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SUMMARY 

 

Alterations of calcium handling and other second messenger cascades including protein 

kinase C (PKC) and A (PKA) were suggested to be responsible for abnormal vascular 

function in spontaneously hypertensive rats (SHR). However, the relative contribution of 

these pathways to vasoconstriction is still not completely understood. We investigated the 

effect of Ro 31-8220 (PKC inhibitor) and H89 (PKA inhibitor) on vasoconstriction 

induced by 120 mM KCl or by addition of 10 µM noradrenaline (NA) in isolated femoral 

arteries of control Wistar rats and SHR. Moreover, we investigated these responses in the 

presence and absence of Ca2+ ions in the incubation medium in order to assess the role of 

calcium influx in these contractions. We observed that while the vasoconstriction in the 

presence of calcium was not different between Wistar and SHR, the difference between 

constriction elicited by NA addition in the absence and presence of external calcium was 

larger in SHR. The inhibition of PKC had no effect on constrictions in SHR, but 

diminished constrictions in Wistar rats. PKA inhibition slightly enhanced constrictions in 

Wistar rats, but reduced them in the presence of calcium in SHR. We conclude that 

vasoconstriction elicited by adrenergic stimulation is more dependent on extracellular 

calcium influx in SHR compared to Wistar rats. Moreover, the activation of PKA 

contributes to this calcium-dependent vasoconstriction in SHR but not in Wistar. On the 

other hand, PKC activation seems to play a less important role in vasoconstriction in SHR 

than in Wistar rats. 
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Introduction 

 

Spontaneously hypertensive rats (SHR) represent an attractive model of essential 

hypertension. Augmented vasoconstrictor ability of arteries isolated from SHR was 

proposed to be involved in this type of hypertension. Several studies have reported 

abnormalities of vascular smooth muscle in SHR. These include disturbed cell Ca2+ 

handling (Cox 2002, Hermsmeyer et al. 1989, Lompre 1999, Martens et al. 1998) 

probably linked to abnormal properties of L-type voltage-dependent Ca2+ channels 

(VDCC) in SHR (Hermsmeyer et al. 1989, Matsuda et al. 1997), which display higher L-

type Ca2+ current density due to a more frequent opening of the channels (Ohya et al. 

1998). Available studies also suggest that there may be increased number of L-type Ca2+ 

channel pores (Pratt et al. 2002) or increased Ca2+ stores (Goldberg et al. 1977, Miquel et 

al. 2005). Furthermore the Ca2+-sensitivity of vascular smooth muscle could be 

modulated by protein kinase C (Kitazawa et al. 2000) or protein kinase A (Wooldridge et 

al. 2004). PKC was proposed to be up-regulated (Kanashiro et al. 2001) and PKA less 

active in SHR (Alemany et al. 2006).  

In vascular smooth muscle, PKC and PKA are activated by noradrenaline through 

stimulation of Gq and Gs proteins, respectively (Nishizuka 1988, Somlyo et al. 1988) or 

to lesser extent by membrane depolarization (Takuwa and Rasmussen 1987, Ko et al. 

2008). The role of PKC in the regulation of smooth muscle was suggested by the finding 

that tumor-promoting phorbol esters, which specifically activate PKC, induce sustained 

contractions in smooth muscles (Castagna et al. 1982, Rasmussen et al. 1987). 

The second messenger adenosine 3', 5'-cyclic monophosphate (cAMP) was shown 

to mediate its effects through PKA activation leading to relaxation of smooth muscle 
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(Somlyo et al. 1994) mainly by Ca2+ -dependent or -independent effects (Somlyo et al. 

2003, Nishimura et al. 1989). 

The aim of our study was to evaluate the relative contribution of calcium influx to 

vascular constriction induced by KCl or adrenergic stimulation in SHR. Furthermore, we 

intended to elucidate the role of PKC and PKA recruitment in this vasoconstriction. 

 

Methods 

 

 Male 3-month-old SHR and Wistar rats were sacrificed by ether overdosage. 

Femoral arteries were isolated, cleaned, and cut into segments of equal length. Attention 

was paid to preserve the endothelium of the arteries. The segments were subsequently 

mounted on standard Mulvany-wire myograph (610M; Danish Myo Technology, Aarhus, 

Denmark) filled with modified Krebs-Henseleit solution (KHS, pH 7.4) of the following 

composition (in mM): NaCl 120, NaHCO3 25, glucose 11.1, CaCl2 1.6, KCl 4.7, KH2PO4 

1.2, MgSO4 1.2, and oxygenated with 95% O2: 5% CO2. The rings were first equilibrated 

for 1 h at 37°C and then constricted with 120 mM KCl followed by addition of 10 µM 

noradrenaline (NA). After reaching a steady-state, the rings were washed with KHS 

containing nominally 0 mM CaC12, (KHS 0 Ca2+) and once the resting tension was 

restored, the protocol was repeated in KHS 0 Ca2+ solution (Fig. 1). In fresh arteries, the 

same protocol was implemented after a 30 min preincubation with PKC (Ro 31-8220) or 

