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Summary 

The aim of the present study was to investigate the impact of prenatal 

methamphetamine (MA) exposure and application of the same drug in adulthood on cognitive 

functions of adult male rats tested in Morris water maze (MWM). Adult male rats prenatally 

exposed to MA (5 mg/kg), saline or no injection were examined. Half of the animals were 

injected daily with MA (1 mg/kg) after finishing the testing. Three types of tests were used: 

(1) “Place navigation test” (Learning), (2) “Probe test” and (3) “Retention memory test” 

(Memory). Our results showed that prenatal MA exposure did not affect the test of learning 

and the Probe test. In the test of memory prenatally MA-exposed rats showed smaller search 

errors and used spatial strategies more than both control groups. Further, MA application in 

adulthood prolonged trajectories, increased the incidence of random search and decreased the 

incidence of direct swim in the Place navigation test. In addition, MA administration in 

adulthood increased the speed of swimming regardless of prenatal exposure. The present 

study thus demonstrates that: (1) Prenatal MA exposure does not affect learning in the MWM. 

(2) Prenatal MA exposure improves performance in the Retention memory test in the MWM. 

(3) MA application in adulthood impairs learning in the MWM. 
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Introduction 

In recent years, methamphetamine (MA) is becoming a more “popular” street drug in 

many countries of the world because of its relatively uncomplicated production and low price 

compared to cocaine or heroin (Marwick 2000). Approximately half of MA users are women, 

mostly of reproductive age, and consequently some percentage of them become pregnant 

while using the drug (Williams et al. 2003). Since MA readily crosses the placenta, such cases 

will result in intrauterine exposure. Although the long-term consequences of these exposures 

are relatively unknown, there are studies suggesting that MA exposition during pregnancy can 

impair the development of neonatal central nervous system (Šlamberová et al. 2006, Williams 

et al. 2003). Increased creatine metabolism in striatum (Little et al. 1988) and deficiencies in 

visual recognition task, which are thought to rely upon hippocampal function (Clark et al. 

2000), have been demonstrated after prenatal MA exposure in humans (Struthers and Hansen 

1992). Both hippocampus and striatum are regions important in spatial learning and memory 

in humans and rodents (Barnes 1988, Iaria et al. 2003, McDonald and White 1994). However, 

studies existing on the impact of MA on cognition are rather inconsistent. This inconsistency 

seems to be caused by different dose of the drug and duration of the drug exposure used in the 

studies. Acute MA was shown to produce improvements in cognitive processing when given 

to drug-naive subjects (Kornetsky et al. 1959). In contrast, more recent studies in humans 

have shown, that long-term MA use is associated with impaired performance on a number of 

cognitive tasks (Rogers et al. 1999, Salo et al. 2002, Simon et al. 2000).  

In rats, Acuff-Smith et al. (1996) investigated the effect of MA administered at 

different times during gestation on cognitive functions of the progeny. The same authors 

found that high doses (15 and 20 mg/kg) administered in early days of gestation impair spatial 

memory in the Morris water maze (MWM), while lower doses (5 and 10 mg/kg) did not have 

any effect on cognition in adult offspring. There are also studies showing sensitization after 
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repeated administration of psychostimulants (amphetamine, cocaine), such as a progressive 

increase in their psychomotor activating effects (Robinson and Becker 1986, Segal et al. 

1981, Stewart and Badiani 1993). Furthermore, it has been reported that in mice exposed to 

MA prenatally, there is an intensification of adult MA-induced monoamine neurotoxicity 

when examined in vitro (Heller et al. 2001), suggesting an increased susceptibility to the drug 

from prior exposure. Vorhees et al. (1994) also showed altered responsivity to later 

pharmacological challenge in rats exposed neonatally to MA. Interestingly, Williams et al. 

(2003) showed increased hypoactivity in animals neonatally treated with MA after re-

exposure to the drug in adulthood. There are, however, no behavioral studies focused on 

cognition and investigating the effect of prenatal MA exposure on the sensitivity to the same 

drug in adulthood. 

The present study was therefore designed to investigate 3 objectives: (1) to find the 

effect of prenatal MA exposure on cognitive functions of adult male rats, (2) to find the effect 

of MA administered in adulthood on cognitive functions of adult male rats, (3) to determine 

whether prenatal MA exposure changes sensitivity to MA injection in adulthood. 

