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Summary 

Angiotensin converting enzyme inhibitors are widely used in therapy of cardiovascular 

diseases. However, the consensus on effects of these inhibitors in control of myocardial 

oxygen consumption during the process of experimental hypercholesterolemia and under the 

condition of endothelial dysfunction has not been reached. Here we examined effects of 

captopril, an angiotensin converting enzyme inhibitor, on serum lipid levels and oxygen 

consumption rate in mitochondria isolated from heart of rabbits treated by 

hypercholesterolemic diet. During the twelve-week period, the Chinchilla male rabbits were 

daily treated by saline (controls); 1% cholesterol diet; 5 mg/kg/day captopril or 1% 

cholesterol + 5 mg/kg/day captopril. Total- and high-density lipoprotein cholesterol and 

triglyceride in serum were measured spectrophotometricly. The left ventricle mitochondrial 

fraction was isolated and myocardial oxygen consumption was measured by Biological 

Oxygen Monitor. Mitochondria isolated from hearts of rabbits exposed to 

hypercholesterolemic diet showed significantly reduced respiration rates (state 3 and state 4) 

with altering adenosine diphosphate/oxygen ratio, whereas the respiratory control ratio was 

not affected when compared to controls. Mitochondria from cholesterol/captopril–treated 

animals showed significantly reduced respiration rates without altering adenosine 

diphosphate/oxygen ratio index or respiratory control ratio. Although captopril did not exert 

the favorable effect on serum lipid levels in cholesterol-treated animals, it restored the 

mitochondrial oxygen consumption. Further studies should be performed to define the 

underlying physiological and/or pathophysiological mechanisms and clinical implications. 
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Introduction 

The importance of plasma lipoprotein and lipid metabolism abnormalities 

characterized by hyperlipidemia and/or hypercholesterolemia as the cause of coronary heart 

diseases and potential atherosclerosis is supported by a number of epidemiological and 

population-based studies (Alves et al. 2010, Zeng et al. 2010).  Rabbits under 

hypercholesterolemia-inducing diets have been largely used as an experimental model to 

study the development of human atherosclerosis (Dornas et al. 2010).  In general, 

development of atherosclerosis is regulated by multiple complex mechanisms, including 

endothelial dysfunction with impaired nitric oxide (NO) bioavailability, oxidative stress, 

inflammation, hemostasis, and insulin resistance (Montecucco et al. 2009). Reciprocal 

relationships between endothelial dysfunction and insulin resistance as well as cross-talk 

between hyperlipidemia and the rennin–angiotensin–aldosterone system may contribute to 

development of atherosclerosis (Koh et al. 2010). 

The renin-angiotensin-aldosterone system is a major endocrine/paracrine system 

involved in the regulation of a myriad of cardiovascular processes (Schmieder et al. 2007). Its 

role in the pathogenesis of hypertension, cardiac hypertrophy, and atherosclerosis is well 

established. Because angiotensin converting enzyme inhibitors (ACE-I) exhibit 

cardioprotective, vasculoprotective, antiatherogenic effects and contribute to tissue 

protection, they are widely used in therapy of cardiovascular disease (Shi et al. 2010, Sharpe 

N. 1993). Antihypertensive and cardioprotective effects of ACE-I have usually been 

attributed to the inhibition of angiotensin II (Ang II)-mediated effects at vascular or 

ventricular angiotensin type 1 (AT1) receptors. Another important mechanism involves Ang 

II-induced interactions with the bradykinin – kallikrein system, which might include 
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alterations of cardiac oxygen consumption during ACE inhibition due to a modulation of NO 

synthase activity (Morais et al. 2010, Manolis et al. 2010). 

In addition to inhibiting Ang II production (Shi et al. 2010), ACE-I also reduce kinins 

breakdown, resulting in local accumulation of kinins on the endothelial cell surface (Manolis 

et al. 2010). Response of endothelial cells to kinins stimulation is complex and one of the 

responses is kinins-induced NO synthesis (Vanhoutte 2010).  The importance of endothelial 

NO in control of oxygen consumption (QO2) was suggested in 1994, when it was shown that 

inhibition of NO synthesis resulted in 40% QO2 increase in the posterior dog legs (King et al. 

