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Summary 

 

In the article, the actions of homocysteine (Hcy) and its metabolite - cyclic thioester – 

homocysteine thiolactone (HTL) on complex process of haemostasis, which regulates the 

flowing properties of blood, are described. Possible interaction of Hcy and HTL with 

endothelial cells, blood platelets, plasmatic fibrinogen and plasminogen, as the important 

major components of haemostasis are also discussed. The modification of haemostatic 

proteins (N-homocysteinylated or S-homocysteinylated proteins) induced by Hcy or its 

thiolactone, and links of homocysteine or homocysteine thiolactone to ••••NO metabolism seem 

to be the main reason of biotoxicty of homocysteine in cardiovascular diseases. 
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Introduction 

 

 Haemostasis is a complex process that regulates in vivo the flowing properties of 

blood. Classical primary and secondary haemostasis only comprised the sequential formation 

of the white and red thrombus, but there is growing awareness that haemostasis is intimately 

coupled to fibrinolytic processes, inflammatory reactions as well as to initiation of 

angiogenesis and wound healing. Basically, three components need to interact to assure 

effective primary and secondary haemostasis together with the normal sequelae, fibrinolysis 

and tissue repair: (1) the vascular wall (smooth muscle, matrix and connective tissue, 

endothelial cells), (2) formed elements of the blood (blood platelets, granulocytes, monocytes, 

lymphocytes), and (3) the plasmatic clotting and fibrinolytic systems (Becker et al. 2000). 

Haemostatic abnormalities can lead to excessive bleeding, thrombosis or other cardiovascular 

diseases. Recently, it have shown that homocysteine (Hcy), which is an intermediate formed 

during the catabolism of the essential dietary amino acid methionine induces changes in 

haemostasis, including blood clotting and fibrinolysis (Perla-Kajan et al. 2007). Elevated 

level of Hcy may disrupt functions of the vascular endothelium, changing the character of its 

surface from anticoagulant to procoagulant (Jacobsen 1998, Perla-Kajan et al. 2007). This 

review describes the chemical structure and biological activities of homocysteine and its 

cyclic thioester – homocysteine thiolactone (HTL) and their effects on haemostasis process. 

 

Chemical structure and function of homocysteine and its metabolites 

 

Homocysteine is involved in convertions of methionine (Met) and cysteine (Cys). The 

immediate precursor of Hcy is S-adenosylhomocysteine (SAH), which is hydrolyzed by SAH 

hydrolase to homocysteine and adenosine. In the next step homocysteine is remethylated to 
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methionine by methionine synthase or betaine:homocysteine methyltransferase. Moreover, 

Hcy enters the transulfuration pathway and is converted into cystathionine β–synthase and 

cystathionine γ–lyase. This process is present only in the liver, kidney, pancreas and small 

intestine (Brosnan et al. 2004, Perla-Kajan et al. 2007). Homocysteine may also enter the first 

step of protein synthesis. Because structural similarity of Hcy to Met, homocysteine may be 

recognized and activated by methionyl-tRNA synthetase. However, error-editing activity of 

methionyl-tRNA synthetase does not allow homocysteine to be incorporated into proteins. As 

a product of the editing reaction homocysteine thiolactone is formed (Jakubowski and Fersht 

1981, Jakubowski 2003, Jakubowski 2004, Perla-Kajan et al. 2007). The chemical structure of 

Hcy and its thiolactone is presented on Figure 1. Homocysteine metabolism depends on the 

level of vitamins (folic acid, vitamin B6 and B12) as cofactors for the enzymes involved in Hcy 

turnover. In human blood homocysteine may exist in free or protein bound forms as N-

homocysteinylated (N-Hcy-protein) or S-homocysteinylated proteins (S-Hcy-protein), that 

were described as N-Hcy-hemoglobin, N-(Hcy-S-S-Cys)-albumin, S-Hcy-albumin, and 

cysteinylhomocysteine (Cys-Hcy)) (Jakubowski 2002, Chwatko and Jakubowski 2005A 

Chwatko and Jakubowski 2005B, Jakubowski 2005, Jakubowski 2006, Perla-Kajan et al. 