Methods 

Animals and Drug administration 

 Adult female Wistar rats (250-300g) from Anlab farms (Prague, Czech Republic) were 

randomly assigned to MA-treated, saline-treated or control group. They were smeared by 

vaginal lavage to determine the phase of estrous cycle. At the onset of the estrus phase of the 

estrous cycle females were housed overnight with sexually mature stimulus males. There was 

always one female and one male in each cage. The next morning the females were smeared 

again for the presence of sperm and returned to their previous home cages. The day after 

impregnation was counted as day 1 of gestation. MA-treated females were injected 

subcutaneously (s.c.) with D-methamphetamine HCl in a dose of 5 mg/kg through the entire 
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gestation (i.e. from the first to the last days of gestation) (Šlamberová et al. 2005). Saline-

treated dams were administered saline s.c. at the same time and in the same volume as MA. 

Control females were not exposed to any injection. Two control groups (Peters 1982) (i.e. 

saline and control) were used to differentiate the possible effect of injection-induced stress. 

The day of birth was counted as postnatal day (PD) 0. On PD 1, MA-exposed pups were 

injected intradermally with black India ink in the left foot pad and saline-exposed pups in the 

right foot pad for identification. Control pups were not tattooed. A total of 24 litters were used 

in the experiment. The number of pups in each litter was adjusted to 12. Whenever possible, 

the same number of male and female pups was kept in each litter. To avoid litter bias pups 

were cross-fostered on PD 1, so that one mother usually raised 4 control, 4 saline and 4 MA 

pups. Three animals from each litter were used – 1 for each of the prenatally treated group 

(control, saline, MA) (Holson and Pearce 1992). On PD 21, animals were weaned and housed 

in groups, separated by sex. Animals were left undisturbed until adulthood. 

Morris water maze  

The male offspring (n = 72; 12 per each treatment group) were tested in adulthood (PD 

60-90) for learning and memory in the MWM (blue circular tank, 2 m in diameter) filled with 

opaque water. On the rim of the pool, four starting positions were marked north (N), south 

(S), east (E), west (W), thus dividing the pool into four quadrants. A transparent circle 

platform (13 cm in diameter) 1 cm below the water surface was used for learning and memory 

tasks. Various pictures hanging on the walls were available to the rats as extra-maze cues. 

Rats’ performance was tracked automatically using a video tracking system EthoVision 3.1 

(Noldus Information Technology, Netherlands). Rats were tested over a 12 day period. To 

determine the effect of MA in adulthood half of the animals from each prenatally exposed 

group (i.e. MA, saline, control; n = 24) received a low dose of MA (1 mg/kg) s.c. after 

finishing testing each day, while the other half were not exposed to any injections in 
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adulthood. The dose 1 mg/kg was used because it does not cause stereotypes, unlike the dose 

of 5 mg/kg used in gestation. On the days 7 – 11 when no tests were performed, MA was 

administered at the same time as in the days of testing. Three types of tests were used in the 

present study: “Place navigation test” (Learning), “Probe test” and “Retention memory test” 

(Memory).  

In the learning test, which was performed on the first 5 consecutive days, an animal 

was supposed to find the platform within the limit of 60 seconds. The animal unable to find 

the platform within the limit was guided to the platform manually. Each rat was exposed to 8 

trials daily starting from 4 different positions with intertrial interval (ITI) of 30 seconds. The 

position of the platform was the same in all trials. In the probe test, which was administered 

on the 6th day, the platform was removed and the animal was left to swim in the pool for 60 

seconds. The memory test was performed on the 12th day and the rat was supposed to find the 

platform located in the same position as in the learning test within 60 seconds. Each rat was 

exposed to 8 trials starting from 4 different positions with ITI of 30 seconds.  

 In the tests of learning and memory latency to reach the hidden platform, length of the 

trajectory, search error (a measure of proximity to the escape platform) and speed of 

swimming were recorded. Swim paths for each rat were manually analyzed, so that 

predominating strategy in each trail was always identified and frequency of the following 

search strategies per day was recorded: (1) Thigmotaxis (wall-hugging) – a persistent swim 

along the wall of the pool that could include sporadic swims towards the centre of the pool, 

(2) Random search – swimming over the entire area of the pool in straight swims or in wide 

circular swims, (3) Scanning – swimming over the central area of the pool, (4) Chaining – 

circular swimming at a fixed distance from the wall, in which the platform was located, (5) 

Focal search in an incorrect quadrant – direct swim to an incorrect quadrant of the pool 

followed by loops and turns there, (6) Focal search in the target quadrant - direct swim to the 
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correct quadrant of the pool followed by loops and turns there, (7) Spatial search – a direct 

swim path to the platform. This method was previously used for analyzing search strategies in 

mice (Janus 2004). In the “Probe test” the following measures were recorded: speed of 

swimming; frequency and duration of presence in the quadrant where the platform was 

located in the learning and memory tests. 