1994) and 25% increase in the whole body, accompanied with 1.1 °C increase in body 

temperature (Shen et al. 1994, 1995). Therefore, it has been postulated that endothelial NO 

permanently inhibits tissue respiration in a tonic manner, and that constitutive NO endothelial 

production regulates the mitochondrial function in parenchimal cells of the peripheral tissues. 

However, the consensus on the effect of ACE inhibitors in control of tissue cellular 

respiration under the condition of endothelial dysfunction during the process of 

atherosclerosis and hypercholesterolemia has not been reached. Mitochondria play a central 

role in the energy metabolism of all tissues by controlling the production of ATP, and 

experimentally isolated mitochondria are commonly used to evaluate the metabolic activities 

of brain, heart, and muscle tissues in both normal and diseased states (Johannsen and 

Ravussin, 2009).  The aim of this study was to determine the influence of captopril, an ACE 

inhibitor, in the animals treated by hypercholesterolemic diet on serum lipid levels and 

oxygen consumption rate in isolated mitochondria from heart cells. 

 
Material and Methods 

Chemicals 

All chemicals were obtained from Sigma (St. Louis, MO). 
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Animal and diets  

Male Chinchilla rabbits (n = 40) 9 week old and weighing 2.0 ± 0.27 kg  (mean ± SD) 

were bred in the Animal Center of the Institute of Physiology, School of Medicine, Belgrade. 

Rabbits were housed individually in standard stainless steel cages at 24 °C with a 12-h 

light:dark cycle (lights on, 06.30–18.30 h). All experiments were performed in accordance 

with a protocol approved by the local Ethics Committee and in accordance with the European 

Guidelines on Laboratory Animal Care.  During 12 weeks of treatment, rabbits were fed the 

commercial rabbit chow diet (Zemun, Serbia) and orally received once a day a single dose of 

the following supplementation: physiologic saline (control, group A, n=10); high cholesterol 

diet (1%), (group B, n=10), high cholesterol diet (1%) plus captopril 2 hours later (group C, 

n=10) or captopril only (group D, n=10). Captopril was given in a dose 5 mg/kg body weight 

in 0.5 ml saline per day. 

 

Blood samples 

At the end of the 12 week treatment protocol, the rabbits were anesthetized with 

katamine-HCl. Blood samples were drawn and serum was obtained by centrifuging the blood 

at 3,000 rpm for 20 min at 4 °C. The serum samples were stored at -70 °C until analyzed.  

 

Serum lipid profile 

Serum total cholesterol (TC), triglyceride (TG) and high-density lipoprotein 

cholesterol (HDL-C) were measured by an enzymatic “end point” kinetic spectrophotometric 

method using Rx Monza Clinical Chemistry Analyser (Randox Laboratories Ltd, UK) and the 

commercial kit provided by the Randox, UK. Serum LDL concentrations were calculated 

according to Friedewald et al. (1972). Results are reported as means of duplicate samples for 

each animal. 
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Tissue samples and mitochondrial isolation 

At the conclusion of the 12 week treatment protocol, the heart was rapidly removed. 

The left ventricle was dissected from the rest of the heart and used for the mitochondrial 

isolation by differential centrifugation as described by Kowaltowski et al. (2001). Briefly, the 

tissue was minced with scissors and washed twice with ice-cold Krebs-Ringer solution, then 

placed in ice-cold buffer containing 300 mM sucrose, 10 mM K+-HEPES buffer, pH 7.2, and 

1 mM K+-EGTA, pH 8.0. The minced tissue was homogenized by using a blender-type 

homogenizer (QUIAGEN GmbH) for 10–15 s and in a glass-grinding vessel with a motor-

driven pestle for 5–10 s at 4 °C. Nagarse (4 mg/20 ml homogenate) was added to the 

homogenate, which was then incubated on ice for 10 min. The homogenate was then 

centrifuged (Heraeus Laboratory Centrifuge, UK) for 4 min at 750 g (1,500 rpm). The 

supernatant was saved, and 1 mg/ml BSA was added. The supernatant was then recentrifuged 

for 4 min at 750 g, and the pellet was discarded. The resulting supernatant was then 

centrifuged at 9,000 g (9,500 rpm) for 10 min at 4 °C. The mitochondrial pellet was then 

resuspended in ice-cold buffer A containing 1 mg/ml BSA and recentrifuged at 9,000 g at 4 

°C two times. The final pellet was suspended in 3 ml of respiration medium containing (in 

mM) 250 sucrose, 2 KH2PO4, 10 MgCl2, 20 K+-HEPES buffer, pH 7.2, 0.5 K+-EGTA, pH 

8.0, at 4 °C. Protein was determined by the Lowry Folin phenol reagent method using BSA as 

a standard (Lowry et al. 1951). 