PKA (H-89) inhibitor (both Biaffin, Germany). H-89 was dissolved as a stock solution of 

1 mM in 100% dimethyl sulfoxide, the final concentration of both inhibitors used was 

1 µM (Budzyn et al. 2006). All other drugs were dissolved and diluted in deionized 

water. During the experiment, the generated force was recorded and wall tension was 
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automatically calculated by the myograph system. Data are expressed as mean ± SEM, 

P<0.05 (one-way, two-tailed, unpaired Student’s t-test) was considered significant. All 

procedures and experimental protocols were approved by the Ethical Committee of the 

Institute of Physiology AS CR, and conform to the European Convention on Animal 

Protection and Guidelines on Research Animal Use. 

 

Results 

 

Basic parameters of the isolated arteries 

The normalized inner diameter under tension corresponding to pressure of 

100 mm Hg was 953.4 ± 24.3 µm in Wistar controls vs. 909.5 ± 21.5 µm in SHR  

(non-significant). The segment length was not different between Wistar and SHR vessels 

(2.16 ± 0.07 mm in Wistar vs. 2.19 ± 0.06 mm in SHR). 

 

Constriction induced by KCl and KCl + noradrenaline 

The vasoconstriction elicited by KCl or KCl + NA in KHS 1.6 Ca2+ or by KCl in 

KHS 0 Ca2+ was not different between control rats and SHR. The vasoconstriction 

elicited by KCl + NA in KHS 0 Ca2+ was lower in SHR compared to controls (P<0.05) 

(Fig 2). 

 

Effect of PKC inhibition on constriction induced by KCl or KCl + noradrenaline 

 When PKC inhibitor was present in KHS 1.6 Ca2+ medium, the constrictions of 

arteries isolated from control Wistar rats were decreased compared to constrictions seen 

in its absence (P<0.05). The incubation with PKC inhibitor did not affect constrictions of 
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arteries from SHR and therefore the constriction elicited by KCl + NA in SHR became 

higher compared to Wistar controls (P<0.05) (Fig. 3A). 

The presence of PKC inhibitor in KHS 0 Ca2+ medium decreased the constrictions 

induced by KCl + NA in arteries isolated from Wistar rats compared to constrictions 

observed in its absence (P<0.05). The incubation with PKC inhibitor did not affect 

constrictions of arteries from SHR and therefore constriction elicited by KCl + NA in 

SHR was not different from respective controls (Fig. 3B). 

 

Effect of PKA inhibition on constriction induced by KCl or KCl + noradrenaline 

In the presence of PKA inhibitor in KHS 1.6 Ca2+ medium the constrictions of 

arteries isolated from control Wistar rats were non-significantly higher compared to those 

recorded in its absence. The incubation with PKA inhibitor reduced constrictions of 

arteries from SHR (P<0.05) and therefore constriction in SHR became lower compared to 

controls (P<0.05) (Fig. 4A). 

In the presence of PKA inhibitor in KHS 0 Ca2+ medium the constrictions of 

arteries isolated from control rats were slightly but non-significantly higher compared to 

the conditions when PKA inhibitor was absent. The incubation with PKA inhibitor tended 

to reduce the constrictions of arteries from SHR, but the constriction in SHR was lower 

compared to Wistar controls (P<0.05) (Fig. 4A). 

 

Discussion 

 

In our in vitro experiments on isolated femoral arteries we observed that the 

constriction elicited by KCl or KCl + noradrenaline (NA) in Krebs-Henseleit solution 
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containing 1.6 mM Ca2+ (KHS 1.6 Ca2+) or by KCl in the nominally calcium-free KHS 

(KHS 0 Ca2+) was not different between control Wistar rats and SHR. However, the 

constriction elicited by KCl + NA in KHS 0 Ca2+ was less pronounced in SHR. A larger 

inhibition of vasoconstriction of isolated mesenteric arteries after calcium chelation has 

already been reported by Kahonen et al. (1994) and is in agreement with our previous 

data reporting greater relaxation after nifedipine in SHR than in controls (Paulis et al. 

2007). These results suggest that the activation of intracellular pathways and/or 

intracellular calcium stores is reduced in SHR. The relative contribution of extracelullar 

calcium influx to vascular constriction is therefore increased in SHR, which have 

enhanced activity (Ohya et al. 1998) or higher number (Pratt et al. 2002) of voltage-

dependent calcium channels (VDCC). Thus SHR seem to be more dependent on 

extracellular calcium influx and may require higher level of adrenergic stimulation. 