Statistical methods 

As there were no differences in the animals of the same prenatal exposure that were 

raised by mothers of different drug treatment, the raising mother (biological vs. foster) was 

not taken as a factor for statistical analyses. 

Two-way ANOVA (Prenatal exposure x Treatment in adulthood) with multilevel 

repeated measure (days x trials/day) was used to analyze the data from the Place navigation 

test. Two-way ANOVA (Prenatal exposure x Treatment in adulthood) repeated measure 

(trials) was used to analyze the data from the Retention memory test. Chi2 test was used to 

analyze the frequency of the search strategies. Two-way ANOVA (Prenatal exposure x 

Treatment in adulthood) was used to analyze the data from the “Probe test”. LSD test was 

used for post-hoc comparisons. Differences were considered significant if p < 0.05.  

Results 

One rat from control group with no MA in adulthood was excluded from the study 

because it became evident that it was unable to swim properly and to keep its head above 

water during the last trials.  

Place navigation test 

For the latency (Fig. 1A) to reach the hidden platform and the search error, no effects 

of Prenatal exposure and Treatment in adulthood were found. For the length of the trajectory 

the main effect of Treatment in adulthood was demonstrated [F (1,65) = 5.37, p<0.05]; the 

animals with MA application in adulthood had longer trajectories than the animals without it, 
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regardless of prenatal exposure as shown in Fig.1B. All animals, regardless of treatment, 

demonstrated learning ability over the 5-day test period as represented by a decrease in 

latency [F (4,260) = 202.80, p<0.0001], trajectory length [F (4,260) = 162.18, p<0.0001] and 

search error [F (4,260) = 155.61, p<0.0001]. Main effect of Treatment in adulthood for 

swimming speed was found [F (1,65) = 10.58, p<0.01], such that MA-treated animals were 

faster than the animals without MA administration regardless of prenatal exposure (Fig. 1C).  

Analysis of the search strategies showed significant effect of Treatment in adulthood 

for random search and spatial search [χ2 = 105.24; p<0.0001]. Thus, rats treated with MA in 

adulthood displayed more random searching and less spatial searching in the test of learning 

than rats without MA administration, regardless of prenatal drug exposure (Fig.2).  

Further, we found increased incidence of both random and spatial search strategies in 

rats prenatally exposed to MA and saline relative to rats without any prenatal exposure [χ2 = 

102.25; p<0.0001; χ2 = 33.53; p<0.0001, respectively], regardless of treatment in adulthood. 

Table 1A displays an overview of incidence of the search strategies used by the rats in the five 

days in the test of learning. 

Probe test 

For the frequency and duration of presence in the quadrant with the hidden platform 

no effects were demonstrated. For the speed of swimming, there was main effect of Treatment 

in adulthood [F (1,65) = 8.47, p < 0.01]; animals with MA treatment swam faster than animals 

without MA injections.  

Retention memory test 

Analysis of the data showed significant main effect of Prenatal exposure for latency  

[F (2,65) = 3.76, p<0.05] and search error [F (2,65) = 4.09, p<0.05]. Post-hoc test showed that 

animals with prenatal exposure to MA had shorter latencies (Fig. 3A) than animals prenatally 

exposed to saline, while the search errors (Fig. 3B) of prenatally MA-treated animals were 
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smaller relative to both control groups. Further, significant main effect of Treatment in 

adulthood for the speed of swimming (Fig. 3C) was demonstrated [F (1,65) = 21.60, 

p<0.001], such that all animals treated with MA, regardless of prenatal exposure, swam faster 

than the animals without MA application.  

