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physres
Nové razítko



Summary  

Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) exert beneficial effects on 

health and they could help to prevent development of obesity and associated metabolic 

disorders. In our previous studies in mice fed high-fat (cHF; ~60% calories as fat) diet 

and maintained at 20°C, dietary LC n-3 PUFA could counteract accretion of body fat, 

without inducing mitochondrial uncoupling protein 1 (UCP1)  in adipose tissue, 

suggesting that the anti-obesity effect was not linked to adaptive (UCP1-mediated) 

thermogenesis. To exclude a possible dependence of the anti-obesity effect on any 

mechanism inducible by cold, experiments were repeated in mice maintained at 

thermoneutrality (30°C). Male C57BL/6J mice were fed either cHF diet, or cHF diet 

supplemented with LC n-3 PUFA, or standard diet for 7 months. Similarly as at 20°C, the 

LC n-3 PUFA supplementation reduced accumulation of body fat, preserved lipid and 

glucose homeostasis, and induced fatty acid re-esterification in epididymal white adipose 

tissue. Food consumption was not affected by LC n-3 PUFA intake. Our results 

demonstrated anti-obesity metabolic effect of LC n-3 PUFA, independent of cold-

induced thermogenesis and they suggested that induction of fatty acid re-esterification 

creating a substrate cycle in white fat, which results in energy expenditure, could 

contribute to the anti-obesity effect. 
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Introduction 

 

Epidemy of obesity triggered intense research of inducible metabolic 

mechanisms, which could counteract accumulation of body fat. Thus, traditional research 

of adaptable cold- and diet-induced thermogenesis mediated by mitochondrial uncoupling 

protein 1 [UCP1; (Klaus et al. 1991, Nedergaard et al. 2005, Nicholls et al. 1984)] has 

been revived reflecting also the discovery of functional brown adipose tissue (BAT) in 

adult humans (Cypess et al. 2009, Lichtenbelt et al. 2009, Nedergaard et al. 2010, 

Virtanen et al. 2009, Zingaretti et al. 2009), as well as the negative correlation between 

BAT content and body weight in humans (Saito et al. 2009, Zingaretti et al. 2009). 

Nevertheless, several studies suggest that UCP1-independent thermogenesis also exists, 

which could be recruited by various treatments reducing obesity (Cannon et al. 2004, 

Chen et al. 2010, Granneman et al. 2003, Guan et al. 2002, Kozak 2010, Kus et al. 2008, 

Langin 2010, Meyer et al. 2010, Summermatter et al. 2008). 

 Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) of marine origin, 

namely eicosapentaenoic acid (EPA; 20:5 n-3) and docosahexaenoic acid (DHA; 22:6 n-

3) exert numerous beneficial effects on health, including improvements in lipid 

metabolism and prevention of obesity and diabetes [reviewed in (Flachs et al. 2009)]. 

These effects are well documented in our previous studies, using a model of metabolic 

syndrome in dietary obese mice (Flachs et al. 2011, Hensler et al. 2011, Jelenik et al. 

2010, Kuda et al. 2009, Kus et al. 2011, Rossmeisl et al. 2012, van Schothorst et al. 

2009), which have also demonstrated that LC n-3 PUFA could increase mitochondrial 

oxidative capacity specifically in white adipose tissue (WAT) and not in BAT, skeletal 
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muscle or liver (Flachs et al. 2005). This induction was augmented by calorie restriction 

(Flachs et al. 2011). Importantly, no up-regulation of UCP1 gene in adipose tissue could 

be observed (Flachs et al. 2011, Flachs et al. 2005). Instead, our results suggested the 

involvement of fatty acid (FA) re-esterification in WAT in the anti-obesity effect of the 

combined use of LC n-3 PUFA and calorie restriction (Flachs et al. 2011). All the above 

studies were conducted in mice maintained at 20°C, i.e. under the conditions activating 

inherent mechanisms of metabolic cold defense, since thermoneutral zone in mice is 

close to 30°C (Alberts et al. 2005, Cannon et al. 2004). Therefore, a possibility existed 

that the induction of the catabolic processes by LC n-3 PUFA, which resulted in energy 

expenditure and obesity resistance, reflected mechanisms independent of UCP1, but 

activated by the cold exposure. Results of this study document, that dietary intervention 

with LC n-3 PUFA could counteract accumulation of body fat even at thermoneutrality, 

independent of the mechanisms underlying cold-induced thermogenesis.  

