumption of 60 % fructose in the same strain of rats and
Zemancikova et al. [29] concluded that the increase in
body adiposity due to fructose overfeeding in rats might
have pro-hypertensive effect.

The kidney metabolizes and generates fructose
(via the polyol pathway), with prominent KHK and
GLUTS expression in proximal tubules. This makes it
exquisitely sensitive to fructose-induced ATP depletion,
uric acid generation, and oxidative stress [18]. Our data on
renal CD elevation in WKY and NADPH oxidase
upregulation with SOD reduction in SHR fit this paradigm
shift toward
peroxide/superoxide dominance. The observed increase in

and suggest an early tubular redox

kidney-to-body-weight ratio is consistent with early
hypertrophic responses to tubular stress/injury described in
fructose-related renal pathology. Sanchez-Lozada et al.
[28] reported that high fructose intake in addition to the
metabolic result in the

syndrome induction can

development of kidney hypertrophy as well. Similarly,
other experimental studies suggest fructose intake as a
mechanism for kidney injury. Johnson ef al. [30] reported
that the administration of fructose (60 % diet) to rats
induced renal hypertrophy with tubular cell proliferation.
Similarly, Nakayama et al. [31] have shown that fructose,
but not glucose diet, significantly increased kidney weight
for 6 weeks.

It is well-known that fructose can be involved in
the development of hypertriglyceridemia. Both human and
animal studies have indicated that fructose consumption
during several weeks can increase triglyceride levels
[32,33]. Our data are in agreement with these authors. As
shown in Table 1, plasma triglyceride and cholesterol
levels were significantly elevated in the rats that consumed
fructose compared with the control rats. From the
mechanical point of view, unregulated fructolysis
bypasses phosphofructokinase control and engages
ChREBP/SREBP-1c¢ programs, thereby driving VLDL-
TG overproduction [34] - a pattern we observed in SHR.
Ichigo et al. [35] even observed that high-fructose diet-
induced hypertriglyceridemia is associated with increased
hepatic acyl-coenzymeA:cholesterol acyltransferase 2
(ACAT?2) expression.

Furthermore, our data on NADPH oxidase
upregulation with concomitant SOD downregulation and
reduced NOS activity argue for a deleterious net effect in
SHR during early fructose exposure. Despite redox
changes, NF-«kB protein expression did not change. Two
points may reconcile this: first, short-term fructose can
elevate oxidative stress without yet producing robust
transcriptional inflammation; second, our assay quantified
total p65 protein, not nuclear translocation/DNA binding,
which are more sensitive readouts of NF-xB activation.
Longer exposure or subcellular localization assays may
reveal inflammatory signaling not captured here.

The kidney exhibited greater susceptibility to
fructose than the heart because proximal tubules
experience higher local fructose exposure (filtered load
plus polyol-pathway fructose), express abundant
GLUTS5/KHK-C, and rely on NADPH-dominant redox
signaling [18]. Consistent with this, renal NADPH oxidase
upregulation with reduced SOD shifted the renal redox
cardiac NADPH oxidase
unchanged and the decrease in myocardial NOS activity

tone, whereas remained
likely reflects NO scavenging or eNOS uncoupling rather
than NADPH oxidase-driven stress [36]. The moderate
dose and short duration may reveal early biochemical

changes in the heart but were insufficient to trigger further
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remodeling [37]. However, longer high-fat-high-fructose
diet in experimentally induced metabolic syndrome seems
to alter the metabolism of the heart itself [38].

A decrease in NOS activity (heart and kidney in
WKY; kidney in SHR) indicates compromised NO
bioavailability. Multiple converging mechanisms may
account for this: (i) fructose-driven uricemia directly
inactivates NO, (ii) enhanced ROS (from NOX isoforms)
NO, and (iii)
tetrahydrobiopterin leads to eNOS uncoupling, further

scavenges oxidative loss  of
lowering NO and increasing superoxide [9]. Although uric
acid and BH4 were not measured in our study, our pattern
(decrease in NOS activity with increase in lipid
peroxidation/NADPH oxidase and decrease in SOD
protein expression) is coherent with these mechanisms.
Similarly, reduced NO bioavailability has also been
reported after chronic fructose intake by other authors
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In conclusion, our study demonstrates that short-
term, moderate fructose exposure induces biochemical
(lipid/redox) alterations even in the absence of overt blood
pressure elevation. In studied tissues, most notably the
kidney, these changes are consistent with reduced NO
bioavailability and a shift toward oxidative stress,
mirroring the NO/ROS imbalance we documented in the
heart and kidney, particularly in SHR.
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