 In addition, significant effect of Prenatal exposure for the frequency of used search 

strategies was found. Rats prenatally exposed to MA used more spatial search and correct 

target quadrant search than rats without any prenatal exposure [χ2 = 18.62; p<0.01], 

regardless of treatment in adulthood. Also, prenatally MA exposed rats swam less in the 

incorrect quadrants and searched the pool by using spatial search more than prenatally saline 

exposed rats [χ2 = 25.13; p<0.001], regardless of treatment in adulthood. The incidence of the 

search strategies in the test of memory is showed in Table 1 B. 

Discussion 

 Our findings from this experiment are as follows. First, we found that although 

prenatal MA exposure at a dose of 5 mg/kg did not have an effect on the latency, search error 

and length of the trajectory in Place navigation task, rats prenatally exposed to MA and saline 

used different search strategies than rats without any prenatal exposure. Both prenatally 

exposed groups used more random and spatial search than the control group, regardless of 

treatment in adulthood. While random search is a non-spatial strategy and is used mainly in 

the beginning of the learning period, spatial search is a direct swim to the platform and is used 

if an animal remembers the exact location of the platform (Janus 2004). Therefore, it cannot 

be that prenatally MA and saline exposed rats demonstrated stronger spatial bias than the rats 

without any prenatal exposure. Instead, their behavior in the MWM was different. This might 

have been the effect of different coping with stress in the MWM in saline and MA exposed 

rats caused by the injection application rather than by MA itself, since it was shown (Peters 

1982, Šlamberová et al. 2002) that placebo injection of saline administered to control 
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pregnant mothers may induce mild stress for the rat and that way indirectly affect the 

development of her pups. Nevertheless, more studies concerning the functioning of the 

hypothalamic-pituitary-adrenal (HPA) system during the tests in the MWM after prenatal 

exposure to MA and saline are necessary to confirm this hypothesis.  

Thus, prenatal MA exposure did not influence learning in the MWM and this finding 

is in agreement with the work of Acuff-Smith et al. (1996), who also showed that low dose of 

MA (5 or 10 mg/kg) administered prenatally did not have effect on spatial memory in MWM. 

However, they (Acuff-Smith et al. 1996) further demonstrated that prenatal exposure to 

higher doses of MA (15, 20 mg/kg) did induce impairments of spatial memory in MWM 

tested in adulthood. We use the low dose of MA (5 mg/kg) in our studies, since application of 

MA at 5 mg/kg to pregnant female rats induces changes that are comparable with those found 

in fetuses of drug-abusing women (Acuff-Smith et al. 1996). There are other studies showing 

that neonatal administration of MA at doses of 5, 10 or 15 mg/kg administered four times 

daily from PD 11 – 20 produced lasting spatial learning and memory deficits (Williams et al. 

2003). As the hippocampus in rats is still developing during the PD 11 – 20 and this 

development is analogous to human hippocampal development during the third trimester of 

pregnancy (Bayer et al. 1993), the neonatal period may be more critical for the effects of MA 

on cognitive functions in rats than the prenatal period.  

Second, the results of search strategy analysis in Place navigation test demonstrated 

that the incidence of random search was significantly greater and the incidence of direct swim 

was significantly lower in MA-treated rats than in rats with no application in adulthood, 

regardless of prenatal MA exposure. Thus, rats with MA application in adulthood 

demonstrated weaker spatial bias than rats without adult MA. Moreover, in Place navigation 

test rats with MA application in adulthood had longer trajectories than rats without drug 

administration, regardless of prenatal exposure. The fact that MA treatment in adulthood had 
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no significant effect on the latency in Place navigation test was probably caused by increased 

swimming velocities in rats with adult MA. Furthermore, trajectory length has been shown to 

be a better index of spatial learning than latency (Lindner 1997). The animals with adult MA 

treatment found the hidden platform as fast as the animals without MA administration, 

because they swam faster, but their trajectories when searching for the platform were longer. 

This indicates that information processing but not motivation were impaired in rats with MA 

application in adulthood. In accordance with these findings, Friedman et al. (1998) also 

observed acquisition impairment in MWM induced by acute MA (12.5 mg/kg) administration, 

and further they demonstrated dopamine and serotonin depletions in caudate and 

hippocampus, respectively, 48 days after this exposure. While in the latter study the rats were 

tested 65 days after the neurotoxic dose of MA, in our present study the rats were given adult 

MA every day after testing. We showed that even the dose of MA as low as 1 mg/kg impaired 

learning probably by disrupting consolidation to some extent. However, by the 6th day the 

animals treated with MA in adulthood were able to locate the platform as successfully as the 

animals without MA application, as there were no differences in the performance on Probe 

trial between MA-treated and non-treated groups in adulthood.  

