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Summary 

Mitochondria as an energy generating cell device are very sensitive to oxidative damage. Our 

previous findings obtained on hepatocytes demonstrated that Complex I of the respiratory 

chain is more sensitive to oxidative damage than the other respiratory chain complexes 

(Drahota et al. 2005). We present additional data on isolated mitochondria showing that at a 

low (200 µM) tert-butyl hydroperoxide (tBHP) concentration palmityl carnitine oxidation is 

strongly depressed, while oxidation of the flavoprotein-dependent substrate-succinate is not 

affected and neither is ATP synthesis inhibited by tBHP. In the presence of tBHP, the 

respiratory control index for palmityl carnitine oxidation is strongly depressed, but when 

succinate is oxidized the respiratory control index remains unaffected. These findings thus 

show that for the regeneration process in the necrotic liver damaged by oxidative stress, 

flavoprotein-dependent substrates could be an important nutritional factor. 
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Liver cells represent an important factor in the traffic of lipids as a nutritional energy 

source for animal organisms (Havel 1987). Some lipids, namely short and medium chain fatty 

acids entering the liver through the portal vein, are oxidized directly in hepatocytes by 

mitochondria to cover their energy demands.  

It is now commonly accepted that mitochondria are not only an important generator of 

reactive oxygen species (Boveris and Chance 1973, Chance et al. 1979), but also an important 

target of their action (Turrens and Boveris 1980, Kovaltowski and Vercesi 1999, Nulton-

Presson and Szweda 2001, Turrens 2003). Liver tissue is especially sensitive to various toxic 

agents that induce processes in which reactive oxygen species play an important role (Shu et 

al. 1997, Knight et al. 2003).  

There are many studies describing peroxidative damage of liver mitochondria (Kennedy 

et al. 1992, Kowaltowski and Vercesi 1999, Nulton-Persson and Szweda 2001, Lin et al. 

2002) and hepatocytes (Masaki et al. 1989, Nieminen et al. 1997, Kmoníčková et al. 2001).  

However, there are not sufficient comparative data to evaluate the sensitivity of various 

mitochondrial dehydrogenases to peroxidative damage.  

This is why in our previous experiments on isolated hepatocytes we studied the 

peroxidative damage of mitochondrial enzymes induced by tert-butyl hydroperoxide (tBHP).  

In these studies we used tBHP  as the prooxidant because, unlike hydrogen peroxide, it is not 

degraded by catalase (Chance et al. 1979) and consequently its peroxidative effect can be 

studied over a longer period of incubation. We found that oxidation of NADH-dependent 

substrates is extremely sensitive to peroxidative damage and also that oxidation of 

flavoprotein dependent substrates is partially reduced (Drahota et al. 2005, Křiváková et al. 

2007).  

It has not been fully elucidated to what extent the toxic effects of prooxidants are due to 

the direct action on mitochondrial enzymes and to what extent secondary radical metabolites 
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formed in cytosol (Kennedy et al. 1992) could also be involved in peroxidative damage when 

isolated hepatocytes are used. Following up on our previous experiments on hepatocytes, 

therefore, in this study we measured isolated mitochondria and we tested to what extent fatty 

acid oxidation and succinate oxidation are affected by tBHP. In order to obtain additional 

data, we tested the effect of tBHP on palmityl carnitine and succinate oxidation on isolated 

liver mitochondria under the same experimental conditions. We compared the effect of tBHP 

on palmityl carnitine and succinate oxidation, because oxidation of palmityl carnitine involves 

two mitochondrial dehydogenases, a NADH- and a flavoprotein-dependent one, whereas 

succinate is oxidized only by the flavoprotein-dependent dehydrogenase. 

Liver mitochondria were isolated from male albino Wistar rats (b.w. of 220-230 g) by 

differential centrifugation as described previously (Ješina et al. 2004).  Oxygen uptake was 

measured with the High Resolution Oxygraph2K (OROBOROS, Austria). Measurements 

were taken at 30o C in 2 ml of incubation medium containing 100 mM KCl, 10 mM Tris HCl, 

4 mM K-phosphate, 3 mM MgCl2 , 1 mM EDTA, 0.5 mg/ml fatty acid free bovine serum 

albumin, pH 7.4. The rate of oxygen uptake was expressed as pmol/s/mg protein.   Oxygen 

uptake curves are presented as the first negative derivation of the oxygen tension changes.  