2007). Mechanism of N-homocysteinylation involves acylation of Lys ε-amino group by the 

activated carboxyl group of HTL (Jakubowski 2003, Jakubowski 2004, Jakubowski 2005, 

Jakubowski 2006), whereas S-homocysteinylation is induced by Hcy (Fig. 1). In human 

plasma some various haemostatic proteins are S–homocysteinylated, for example coagulation 

factor Va (Undas et al. 2001). N-homocysteinylated proteins in human plasma represent from 

0.3 to 23 % of total homocysteine. Small amounts of N-Hcy-proteins are also found in 

different haemostatic proteins (antitrypsin, fibrinogen) (Jakubowski 2002). These 

modifications may lead to impairment of protein functions. Approximately 80% of plasma 

homocysteine is protein bound, and only a small amount exists as a free reduced 
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homocysteine. The majority of the unbound portion of Hcy is oxidized to form dimers 

(homocystine) or combined with cysteine to form mixed disulphides (Jakubowski 2002, 

Chwatko and Jakubowski 2005A, Chwatko and Jakubowski 2005B, Jakubowski 2005, 

Jakubowski 2006, Perla-Kajan et al. 2007). Plasma Hcy level is determined by multiple 

factors, like genetic, demographic, acquired, and lifestyle determinants. Total plasma Hcy 

concentration for healthy adults is in the range of 5-15 µM. Patients with mild 

hyperhomocysteinemia have 15-25 µM Hcy (Perla-Kajan et al. 2007). In urine after oxidation 

of Hcy is referred to as homocystinuria. Thus, for abnormal metabolism of Hcy, the blood can 

be analyzed. Mild hyperhomocysteinemia is an independent risk factor for atherosclerotic 

disease, deep vein thrombosis and thromboembolism. Elevated Hcy levels promote 

thrombosis, although the mechanism by which Hcy exerts its prothrombotic effect remains 

unclear. Moreover, homocysteine metabolites (thiolactone) and protein homocysteinylation 

formed in plasma, are implicated in different cardiovascular diseases (Thambyrajah et al. 

2000, Yang et al. 2006). 

 

The effect of homocysteine and its thiolactone on endothelial cells 

 

At cellular level pathological role of homocysteine seems to be associated with an 

alteration of endothelial cells, which play an important role in haemostasis. Endothelial cells 

are very sensitive even to a mild increase of Hcy concentration. This sensitivity may be 

explained by the fact, that human endothelial cells do not express active form of cystathionine 

β-synthase and consequently can not initiate homocysteine catabolism through 

transsulfuration pathway (Jacobsen 1998). Elevated level of Hcy may modulate functions of 

the vascular endothelium, changing the character of its surface from anticoagulant to 

procoagulant (Jacobsen 1998). Endothelial anticoagulant pathway is based on heparin-like 
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glycosaminogycan-antithrombin III interaction. Results of Rodgers et al. (1986) showed that 

after incubation of endothelium with Hcy activity of  coagulation factor V increases. 

Coagulation factor V in Hcy-modified endothelium is cleaved in fragments different than 

those obtained after factor V cleavage by thrombin or coagulation factor Xa (Rodgers et al. 

1986). Moreover, in hyperhomocysteinemia the prothrombotic tendency may be related to 

impaired inactivation of S-homocysteinylated coagulation factor Va by activated protein C 

(Undas et al. 2001). However, Hcy and its thiolactone have no effect on factor V activation by 

thrombin. It was showed that factor V incubated with [35S]homocysteine (10-450 µM) 

incorporated label within 5 min, which was found only in those fragments that contained free 

sulfhydryl groups: the light chain (Cys-1960, Cys-2113), the B region (Cys-1085), and the 

26/28-kDa (residues 507-709) activated protein C cleavage products of the heavy chain (Cys-

539, Cys-585). On the other hand, Lentz et al. (2002) suggest that activation of protein C by 

thrombin and inactivation of factor Va by activated protein C are not impaired during 

moderate hyperhomocysteinemia in vivo in monkeys. Another studies showed the effect of 

Hcy on activity of thrombomodulin, which is involved in blood clotting.  