 

Measurement of mitochondrial respiration 

Mitochondrial oxygen consumption was measured using  Biological Oxygen Monitor 

System (Model 5300: YSI Inc, Ohio, USA). In order to measure oxygen consumption 

mediated by complex I of the mitochondrial electron transport chain, glutamate and malate (5 

mM) were added to the respiration media before the mitochondria. Isolated rabbit heart 
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mitochondria were suspended at 1 mg/ml in a in potassium chloride buffer (30 °C) containing 

(in mM) 125 KCl, 20 Hepes, 2 K2HPO4, 0.01 EGTA, and 1 MgCl2 (pH 7.2) and 

mitochondrial state 4 rates of O2 uptake (resting or controlled respiration) were determined. 

Subsequently, 1 mM ADP was added for the determination of state 3 rates of O2 uptake 

(active respiration). After measuring states 3 and state 4, the respiration activity of heart 

mitochondria was assessed by measuring respiratory control ratio (RCR): the respiratory rate 

(State 3) in the presence of ADP compared to the rate (State 4) following the expenditure of 

ADP and the adenosine diphosphate/oxygen (ADP/O) ratio: the ratio of ADP removed from 

the media to the amount of oxygen consumed, according to the Estabrook method.  Software 

Digiscope for Windows (version 2.0.6) was used for dynamic measurement (real-time 

measurement), for calculation of oxygen uptake and for presentation of oxygraphic curves. 

The results of oxygen consumption were expressed in ng atoms of consumed oxygen per 

minute per milligram of protein of thick mitochondrial suspension.  

 

Statistical analysis 

Statistical analysis was performed by using the SPSS (version 17.0.1) software 

package (IBM, NY). The means ± SEM for all data were calculated for all variables. 

Statistical significance was assessed by using repeated-measures ANOVA with P < 0.05. 

 

Results  

Serum Lipids 

Table 1 shows lipid levels in the four study groups. The cholesterol feeding (group B) 

increased the values of TC and LDL-C by roughly 10- and 7-fold, respectively. It also altered 

the HDL-C and LDL/HDL index by 2.2- and 3.2-fold, respectively. The serum triglyceride 

values increased 2-fold. The circulating TC, LDL, HDL-C and triglyceride  concentrations in 
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rabbits fed hypercholesterolemic diet were significantly higher than those in control rabbits 

(group A) (P< 0.05). There were no significant differences in serum TC, LDL-C, HDL-C and 

TG concentrations or LDL/HDL ratio among the groups B and C (P>0.05). Treatment with 

captopril only did not significantly affect the lipid profile compared with control rabbits  

(P>0.05).  

 

Mitochondrial oxygen consumption 

State 4 (basal) mitochondrial oxygen consumption significantly decreased in group B 

(P< 0.01) when compared with group A (15.45±2.03 vs. 20.33±2.15). The captopril 

treatment protocol (group D) decreased state 4 mitochondrial oxygen consumption to less 

extent compared with controls (P < 0.05). However, no significant difference in the state 4 

mitochondrial oxygen consumption was observed between group C and A (p>0.05) (Fig.1A).  

State 3 (ADP stimulated) mitochondrial oxygen consumption significantly decreased in group 

B (P< 0.01 vs. control) (Fig. 1 B). Captopril treatment protocol to the less extend decreased 

the state 3 (ADP stimulated) mitochondrial oxygen consumption (P < 0.05 vs. control). 

However, no significant difference in mitochondrial oxygen consumption between groups C 

and A was observed (p>0.05) (Fig. 1B).  No significant difference in RCR was found within 

or among four groups after 12 week treatment (Fig. 2A).  ADP/O ratio in group B 

significantly decreased (P < 0.01 vs. group A) to 2.07 ± 0.40. No significant difference in 

ADP/O ratios was found within or among control (3.24 ± 0.24), high cholesterol diet + 

captopril (2.78 ±0.33) and captopril (3.20 ± 0.44) groups after 12-week treatment (Fig. 2B). 