As reported before, placebo injection may induce mild stress for the rat (Peters 1982). 

However, the rats in the present study were given adult MA each day after testing and were 

tested again not earlier than 24 hours after the injection. Therefore, we believe the stress 

caused by the injection itself was negligible when compared to stress in MWM (Akirav et al. 

2001, Morris 1984) and did not affect the rats’ performance in MWM unlike adult MA. 

Third, surprisingly, in the Retention memory test rats prenatally exposed to MA 

displayed smaller search errors than both control groups while they had shorter latencies than 

prenatally saline exposed rats only. However, the analysis of search error may better reflect 

the accuracy of spatial learning than latency (Gallagher et al. 1993), since it describes the rats’ 
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distance to the platform during the trials. Although for 2 animals the escape latencies can be 

almost identical, their performance can actually differ markedly. While one of the animals 

searches for the platform relatively close to it, the other searches in quadrants distant to the 

platform randomly and finds the platform accidentally. The aforementioned findings are 

further supported by the results of search strategy analysis, which demonstrated that rats 

prenatally exposed to MA searched the pool by using spatial strategies (focal search in correct 

target quadrant, direct swim) more, than rats with saline or no exposure in prenatal period. 

These results suggest that prenatally MA-exposed animals memorized the location of 

the platform most accurately. Unfortunately, there is only one study investigating the effect of 

prenatal MA exposure on memory in adult male rats. Although, this study (Acuff-Smith et al. 

1996) showed that MA 5 mg/kg did not influence memory in MWM, the test of memory was 

performed on the day following the learning trials, while in the present study, we tested 

memory 1 week after finishing the learning trials. To be able to explain our findings, other 

studies investigating the effect of prenatal MA exposure on glutamate N-methyl-D-aspartate 

(NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in 

hippocampus are necessary, since these receptors are known to be critical for hippocampal 

long term potentiation, the synaptic phenomenon thought to be behind memory formation 

(Davis et al. 1992, Jia et al. 2001). Our findings showing that prenatal MA exposure affects 

seizures induced by NMDA supports this hypothesis (Šlamberová and Rokyta 2005). 

Moreover, NMDA and AMPA receptor subunit levels were shown to be altered by MA 

treatment in rats (Simoes et al. 2007). 

 Fourth, we found that MA application in adulthood increased the speed of swimming 

in all animals regardless of prenatal exposure and the type of test, even though the animals 

were tested daily not earlier than 24 hours after acute MA application. Swimming velocity can 

also be used to measure motivation to find the hidden platform (Lubbers et al. 2007). 
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Therefore, the increased swimming velocity suggests that MA administration in adulthood 

increased motivation. Motivation is assumed to be mediated by meso-accumbens dopamine 

system (Ikemoto and Panksepp 1999, Robinson and Berridge 2001, Salamone and Correa 

2002) and this system might have been altered by MA application in adulthood. Interestingly, 

there was no difference in the increase of the speed after adult MA application between the 

prenatally exposed groups. Thus, we did not prove the sensitizing effect of prenatal MA 

exposure to the same drug administered in adulthood. The studies showing the sensitizing 

effects of psychostimulants on central nervous system tested these effects after repeated 

intermittent administration of the drugs to adult animals with mature brain structures 

(Nordquist et al. 2007, Schoffelmeer et al. 2002, Suzuki et al. 2004, Vanderschuren et al. 

2002, Wyvell and Berridge 2001). On the other hand, a study performed in rabbits 

demonstrated that offspring, having received cocaine during the prenatal period, showed 

profound behavioral tolerance to the amphetamine challenge while their mothers, who 

received cocaine at the same dose and duration and experienced the same period of 

withdrawal, exhibited robust behavioral sensitization (Stanwood and Levitt 2003). In addition, 

Williams et al. (2003) showed increased hypoactivity in animals neonatally treated with MA 

after re-exposure to the drug in adulthood. These findings suggest that specific adaptive 

changes in neural signaling that occur during sensitization may be influenced by the 

maturational state of the brain during which the exposure occurs. 