 

Methods 

 

Animals and treatments 

C57BL/6J (B/6J) mice were obtained from the Jackson Laboratory (Bar Harbor, 

ME, USA) and bred at the Institute of Physiology for several generations. Male mice 

born and maintained at 20°C on a 12:12-hr light-dark cycle were weaned at 4 weeks of 

age to either the standard low-fat (ST) or high-fat (cHF) diet, while the ambient 

temperature was increased to 30°C and this temperature was maintained until the end of 

the experiment (with 4 mice per cage). ST diet (Velaz, Prague, Czech Republic) 
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contained 21, 3, and 56% calories as protein, fat, and carbohydrate, respectively. The 

cHF diet, proven to be obesogenic in B/6J mice, contained 15, 59, and 26% calories as 

protein, fat, and carbohydrate, respectively [see (Kuda et al. 2009)].  In some animals, 

cHF diet was supplemented with EPA and DHA (cHF+F), added as a concentrate of LC 

n-3 PUFA (46% DHA, 14% EPA; EPAX 1050 TG, EPAX a.s., Lysaker, Norway), which 

replaced 15% of dietary lipids (specifically, 5.25 g of corn oil/100 g cHF diet). Thus, 

5.3% of total energy content in the LC n-3 PUFA-supplemented diet came from EPA and 

DHA. In contrast with cHF+F, both ST and cHF diet were virtually free of any LC n-3 

PUFA [see our previous publication (Kuda et al. 2009) for the composition of FA in 

lipids in both cHF-based diets].  

Body weight of each mouse was monitored weekly. Food intake of the group of 4 

mice in each cage during a 24-hr period was assessed four times per experiment (at 2, 3, 

4 and 7 months of age), and averaged per mouse for the whole period of the dietary 

intervention (i.e., from the time of weaning to 8 months of age). Mice were killed at 8 

month of age in ad libitum fed state, by decapitation between 10:00 and 12:00 a.m. 

EDTA-plasma was prepared from truncal blood and stored at – 70°C. Subcutaneous 

(dorsolumbar) and epididymal WAT were dissected.  

All experiments were performed in accordance with the guidelines for the use and 

care of laboratory animals of the Institute of Physiology, the directive of the European 

Communities Council (2010/63/EU), and the Principles of Laboratory Animal Care 

(NIH publication no. 85-23, revised 1985). 

 

Glucose tolerance test 
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Two weeks before the end of the experiment, an intraperitoneal glucose tolerance 

test (IP GTT) was performed at ambient temperature of 30°C,  in overnight-fasted mice 

as described before (Rossmeisl et al. 2009).  

 

Indirect calorimetry 

To evaluate energy expenditure, indirect calorimetry was performed using a 

system from Somedic [Horby, Sweden; refs. (Flachs et al. 2011, Kus et al. 2008)] at 6 

months of age. Briefly, the measurements were performed in individually caged mice 

(Eurostandard type II mouse plastic cages; ~ 6,000 ml; Techniplast, Milan, Italy), with 

the cages placed in a sealed measuring chamber equipped with thermostatically 

controlled heat exchangers at 30°C. Oxygen consumption (VO2) and carbon dioxide 

production (VCO2) were recorded every 2 min under a constant airflow rate (1000 

ml/min) for 22 h, starting at 3:00 p.m. The level of substrate partitioning was estimated 

by calculating respiratory exchange ratio (RER; i.e., VCO2/VO2 ratio). Percent relative 

cumulative frequency (PRCF) curves were constructed based on RER values pooled 

from all the animals within a given dietary group (6-8 animals per group) during the 

whole measurement period (Kus et al. 2008). 

 

Metabolite quantification 

Non-esterified FA (NEFA) and triacylglycerols (TG) in EDTA-plasma were 

assessed as described before (Ruzickova et al. 2004). 