It has been demonstrated that not only Hcy, but also HTL may modulate properties 

and functions of endothelial cells. Results of Raposo et al. (2004) indicate that both 

compounds – Hcy and its thiolactone inhibit activity of lysyl oxidase (an enzyme involved in 

extracellular matrix maturation) in vascular endothelial cells. Report of Jakubowski (2000) 

showed that in endothelial cells protein N-homocysteinylation exists, and this process 

depends on the concentration of Hcy. Modification of endothelial cells proteins may cause 

different pathophysiological consequences, such as modulation of haemostasis system, which 

may contribute to cardiovascular diseases. 
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Homocysteine and nitric oxide 

 

Nitric oxide (•NO) plays an important role in a number of physiological processes. It 

is well known, that vascular endothelial cells produce •NO. However, other cells, which are 

involved in haemostasis - blood platelets may also synthesize •NO and platelet •NO synthase 

(NOS) has been described and identified during the mid 90s (Muruganadam and Mutus 

1994). Two main NOS isoforms have been isolated: calcium independent inducible NOS 

(iNOS) and a calcium/calmodulin dependent endothelium type NOS (eNOS) (Mehta et al. 

1995). •NO is released by NOS-es action from the guanidyno moiety of L-arginine, yielding 

NO and cytruline. •NO is very simple free radical which play important regulatory role in 

many tissues, but originally •NO was identified as a factor influenced mainly human vascular 

system. ••••NO has been implicated in a number of cardiovascular diseases and every risk factor 

for these appears to be associated with a reduction in endothelial generation of ••••NO.  

Evidences of some cooperation between homocysteine and •NO in vascular system 

pathogenesis originate from physiological, cellular and genetic reports. Patients from 

population with NOS3 894TT genotype (mutation in gene for nitric oxide synthase) have 

tendency to higher Hcy concentration in the blood. Mentioned tendency was especially 

distinct in subpopulation of NOS3 894TT patients who had low foliate levels. However, there 

was no strictly correlation between NOS3 894TT  genotype and Hcy plasma levels (Brown et 

al. 2003). The question is how Hcy can modulate ••••NO synthase. First thought is that Hcy 

may influence on NOS activity. Transformation of radiolabelled arginine to cytruline 

catalyze by nitric oxide synthase is unchanged after renal arterial endothelium incubation 

with Hcy (40 µM) in comparison with control cells. Also after incubation of endothelial cells 

with Hcy (10, 20 and 50 µM during 24 hours) NOS activity was untouched (Fatini et al. 

2005). Despite the fact that NOS activity seemed to be normal also during 
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hyperhomocysteinemia in vitro, level of ••••NO under such conditions is definitely lower and 

this effect is directly proportional to Hcy plasma level (Becker et al. 2005). One of possible 

way of NOS activity regulation by Hcy is action through direct dimethylarginine 

dimethylaminohydrolase (DDAH) binding via disulfide bounds and further asymmetric 

dimethylarginine (ADMA) accumulation, what disrupts NOS activity (Stühlinger et al. 

2001). Similar observations confirming ADMA accumulation during hiperhomocysteinemia 

has been done in animal models (Akhand et al. 1999). The same authors have observed in 

vitro that ADMA secretion by human endothelial cells after stimulation by Hcy (24 hours) 

can be stopped by using S-adenosylhomocysteine – methylation inhibitor. 

The main molecules responsible for decrease of ••••NO level in hyperhomocysteinemic 

patients are probably reactive oxygen species (ROS). Hcy can enhance ROS production (Li et 

al. 2002, Fischer et al. 2003, Fatini et al. 2005) – the generation of superoxide anion (O2
-•) in 

reaction catalyzed by NADPH oxidase (Becker et al. 2005). Results of Fischer et al. (2003) 

showed the increased of protein nitration (induced by peroxynitrite, which is produced in the 

reaction of •NO with O2
-•.  

 

The effect of homocysteine and its thiolactone on blood platelets 

 

Blood platelets are multiresponding cells, both with respect to the number of agonists 

and number of responses. They can be activated by different compounds including 

coagulation factors (thrombin), hormones (epinephrine, vasopresin), low-molecular-weight 

substances (serotonin, adenosine diphosphate (ADP)), lipid derivatives (platelet aggregating 

factor (PAF), thromboxane A2 (TXA2)), and other protein substances (collagen or immune 

complexes). The responses of platelet to agonists, which is named platelet activation, include 

mainly adhesion (to foreign surfaces such as collagen or glass), shape change, aggregation 
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and secretion of active compounds from three different storage granules (dense granules, α-

granules and lysosomes), shedding of microvesicles, formation of platelet procoagulant 

activity and retraction of fibrin clots (Wu 1996, Levy-Toledano 1999, Ryningen and Holmsen 

1999). Increased platelet activation with hyperaggregability is one of the risk factors in 

pathogenesis of different cardiovascular disease. Blood platelets obtained from patients with 

peripheral occlusive arterial disease, with associated hyperhomocysteinemia, are far more 

reactive and sensitive for agonists, but also far less sensitive for inhibitors (Riba et al. 2004). 