  Taken together, the present study demonstrates that prenatal exposure to MA at dose 

as low as 5 mg/kg does not impair learning in the MWM, while improves performance in the 

Retention memory test. In contrast, we found that MA (1 mg/kg) application in adulthood 

impairs learning in the MWM. Finally, our study shows that prenatal MA exposure does not 

increase sensitivity to the same drug in adulthood when tested in MWM. As there are no 

studies investigating the impact of prenatal MA exposure on sensitivity to the same drug in 
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adulthood, our present study will contribute to further knowledge of this problem. However, 

other studies, especially on functioning of dopaminergic, serotonergic and HPA systems, as 

well as levels of NMDA and AMPA receptor subunits in hippocampus after prenatal MA 

exposure must be done to fully understand its long-term effects on cognitive and behavioral 

processes. 
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Figure legend 

Figure 1. Performance in Place navigation task: (A) Latency to reach the platform in days 

1-5. (B) The length of trajectory - main effect of MA application in adulthood; adult MA > no 

MA in adulthood. Results are presented as average of trials in all five days. (C) The velocity 

of swimming - main effect of MA application in adulthood; adult MA > no MA in adulthood. 

Results are presented as average of trials in all five days. Statistics: Two-way ANOVA 

(Prenatal exposure x Treatment in adulthood) with multilevel repeated measure (days x 

trials/day). Values are means ± SEM, n = 11-12. * p < 0.05 vs. NO MA; ** p < 0.01 vs. NO 

MA  

Figure 2. Strategies used in Place navigation task in days 1 - 5: (A) Random search 

strategy - effect of MA administration in adulthood on the frequency of random search 

regardless of prenatal exposure; adult MA > no MA in adulthood in days 3, 4, 5. (B) Spatial 

search strategy - effect of MA in adulthood on the frequency of spatial search regardless of 

prenatal exposure; adult MA < no MA in adulthood in days 2, 3, 4, 5. Statistics: Chi2 test; 1st 

day: [χ2 = 12.14, p=0.06]; 2nd day: [χ2 = 56.44, p<0.0001]; 3rd day: [χ2 = 48.91, p<0.0001]; 4th 

day: [χ2 = 135.82, p<0.0001]; 5th day: [χ2 = 150.95, p<0.0001]; Values are sums of frequencies 

in days 1 – 5, n = 11-12. * p<0.0001 vs. NO MA 

Figure 3. Performance in Retention memory task: (A) Latency to reach the platform - 

main effect of Prenatal MA exposure; prenatal MA < prenatal saline. (B) Search error - main 

effect of Prenatal MA exposure; prenatal MA < controls and prenatal saline. (C) The velocity 

of swimming - main effect of MA administration in adulthood; adult MA > no MA in 

adulthood. Statistics: Two-way ANOVA (Prenatal exposure x Treatment in adulthood) 
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repeated measure (trials). Results are presented as averages of all 8 trials in day 12. Values are 

means ± SEM, n = 11-12. * p < 0.05 vs. Control; # p < 0.05 vs. Saline; + p < 0.001 vs. NO 

MA 

 
 



Table 1. Percentage of search strategies used in groups 
 
A. Place navigation task in days 1 – 5 

 
 
 
 
 
 
 
 
 
 
 
 

  NO MA in adulthood MA in adulthood 
STRATEGY Control Saline MA Control Saline MA 
Thigmotaxis 13 11 6**++ 14 11 9** 
Random 14 15 16** 16 26** 25** 
Scanning 2 1 1 0 1 1 
Chaining 4 4 4 5 5 3 
Incorrect Q 36 37 31++ 40 29** 29** 
Correct TQ 5 5 4 6 6 8 
Spatial 
search 

26 27 38**++ 19 22 25** 

 
 
B. Retention memory task 
 
  NO MA in adulthood MA in adulthood 
STRATEGY Control Saline MA Control Saline MA 
Thigmotaxis 2 2 0 2 0 0 
Random 7 7 5 8 9 6 
Scanning 0 0 0 0 0 0 
Chaining 1 1 1 1 3 2 
Incorrect Q 35 36 29 38 47 28 
Correct TQ 8 4 10+ 2 9** 6 
Spatial 
search 

47 50 55 49 32** 58*++

 
Statistics: Chi2 test. Values are per cent, n = 11-12. * p < 0.05 vs. Control; ** p < 0.0001 vs. 
Control; + p < 0.001 vs. Saline; ++ p < 0.0001 vs. Saline. Q = Quadrant, TQ = Target 
Quadrant. 
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