 

Ex vivo metabolism of adipose tissue 
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Basal and insulin-stimulated TG synthesis was quantified as previously described 

(Pravenec et al. 2006). Briefly, distal parts of epididymal adipose tissue (~200 mg 

aliquots) were incubated in modified Krebs-Ringer bicarbonate buffer containing 4% 

bovine serum albumin (Fraction V), 5 mM glucose, and 0.1 µCi/ml 14C-glucose in gas 

phase of 95% O2 and 5% CO2 at 37oC. After 2 h incubation without or with insulin (250 

µU/ml), the tissue fragments were washed by saline, homogenized in chloroform and 

thereafter methanol was added in a 2:1 ratio (chloroform:methanol). The lipid extraction 

proceeded during night at 4oC. For the chloroform phase separation, KH2PO4 was added 

(Folch et al. 1957). Water phase of the extract was used for quantification of the 

incorporation of glucose into total neutral lipids and expressed as nmol of glucose 

converted into lipid per gram of adipose tissue. Aliquot of the chloroform phase (which 

was saponificated and subsequently extracted by petrol ether) was used for the 

determination of 14C-glucose incorporation into acyl groups and was expressed as nmol 

of glucose converted into lipid per gram of adipose tissue (Pravenec et al. 2006). The 

amount of 14C-glucose incorporated into glycerol residues was calculated as the 

difference between the total incorporation into neutral lipids and the incorporation into 

acyl groups, separately for each sample.   

 

Statistics  

All values are expressed as means ± SE. Logarithmic transformation was used 

when necessary. Data were analyzed using Student’s t-test or ANOVA (one-way or two-

way) with Holm-Sidak method using SigmaStat statistical software. The PRCF curves 

were analyzed by Nonlinear Regression using SigmaPlot and 50th percentile value (EC50) 
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and Hillslope values were compared in a one-way ANOVA. Statistical significance was 

defined as p ≤ 0.05. 

 

Results 

 

Mice, which were maintained at 30°C since weaning (at 4 weeks of age) showed 

different final body weight at 8 months of age, depending on the type of diet fed during 

the post-weaning period. Thus, the final body weight of the cHF diet-fed mice was 

significantly higher as compared with the ST diet-fed mice, while supplementation of the 

cHF diet with LC n-3 PUFA (cHF+F) tended to counteract the cHF diet-induced obesity 

(Table 1). The differences in body weight could be explained by differences in adiposity. 

Thus, weight of epididymal fat depot was significantly lower and the weight of 

dorsolumbar fat depot tended to be lower in the cHF+F group, as compared with the cHF-

diet fed mice (Table 1).  Calorie intake (measured in groups of 4 mice caged together; see 

Methods) was significantly higher in the cHF diet-fed as compared with the ST diet-fed 

mice. However, it was not affected LC n-3 PUFA admixed to the cHF diet (Table 1). 

While plasma levels of TG tended to be elevated and levels of NEFA were significantly 

increased in response to the cHF diet-feeding, the supplementation of the cHF diet with 

LC n-3 PUFA exerted a protective, anti-hyperlipidaemic effect (Table 1). 

To evaluate the effect of the differential dietary treatment on glucose homeostasis, 

IP GTT was performed at 30°C, two weeks before killing of the mice (Fig. 1). The cHF 

diet-feeding resulted in increased fasting blood glucose levels, as measured at the 

beginning of the test, and in deterioration of glucose tolerance, assessed as an incremental 



area under the curve (AUC), which increased ~1.7-fold (Fig. 1 and Table 1). The 

supplementation of cHF diet with LC n-3 PUFA prevented the adverse effect of cHF diet-

feeding on glucose homeostasis, as documented by the normalization of blood glucose 

levels, and by almost complete prevention of the AUC increase (Fig. 1 and Table 1). 