In diabetic patients a high level of Hcy levels is associated with more potent platelets 

aggregation (Rajkumar et al. 1999). Signorello et al. (2007) observed that Hcy induces 

oxidative stress, inhibits nitric oxide formation in platelets from type 2 diabetic patients, and 

may promote platelet hyperactivity and various cardiovascular diseases. Moreover, Hcy 

stimulates the calcium mobilization in platelets from 2 diabetic patients (Alexandru et al. 

2007). The study of Mohan et al. (2008) suggest that platelet activation and 

hypercoagulability occur after exposure to Hcy, especially in patients with critical limb 

ischemia. Hcy concentrations of approximately 50 µM appear to be the level at which these 

changes occur in vitro, and this effect on platelets appears to be indirect. In animal model with 

hyperhomocysteinemia (induced by diet poor of folic acid), the aggregation of platelets 

stimulated by ADP or thrombin is higher then in control animals (Durand et al. 1996). The 

direct action of Hcy on blood platelets is unknown and sometimes controversial. Some studies 

demonstrated that homocysteine promotes arachidonic acid release, thromboxane A2 

formation (Signorello et al. 2002 and 2007) and protein tyrosine phosphorylation in blood 

platelets (Leoncini et al. 2006). Results of Undas et al. (2007) demonstrated that elevated total 

Hcy is associated with increased platelet activation at the site of microvascular injury. 

McDonald et al. (1964) showed increased platelet adhesion in homocysteinuric patients. 

However, there is no evidence of a direct in vitro effect of homocysteine on platelet adhesion 
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(Uhlemann et al. 1976) or aggregation (Stamler et al. 1993). Our preliminary studies have 

reported that reduced form of Hcy slightly stimulated platelet aggregation induced by a 

physiological agonist - thrombin (Olas et al. (in press)). We also observed that HTL alone do 

not induce platelet aggregation, but HTL, like Hcy increased platelet aggregation induced by 

thrombin (Olas et al. (in press)). Platelets aggregation induced by HLT is followed by 

thromboxane A2 synthesis and secretion (McCully and Carvalho 1987). McGarrigle et al. 

(2006) showed that Hcy and HTL promote activation of platelet integrin αIIbβ3, that is 

involved in platelet adhesion or aggregation. On the other hand, Luo et al. (2006) observed 

that Hcy potentiates collagen type I induced-platelet activation through signaling components 

of glycoprotein VI and integrin α2β1 pathway. Prontera et al. (2007) indicate that a potential 

molecular target of Hcy is the CD40/CD40L system in platelets; and upregulation of 

CD40/CD40L signaling may represent a link between hyperhomocyteinemia and an increased 

risk of cardiovascular diseases. 

Blood platelets, in analogy to other circulating blood cells, can generate different 

reactive oxygen/nitrogen species (ROS/RNS) that may behave as second messengers and may 

regulate platelet functions. In blood platelets are postulated several sources of ROS (Pignatelli 

et al. 1998, Wachowicz et al. 2002, Krotz et al. 2004). Intracellular sources of reactive 

oxygen species in platelets are arachidonic acid pathway (via cyclooxygenase or 12-

lipoxygenase) stimulated by different agonists, the glutathione cycle (Jahn and Hansch 1990, 

Pignatelli et al. 1998,) and  metabolism of phosphoinositides (Gopalakrishna et al. 2000, 

Wachowicz et al. 2002). ROS are generated in platelets mostly by activation of NAD(P)H 

oxidase (Forde and Fitzgerald 1997, Krotz et al. 2004, Begonja et al. 2005) and xantine 

oxidase (Miller et al. 1993). Our recent data, where we used in our experiments the method of 

cytochrome c reduction for the estimation of the level of O2
-• showed that not only Hcy, but 
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also HTL induces the production of O2
-• in resting and thrombin - activated platelets (Olas et 

al. (in press)).   

In blood platelets peroxynitrite may be formed (Lufrano and Balazy 2003). It has been 

demonstrated that reaction of protein with ONOO- resulted in the nitration and oxidation of 

some amino acid residues (Hernandez-Hernandez et al. 1999, Olas and Wachowicz 2007). 