 

Discussion 

In the present study, we evaluated the effects of ACE inhibition by captopril in rabbits 

fed a high-cholesterol diet on serum lipid profile and myocardial oxygen consumption. 
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Rabbits are an animal species that have several aspects similar to those of humans in regard 

to lipoprotein metabolism (Moghadasian et al. 2001). During a typical atherogenic diet 

(supplementation of 0.5% to 4% cholesterol per weight for approximately 8 to 16 weeks), 

rabbits rapidly become hypercholesterolemic (plasma cholesterol > 1,000 mg/dl) (Chapman 

et al. 1980).  However, careful extrapolations should be made in relation to the degree of 

hypercholesterolemia produced in laboratory animals, because they exceed the levels usually 

found in humans. 

Our results are in general agreement with suggestions concerning the rabbit serum 

lipid profile. The hypercholesterolemic rabbits had significantly higher levels of TC, LDL-C, 

HDL-C, and triglycerides than the control group. In contrast, there were no significant 

differences in serum lipids among the groups fed the high cholesterol - and high cholesterol + 

captopril diets, respectively. At the end of treatment, the LDL/HDL- ratio was significantly 

higher in groups B and C than in groups A and D. We showed that captopril does not 

adversely affect serum lipid levels. However, our data do not suggest favourable effects of 

captopril treatment in hypercholesterolemic rabbits.  These results are consistent with many 

clinical studies showing that captopril does not significantly affect the serum lipid profile 

(Koh et al. 2010, Alves et al. 2004, Pollare et al. 1989, Krone and Nägele 1988). 

Here we also show that basal oxygen consumption rate (state 4) of isolated cardiac 

mitochondria was significantly lower in rabbits on atherogenic diet and rabbits receiving 

captopril than in controls (Fig. 1A). The maximum oxygen consumption rate (state 3), was 

also significantly lower in groups B and D than in group A (Fig. 1B). However, the ADP/O 

index of the isolated cardiac mitochondria was significantly lower in group B than in group 

A, while in group D this index was not significantly different compared with control (Fig. 

2B). These results may suggest the presence of different mechanisms of oxygen consumption 

inhibition. The ADP/O index was 3 or higher in group A and group D, and reduction of this 
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index suggests that, in addition to the process of oxidative phosphorylation, other oxygen 

consuming processes also take place in mitochondria.  

Lipid peroxidation is the most commonly recognized one (Morrison et al. 1973, 

Chance & Williams, 1956). Reduction of this ADP/O index in group B coincides with 

increased oxidative stress (data not shown). Since there was no fall of ADP/O index in group 

D, inhibition of mitochondrial respiration in group D is probably related to cardioprotective 

effects of 12-weeks treatment with captopril.  These findings are in agreement with several 

studies showing cardioprotective effect of ACE-I (Penna et al. 2010, Al-Maghrebi et al. 

2009, Chen et al. 2003, Vavrínková et al. 2001, Gvozdjáková  et al. 1999, Yanagishita et al. 

1997, Ma et al. 1996, Sanbe et al. 1995,  Cholley et al. 1995). In contrast, other groups did 

not show any protective effect of captopril on mitochondrial function in heart and kidney of 

spontaneously hypertensive rats (Mujkosová et al. 2010, Rossi et al. 2003).   

While ADP/O ratios are used as an estimation of the capacity for energy production,  

the RCR reflects the tightness of coupling between respiration and oxidative phosphorylation 

in mitochondria. RCR values were comparable among the groups, ranging between 6.07 and 

6.28 in all animals. These results indicate absence of chemiosmotic uncoupling in 

mitochondria of the rabbit heart. In group C, captopril added to atherogenic diet restored the 

mitochondrial QO2, compared to atherogenic treatment. These observations are in agreement 

with Chowdhury et al. (2010) and de Cavanagh et al. (2003). 

At an early stage of atherosclerosis, the treatment with different ACE inhibitors 

reduced endothelial dysfunction in atherogenic diet-fed (Becker et al. 1991) or 

hyperlipidemic rabbits (Chobanian et al. 1992). ACE-I can increase endothelial NO 

generation (Desideri et al. 2008). Essentially, NO can mediate cell-protective or cell-

damaging reactions depending on the relative levels of O2, NO, O2 .−, H2O2 and other 

oxidants (Brown and Borutaite 2007). Hence, based on the observed preservation of heart  
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mitochondrial function in group D it can be assumed that in captopril-treated animals the 

higher levels of NO, as well as the lower levels of H2O2 and O2 .−, as compared with untreated 

control animals, led to the metabolization of NO through nondamaging routes. The reversible 

inhibition of mitochondrial respiration due to NO competition with oxygen for the building 

site on cytochrome oxidase probably explains the cardioprotective action of captopril (group 

D). Irreversible inhibition of mitochondrial respiration probably takes place in group B.  