To characterize whole-body metabolism and its changes in response to different 

diets, indirect calorimetry was used in ad libitum fed mice. To avoid any cold stress and 

similarly as in the case of IP GTT (see above), the measurements were performed at 

30°C. The measurements were carried over a 22 h period, i.e., during almost complete 

light-dark cycle of the day. In the case of VO2, no significant differences between groups 

were observed (Table 2). As expected, RER values were lower in both cHF and cHF+F 

groups as compared with mice fed ST diet (Table 2), in agreement with a relatively high 

content of lipids in the cHF-based diets and the preferential oxidation of lipid over 

carbohydrate fuels under these conditions. This analysis also suggested an increase in 

RER in response to the supplementation of the cHF diet with LC n-3 PUFA (Table 2), in 

agreement with the beneficial effect of LC n-3 PUFA on glucose homeostasis and insulin 

sensitivity (see above). Therefore, a robust analysis of RER was used, while constructing 

PRCF curves based on all the data pooled from each dietary group (see Methods and Fig. 

2). This quantitative approach is capable to detect small differences in fuel partitioning. 

Provided that PRCF curves represent the normally distributed data, the values of log EC50 

of PRCF (50th percentile value) correspond to RER values (Kus et al. 2008). The PRCF 

curves shifted to the left in response to both cHF-based diets, and a trend for a difference 

between the EC50 value of the cHF and cHF+F curves was observed, supporting a shift 

from lipid to carbohydrate oxidation in response to the LC n-3 PUFA supplementation. 
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That the cHF curve was significantly steeper than both the cHF+F and the ST curves 

suggests (i) a relatively homogeneous distribution of RER values in the cHF diet fed-

mice (Kus et al. 2008), reflecting a strong drive for oxidation of abundantly supplied 

dietary lipids, and (ii) that the supplementation of the cHF diet with LC n-3 PUFA  could 

unmask an inherent heterogeneity of the mice with respect to the preservation of glucose 

homeostasis by the LC n-3 PUFA supplementation (Fig. 2). In any case, concerning the 

subtle effects of the LC n-3 PUFA supplementation, unequivocal interpretation of the 

data would require measurements using a larger cohort of the experimental animals.  

The above results document that similarly as at 20°C (Flachs et al. 2011, Hensler 

et al. 2011, Jelenik et al. 2010, Kuda et al. 2009, Kus et al. 2011, Rossmeisl et al. 2012, 

van Schothorst et al. 2009), also at the thermoneutral temperature of 30°C, the LC n-3 

PUFA supplementation exerts anti-obesity effect, while preserving healthy plasma lipid 

profile and glucose homeostasis in the animals exposed to obesogenic environment. Since 

our previous results indicated a surprisingly tissue specific involvement of FA re-

esterification in WAT in the anti-obesity effect of LC n-3 PUFA in the combination with 

calorie restriction (Flachs et al. 2011), we sought to characterize the effect of the LC n-3 

PUFA supplementation on WAT metabolism also in this study. Incorporation of 14C-

glucose into total lipids (Fig. 3A), as well as into the acyl groups (Fig. 3B) in epididymal 

WAT, were significantly decreased in association with the cHF diet-feeding, in 

agreement with the impairment of de novo FA synthesis in response to high intake of 

dietary fat (Flachs et al. 2011). Also in agreement with the results in mice maintained at 

20°C (Flachs et al. 2011), this decrease was partially prevented by the LC n-3 PUFA 

supplementation, namely under the insulin-stimulated conditions (Fig. 3B). That LC n-3 
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PUFA support the metabolic effect of insulin is consistent with their beneficial effect on 

glucose homeostasis (see above). Moreover, as suggested by the changes in incorporation 

of radiolabeled glucose into glycerol residues (Fig. 3C), i.e., the marker of de novo 

glycerol synthesis and FA re-esterification (Pravenec et al. 2006), cHF-feeding depresses 

FA re-esterification in WAT, while LC n-3 PUFA could preserve this activity, namely 

under the basal conditions, in the absence of the insulin stimulation.   