The stimulation by noradrenaline involving the recruitment of Gq and Gs proteins 

leads to activation of protein kinase C (PKC) and protein kinase A (PKA), respectively 

(Nishizuka 1988, Somlyo et al. 1988). In our experiments we aimed to investigate the 

significance of PKC and PKA in the recruitment of extracellular calcium influx and 

mobilization of intracellular calcium stores in SHR. Recent studies using inhibitors with 

improved selectivity for PKC have yielded conflicting results regarding its physiological 

importance in the vasculature (Chrissobolis et al. 2002, McNair et al. 2004, Shirao et al. 

2002). In our experiment, the inhibition of PKC with Ro 31-8220 had no effect on 

constrictions in SHR, but diminished constrictions in control Wistar rats. Moreover, the 

constrictions in controls were attenuated in KHS 1.6 Ca2+ as well as in KHS 0 Ca2+ to 

similar extent. This fact indicates that in control rats PKC recruited either by membrane 

depolarization or by adrenergic stimulation enhances the smooth muscle tone 



 8 

independently on extracellular calcium influx either by modulation of sarcoplasmatic 

reticulum calcium release (Bonev et al. 1997) or by direct action on myosine 

(Lamounier-Zepter et al. 2003). These pathways seems to be of less importance in SHR, 

despite the previously reported higher PKC expression in SHR (Kanashiro et al. 2001). 

In contrast to the effect of PKC inhibition, the inhibition of PKA with H-89, a 

selective and potent inhibitor (Lochner et al., 2006), slightly enhanced constrictions in 

control rats in both KHS 1.6 Ca2+ and KHS 0 Ca2+ but reduced them in SHR in KHS 1.6 

Ca2+. Apparently in control rats the PKA is involved in relaxation. The relaxing effect of 

PKA in Ca2+-free conditions is supposed to be mediated mainly by inhibition of myosin 

light chain kinase (Conti and Adelstein, 1981). On the other hand, the reduced 

contraction after PKA inhibition in SHR, observed in our experiment, is more difficult to 

explain. The mild activation of PKA by lower cAMP concentrations was reported to 

increase VDCC current in smooth muscle cells and may lead to vasoconstriction 

(Taguchi et al., 1997, Ruiz-Velasco et al., 1998). In our experiments the effect of PKA on 

vasoconstriction in SHR was dependent on the presence of extracellular calcium 

supporting this hypothesis. Moreover, in rat aortic rings pre-incubated with the PKA 

inhibitor H-89 the albuterol-induced relaxation was attenuated (Ferro et al., 2004). 

We conclude that vasoconstriction elicited by adrenergic stimulation is more dependent 

on extracellular calcium influx in SHR compared to controls. Moreover, the activation of 

PKA contributes to the vasoconstriction in SHR but not in Wistar. On the other hand, 

PKC activation seems to play a less important role in vasoconstriction in SHR than in 

Wistar. 
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FIGURE LEGENDS 

 

Fig. 1. Original records of force generated by femoral artery of control (Wistar, upper 

panel) and spontaneously hypertensive rats (SHR, lower panel) stimulated with 120 mM 

KCl (6 min) followed by addition of 10 µM noradrenaline (NA) in Krebs-Henseleit 

solution (KHS) containing 1.6 mM Ca2+ and in KHS nominally free of Ca2+ Horizontal 

bar represents 5 min. 

Fig. 2. Vasoconstriction obtained after stimulation of femoral artery of control (Wistar) 

and spontaneously hypertensive rats (SHR) stimulated with 120 mM KCl and KCl + 10 

µM noradrenaline (NA) in Krebs-Henseleit solution (KHS) containing 1.6 mM Ca2+ (A) 

and in KHS nominally free of Ca2+ (B). *P<0.05 vs. controls. 

Fig. 3. Vasoconstriction in the presence of protein kinase C inhibitor Ro-31-8220 

obtained after stimulation of femoral artery of control (Wistar) and spontaneously 

hypertensive rats (SHR) stimulated with 120 mM KCl and KCl + 10 µM noradrenaline 
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(NA) in Krebs-Henseleit solution (KHS) containing 1.6 mM Ca2+ (A) and in KHS 

nominally free of Ca2+ (B). *P<0.05 vs. controls, +P<0.05 vs. respective group in the 

absence of the inhibitor. 

Fig. 4. Vasoconstriction in the presence of protein kinase A inhibitor H-89 obtained after 

stimulation of femoral artery of control (Wistar) and spontaneously hypertensive rats 

(SHR) stimulated with 120 mM KCl and KCl + 10 µM noradrenaline (NA) in Krebs-

Henseleit solution (KHS) containing 1.6 mM Ca2+ (A) and in KHS nominally free of Ca2+ 

(B). *P<0.05 vs. controls, +P<0.05 vs. respective group in the absence of the inhibitor. 
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Figure 1 
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Figure 2 
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Figure 3 

 

Constriction in 1.6 mM Ca 2+ KHS + Ro 31-8220 
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Figure 4 

 

Constriction in 1.6 mM Ca 2+ KHS + H-89 
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