Fig. 1 demonstrates the experimental conditions used for evaluation of the tBHP effect 

on the oxidation of palmityl carnitine and succinate performed by rat liver mitochondria. In 

contrast to other respiratory substrates which are used in high (millimolar) concentrations, 

palmityl carnitine must be tested at micromolar concentrations, because at higher 

concentrations it exerts a detergent-like effect on mitochondrial membranes. We used 5 µM 

palmityl carnitine and 2.5 mM malate as a sparker. After the addition of the ADP, the oxygen 

uptake was highly activated (five-fold, Fig. 1A, Table 1), indicating that mitochondria are 

well coupled and that the concentration used of the palmityl carnitine had no detergent-like 

effect. When palmityl carnitine was oxidized, the respiratory rate decreased and another 
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portion of palmityl carnitine induced a similar response in oxygen uptake (Fig. 1A). The 

addition of rotenone, an inhibitor of Complex I, completely inhibited palmityl carnitine 

oxidation (not shown). The addition of succinate after palmityl carnitine again increased the 

rate of oxygen uptake to values about 30-50% higher than those obtained with palmityl 

carnitine and malate (Fig. 1A and Table 1). When tBHP was added after palmityl carnitine 

was oxidized, then subsequent addition of palmityl carnitine induced a much smaller increase 

in the respiratory rate (Fig.1B). However, subsequent addition of succinate demonstrated that 

the rate of succinate oxidation was not depressed by tBHP (Fig. 1B, and Table 1). The same 

results were obtained when the effect of tBHP on the oxidation of succinate was tested in the 

absence of palmityl carnitine and malate (Fig 1C, D, and Table 1).  

From our data it is evident that fatty acid oxidation is more sensitive than oxidation of 

succinate to peroxidative damage (Fig. 1, and Table 1). We may also conclude based on our 

experiment that under conditions when fatty acid oxidation is highly depressed by tBHP  (Fig. 

1C, D), the ATP synthase is active, because the respiratory rate induced by ADP is not 

affected (Table1). Our data thus confirm our previous results obtained on isolated hepatocytes 

(Drahota et al. 2005, Křiváková et al. 2007), demonstrating that Complex I is the most 

sensitive part of the mitochondrial respiratory chain to peroxidative damage. Experiments on 

isolated mitochondria further indicate that the inhibition of Complex I is not necessarily 

connected with the collapse of membrane potential if flavoprotein dependent substrates are 

accessible. These conclusions are also supported by our previous data on isolated hepatocytes 

(Lábajová et al. 2006), demonstrating that the dissipation of the mitochondrial membrane 

potential by tBHP, when pyruvate and malate are used as respiratory substrates, can be fully 

recovered by succinate.  

Our data showing that fatty acid oxidation is highly sensitive to oxidative damage could 

be important information for the treatment of necrotic liver tissue because most hepatotoxic 
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agents are known to be reactive oxygen species inducers (Knight et al. 2003, Sundari et al. 

1997). For the activation of the regeneration process, therefore, flavoprotein-dependent 

substrates could play an important role.  
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Text to Fig. 1 

Fig. 1. Respiration of rat liver mitochondria in the presence of palmityl carnitine and 

succinate: Mitochondria (0.2 mg protein/ml) were incubated in a KCl medium with 0.5 mg of 

bovine serum albumine. Where indicated, 2.5 mM malate (MAL), 5 µM palmityl carnitine 

(PC), 1.5 mM ADP, 10 mM succinate (SUC) and 200 µM t-butyl hydroperoxide (tBHP) were 

added. The respiratory control index (RCI) in part A was 5.2 and 5.0; in B 4.8 and 1.8; in C 

4.3; and in part D, 3.9. 

 

 

 

 

 

 

 

 

 

 9



 

 

Table 1. Inhibition of palmityl carnitine and succinate oxidation by tBHP. 

----------------------------------------------------------------------------------------------------------------- 

Additions                                          pmole oxygen/s/mg protein                     +tBHP/-tBHP 

----------------------------------------------------------------------------------------------------------------- 

Palmityl carnitine + malate                                117.0 ± 14.0 

Palmityl carnitine + malate + ADP                    601.5 ± 27.6 

Palmityl carnitine + malate + ADP + tBHP       245.7 ± 27.4                                      0.40  

                                                                                                                                    (p≤0.001) 

----------------------------------------------------------------------------------------------------------------- 

Succinate + ADP                                                907.6 ± 53.0 

Succinate + ADP + tBHP                                   883.9 ± 29.9                                    0.87                                    

                                                                                                                                     (n.s.) 

--------------------------------------------------------------------------------------------------------------- 

Mitochondria were incubated as described in the legend to Fig. 1. The palmityl 

carnitine used was 5 µM, malate 2.5 mM, ADP 1.5 mM, succinate 10 mM and tert-butyl 

hydroperoxide 200 µM. The data presented depict the average± SEM from six liver 

mitochondrial preparations isolated from six adult male rats. The statistical significance was 

analysed using t-test.  
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Fig. 1 
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