 

Discussion  

 

The principal finding of this report is a moderate protection against accumulation 

of body fat by LC n-3 PUFA admixed to high-fat diet, namely in the abdominal WAT, 

which occurred in mice maintained at thermoneutral conditions of 30°C, i.e. independent 

of cold-induced thermogenesis. This observation is consistent with a lack of any up-

regulation of UCP1 gene neither in WAT nor in interscapular BAT in response to dietary 

LC n-3 PUFA under the conditions similar to this experiment, except that the previous 

studies (Flachs et al. 2011, Flachs et al. 2005) were performed in mice maintained at 

20°C, i.e. under the conditions, which should augment UCP1 gene expression. Similarly 

to our previous studies of this animal model, all of which were performed using mice 

maintained at 20°C (Flachs et al. 2011, Hensler et al. 2011, Jelenik et al. 2010, Kuda et 

al. 2009, Kus et al. 2011, Rossmeisl et al. 2012, van Schothorst et al. 2009),  reduced 

accumulation of body fat in response to LC n-3 PUFA in this study could not be 

attributed to changes in food intake, supporting the notion that UCP1-independent energy 

expenditure was involved (see Introduction). However, it cannot be excluded that the 
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magnitude of LC n-3 PUFA response is affected to some extent by ambient temperature. 

To test this possibility, the effect of dietary LC n-3 PUFA on adiposity might be studied 

in mice maintained at various temperatures within the same experiment. 

While in many of the previous studies in rodents fed a high-fat diet, LC n-3 PUFA 

prevented development of obesity, dyslipidemia (Flachs et al. 2011, Flachs et al. 2005, 

Ikemoto et al. 1996, Kuda et al. 2009, Ruzickova et al. 2004) and impaired glucose 

tolerance (Jelenik et al. 2010, Jucker et al. 1999, Kuda et al. 2009, Neschen et al. 2007, 

Storlien et al. 1987), depending possibly in part on the dietary macronutrient composition 

(Hao et al. 2012), only few studies in obese humans demonstrated reduction of adiposity 

after LC n-3 PUFA supplementation (Couet et al. 1997, Kunesova et al. 2006, Mori et al. 

1999). Thus, the metabolic effect of LC n-3 PUFA could differ in part between rodents 

and humans, and the mechanisms underlying possible induction of energy expenditure 

(thermogenesis) and protection against fat accumulation remain to be clarified. As found 

in mice, the anti-obesity effect could reflect in part the inhibition of fat cell proliferation 

(Hensler et al. 2011, Ruzickova et al. 2004), while the metabolic effects could depend on 

increased lipid catabolism in the liver (Jelenik et al. 2010) and the intestine (van 

Schothorst et al. 2009). In contrast, muscle energy metabolism is relatively little affected 

(Horakova et al. 2012). Moreover, as we have shown previously (Flachs et al. 2011, 

Flachs et al. 2005), specific modulation of WAT metabolism, namely the induction of FA 

re-esterification (Flachs et al. 2011) could also contribute. Thus, somehow paradoxically 

with respect to the reduction of weight of epididymal fat in response to the LC n-3 PUFA 

supplementation, induction of de novo lipogenesis by LC n-3 PUFA in this WAT depot 

was observed in mice maintained both at 20°C (Flachs et al. 2011) and 30°C (this study). 
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Since FA re-esterification creates a substrate cycle, its activation results in energy 

expenditure (Kalderon et al. 2000, Langin 2010). Moreover, the induction of energy-

demanding FA re-esterification in WAT in response to the LC n-3 PUFA 

supplementation could help to explain both, the induction of mitochondrial biogenesis 

(Flachs et al. 2011, Flachs et al. 2005) in WAT and the suppression of NEFA levels in 

plasma (results of this study and refs. Flachs et al. 2011, Flachs et al. 2006, Jelenik et al. 

2010, Kuda et al. 2009, Kus et al. 2011). 

Our results contribute to understanding of the basic mechanisms regulating energy 

metabolism. As already discussed by Cannon and Nedergaard (Cannon et al. 2004), 

metabolic mechanisms enhancing energy expenditure independent of UCP1 probably 

exist, with a significant characteristic that they are not augmented by cold.  Our results 

are in favor of this concept, while suggesting that the anti-obesity effect of LC n-3 PUFA 

in rodents depends on the activation of the UCP1-independent thermogenesis, using 

mechanisms distinct from those mediating classical adaptive thermogenesis. Because of 

the enormous capacity of cold-induced thermogenesis in small rodents (Cannon et al. 