Our study has several limitations. We did not present biochemical markers of organ 

injury (reactive oxygen species, NO level, lipid peroxidation) that would provide additional 

information of the metabolic derangements of the animals during atherogenic diet and 

captopril treatment protocol.  Also, we did not measure the plasma prekallikrein levels, which 

could be affected by ACE-I treatment.  Furthermore, we did not assess the effect of captopril 

on mitochondrial permeability transition and apoptosis. We also did not monitor the effects of 

AT1, AT2 and bradykinin receptor antagonists that could provide additional information of 

the contribution of rennin-angiotensin-aldosteron system and bradykinin-kallikrein systems to 

cardiac metabolism in the course of hypercholesterolemia.  

In conclusion, the ACE inhibitor captopril can protect against hypercholesterolemia-

related cardiac mitochondrial dysfunction without lowering serum lipid levels in rabbits fed a 

high- cholesterol diet. Mitochondria isolated from rabbit hearts exposed hypercholesterolemic 

diet show reduced respiration rates (state 3 and state 4) with altering ADP/O index, whereas 

the respiratory control ratio was not affected compared with control. Mitochondria isolated 

from rabbit hearts exposed captopril only shows reduced respiration rates without altering 

ADP/O index or respiratory control ratio. Cardiac mitochondrial respiration inhibition due to 

exposure to hypercholesterolemic diet was less severe in group C and D than in group B.  

Thus, our results suggest that other metabolic processes may be involved in the respiration 

inhibition induced by these treatments protocol. Despite captopril did not exert favorable 
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effect on serum lipid levels, it restored mitochondrial oxygen consumption to the some extent 

in group C. Further studies should be performed to define the underlying physiological and 

(or pathophysiological) mechanisms and clinical implications. 
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Table 1. Serum lipid concentrations in rabbits fed a normal diet (group A), high cholesterol 
diet (group B), the high cholesterol diet plus captopril (group C) or captopril only (group D) 
for 12 wk: at the end of treatment1 

 

Variable Group A Group B Group C Group D 

n 10 10 10 10 
TC, mmol/L 2.09 ± 0.07b 20.67± 1.04a 15.72 ± 1.35a 1.98 ± 0.07b 
LDL-C, mmol/L 2.34 ± 0.03b 15.34 ± 1.36a 13.19 ± 1.20a 2.24± 0.06b 
HDL-C, mmol/L 0.92 ± 0.02a 1.96 ± 0.24b 1.87 ± 0.23b 0.88 ± 0.03a 
LDL/HDL 2.54 ± 0.73c 8.03 ± 0.74a 7.99 ± 0.83a 2.55 ± 0.67b 
TG, mmol/L 0.86 ± 0.17b 1.86 ± 0.17a 1.48 ± 0.16a 0.91 ± 0.15a 
1 Values are means± S.E.M. Values in a row with unlike superscripts differ, P < 0.05.  
Abbreviations used: TG, triglyceride; TC, total cholesterol; C,cholesterol;  
 
 
 



Captopril and Myocardial Oxygen Consumption 
 
 

 

 

 

 
 
Fig 1. Mitochondrial State 4 (Panel A) and State 3 (Panel B) oxygen consumption in malate 
(complex I substrate)-energized mitochondria.. Values are means ± SEM (in ngatom O2 
*min_1*mg mitochondrial protein_1); n=10 animals/group; ** P<0.01 vs. control Isolated 
mitochondrial oxygen consumption was measured in control hearts (group A), cholesterol-
supplemented (B), cholesterol + captopril supplemented (C) and captopril-supplemented (D) 
hearts. 
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Fig. 2. Respiratory control ratio (A) and ADP/O ratio (B) in malate (complex I substrate)-
energized mitochondria after 12-week treatment protocol for control (group A), high 
cholesterol diet (B), high cholesterol diet + captopril (C) and captopril (D) groups. All results 
are shown as means ± SEM for n = 10 animals for each group. *P < 0.05 vs. control. 
 
 
 
 
 

 
 
 
 