Free and protein-bound 3-nitrotyrosine, a stable product of tyrosine nitration may be 

measured as a biomarker of protein damage induced by peroxynitrite and other reactive 

nitrogen species (Forde and Fitzgerald 1997, Begonja et al. 2005), since peroxynitrite nitrates 

tyrosine residues in different proteins in vivo and in vitro (Miller et al. 1993). During platelet 

activation spontaneous nitration of proteins may also take place, without the addition of 

exogenous peroxynitrite (Muruganandam and Mutus 1994). When proteins from activated 

and resting platelets were separated on gels and immunoblotted with antinitrotyrosine 

antibodies, a number of proteins in the low molecular weight region were nitrated. Moreover, 

in our study, we observed that reduced form of Hcy and HTL distinctly reduced nitration of 

platelet proteins (Olas et al. (in press)). It is suggested that the nitrosation of homocysteine or 

its metabolite – HTL in blood platelets may exist. Nitrosation of Hcy may be responsible for 

a decrease in the level of •NO, because Hcy reacts with •NO to form S-nitroso-homocysteine 

(Ignarro and Gruetter 1980). Signorello et al. (2007) showed that in type 2 diabetic patients 

high plasma Hcy is associated with increased platelet ROS level and reduced •NO formation 

in blood platelets. On the other hand, Hcy induces cell death in H9C2 cardiomyocytes 

through the generation of peroxynitrite and can activate key signaling cascades in the 

myocardium (Levrand et al. 2007). Moreover, Erol et al. (2007) have showed that Hcy 

increases •NO release from stimulated coronary mircovascular endothelial cells without 

affecting basal •NO production, which is probably accompanied by increased production of 

reactive oxygen species. It can be postulated that endothelial cells generate •NO in order to 
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minimize the damage caused by Hcy. There is possibility that nitration of tyrosine may 

directly inhibit the tyrosine phosphorylation of proteins, which is well – recognized 

mechanism of signal transduction in blood platelets (Ischiropoulos 2003). It was showed that 

the addition of peroxynitrite to platelets, at relatively high concentrations, brought about the 

nitration of proteins and a rapid increase in the phosphorylation of tyrosine residues 

(Mondoro et al. 1997). However, if platelets were activated by the low doses of thrombin, the 

amount of phosphorylation was decreased; if high doses of thrombin were used, peroxynitrite 

caused the increase of the phosphorylation. There is no direct evidence that phosphorylation 

and nitration on the same proteins occurs. Probably relationship between nitration and 

tyrosine phosphorylation is a competitive process (Low et al. 2002). Marcondes et al. (2006) 

suggested that nitration of α–actinin interferes with its phosphorylation and contributes 

consequently to the inhibitory role of •NO on platelet adhesion. Some results showed that 

homocysteine stimulates the tyrosine phoshorylation and activation of platelet phospholipase 

Cγ2 (Leoncini et al. 2003) and Src kinase (Luo et al. 2006). The stimulation of this pathway 

by Hcy requires signals through oxygen free radicals and thromboxane A2. It is possible that 

the same mechanism may exist when blood platelets are treated with thiolactone 

homocysteine.  

 

Homocysteine, coagulation and fibrinolysis 

 

Fibrinogen is the main substrate for coagulation cascade and form a polymerized fibrin 

clot. Fibrinogen is a 340 kDa glycoprotein, consisting of three pairs of nonidentical 

polypeptide chains, Aα, Bβ and γ, interconnected by disulfide bonds. In the course of blood 

coagulation, fibrinogen, after the thrombin-induced cleavage of short fibrinopeptides A and B 

from the amino termini of α and β chains, is converted to fibrin monomers. The monomers 
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thereafter interact spontaneously and form half – staggered protofibrils flowed by the laterally 

associated fibers. The initial clot is stabilized by the formation of covalent cross-links in a 

reaction catalyzed by activated coagulation factor XIII. Fibrinogen and other plasma proteins 

can be covalently modified by Hcy or its thiolactone. Lysine homocysteinylation is a 

plausible mechanism for protein modification in vivo; and is likely an important pathogenic 

mechanism. Mass spectrometric analysis of fibrinogen treated with Hcy revealed twelve 

lysines that were homocysteinylated. Several of these are close to tissue plasminogen 

activator (tPA) and plasminogen binding sites. Moreover, lysines are major binding sites for 

fibrinolystic enzymes and are also sites of plasmin cleavage (Sauls et al. 2003, 2005, 2006 

and 2007). Sauls et al. (2007) suggest that homocysteinylation of lysine residues in fibrinogen 

may be linked to three important functional consequences. First, modification in the αC 

domain could alter the lateral association of fibers and thereby alter clot structure. Second, the 

alteration of the protein conformation may interfere with calcium binding, which could 

contribute to alterations in fibrin clot structure. Third, modification of lysine sites that are 

directly involved in fibrinolitic enzyme binding and activity could lead to increased resistance 

to fibrinolysis – the process by which a fibrin clot is dissolved. Recent reports showed that 

compounds with thiol groups enhance plasma factor XIII-mediated fibrinogen cross linking. 

Since Hcy-SH is involved in oxide-reduction reactions or disulfide exchange reactions, it is 

possible that some components of fibrin formation such as fibrinogen and coagulation factor 

XIII can be altered. Lauricella et al. (2002 and 2006) observed that clots formed from human 

plasma incubated in vitro with Hcy have been more compact structure, with shorter and more 

frequently branched fibers, than those formed in the absence of Hcy. Harpel et al. (1992) 

showed that Hcy enhances the binding of lipoprotein(a) to fibrin, and this results may suggest 

a biochemical relationship between thiol compound metabolism, thrombosis and 

atherogenesis.  
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In mildly hyperhomocysteinemic human subjects dysfibirinogemia (which is 

characterized by formation of clots composed of abnormally thin,  tightly packed fibers with 

an increased resistance to fibrinolysis) could play a role in the increased risk of 

atherothrombotic disease (Undas et al. 2006, Souls et al. 2007). On the other hand, Lijfering 

et al. (2007) showed that the increased risk of cardiovascular diseases in 

hyperhomocysteinemia is mainly related to elevated coagulation factor VIII levels. 

Moreover, Ebbesen and Ingerslev (2005) found reduced functional activities of coagulation 

factors XII, X and II in hyperhomocysteinemia-induced by folate deficiency in rat, whereas 

the functional factor VII activity was unchanged. Contrary, Al-Obaidi et al. (2000) observed 

that levels of coagulation factor VIIa and Hcy correlate in plasma of acute coronary 

syndrome patients. This changes may enhanced risk of  thrombotic events in 

hyperhomocysteinemic patients. Recent reports showed that activity of antithrombin, which 

is one of the most important inhibitors of blood coagulation, is inhibited by HTL (Gugliucci 

2008). Proposed targets of Hcy and HTL action on coagulation and fibrinolysis process are 

presented in Figure 2. 

 

Conclusion 

 

The mechanism of homocysteine and its thiolactone action on haemostasis process is 

complex and still unclear. Hcy or HTL may modulate the signal transduction in different cells 

and sometimes act in opposite ways. Homocysteine and its metabolite cause the changes in 

the level of reactive oxygen species and reactive nitrogen species (special •NO) and may be 

responsible for the modification of haemostasis induced by these compounds (Fig. 3). The 

biological significance of haemostatic protein modification (fibrinogen and other coagulation 

factors) induced by Hcy or HTL is not well known, although especially N-homocysteinylation 
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induced by HTL may play an important role in different pathophysiological consequences 

leading to cardiovascular diseases. 
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Legend to Figures 

 

Fig. 1A and B. The chemical structure of homocysteine (Hcy) and its thiolactone (HTL). The 

mechanism of N- and S-homocysteinylation of proteins 

 

Fig. 2. Proposed targets of homocysteine (Hcy) and its thiolactone (HTL) action on 

coagulation and fibrinolysis 

 

Fig. 3. Proposed model for the regulatory role of Hcy and HTL in vascular well (smooth 

muscle, endothelial cells) and in blood platelets. Abbreviations: Hcy – homocysteine, HTL – 

homocysteine thiolactone, LDL – low density lipoproteins,  Hcy-LDL – homocysteinylated 

LDL, ox-LDL – oxidized LDL, ROS – reactive oxygen species, •NO – nitric oxide, ONOO- - 

peroxynitrite, NO-LDL- nitrated LDL, TXA2 – thromboxane A2 
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Fig. 3 
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Fig. 1(B) 
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