2004), the demonstration of the anti-obesity effect of LC n-3 PUFA in mice under the 

thermoneutral conditions suggests that at least some of the underlying mechanisms could 

serve as a target for treatment of human obesity. 
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Table 1. Growth characteristics, adiposity, and plasma parameters 
 
 ST cHF cHF+F 

Body weight (g)    

Initial (at weaning) 12.44 ± 0.45 12.61 ± 0.37 11.38 ± 0.81 

Final 29.55 ± 0.39 40.11 ± 2.21# 37.17 ± 2.29# 

Gain 16.98 ± 0.61 27.73 ± 2.09# 25.50 ± 1.76# 

Food consumption (kJ/mice/day) 36.5 ± 1.6 40.6 ± 1.1# 40.5 ± 1.6# 

Weight of fat depots (mg)    

EPI 393 ± 36 2208 ± 144# 1534 ± 228*# 

DL 146 ± 14 738 ± 88# 531 ± 76# 

Plasma levels    

TG (mmol/l) 1.40 ± 0.07 1.73 ± 0.20 1.19 ± 0.15* 

NEFA (mmol/l) 0.96 ± 0.05 1.32 ± 0.05# 0.94 ± 0.07* 

Glucose homeostasis    

Fasting glucose (mmol/l) 3.66 ± 0.07 4.63 ± 0.31# 3.63 ± 0.18* 
Incremental AUC 
(glucose mmol/l) 655 ± 53 1129 ± 52# 842 ± 41*# 

 
Four weeks after birth, mice were weaned onto standard low-fat diet (ST), or high-fat diet 

(cHF) diet, or cHF diet supplemented with LC n-3 PUFA (cHF+F) and maintained at 

30°C (n = 8). Mice were killed at 8 months of age in ad libitum state and plasma levels of 

NEFA and TG and adiposity were analyzed. Glucose homeostasis was assessed using IP 

GTT in mice fasted overnight 2 weeks before killing (see Fig. 1). Food consumption 

(expressed as kJ/day per animal) was measured four times during the whole differential 

dietary treatment protocol. EPI - epididymal fat, DL – subcutaneous WAT in 

dorsolumbar region. Data are means ± SE. * p<0.05 for the effect of cHF+F compared to 

cHF; # p<0.05 for the effect of cHF-based diet compared to ST. 
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Table 2. Indirect calorimetry 
 
 ST cHF cHF+F 

VO2 (ml/min) 1.07 ± 0.04 1.25 ± 0.07 1.19 ± 0.05 

RER 0.904 ± 0.010 0.792 ± 0.008# 0.805 ± 0.007# 
 
Four weeks after birth, mice were weaned onto different diets and maintained at 30°C as 

described in Table 1. At 6 month of age, indirect calorimetry was performed. Data are 

means ± SE. # p<0.05 for the effect of cHF-based diet.
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FIGURE LEGENDS 

 
Fig. 1 Glucose tolerance test. Four weeks after birth, mice were weaned onto ST diet 

(circle), or cHF diet (triangle), or cHF+F diet (square) and maintained at 30°C (n = 8) 

during the whole experiment. Two weeks before mice killing (at 8 month of age) IP GTT 

was performed. Data are means ± SE; for incremental AUC and fasting glucose (see 

Table 1). 

 

Fig. 2 Evaluation of fuel partitioning using indirect calorimetry. At 6 months of age, the 

measurements were performed at 30°C for a period of 22 h, on a 12:12-h light-dark cycle, 

while mice had free access to ST diet (gray line), or cHF diet (black line), or cHF+F diet 

(black dash line) and water. RER data (their means ± SE are shown in Table 2) pooled 

from all the mice of the same dietary group (n = 6–8; ~3,600 RER measurements per 

each curve) were used to construct PRCF curves. Both EC50 and Hillslope values were 

significantly different between ST and cHF-based diets (cHF, cHF+F), while only the 

Hillslope values differed between cHF and cHF+F diets (not shown). 

  

Fig. 3 Lipid metabolism in adipose tissue at 8 months of age. Incorporation of 14C- 

glucose into neutral lipids (TG synthesis); (A), and incorporation of 14C-glucose into acyl 

groups (de novo FA synthesis); (B) was evaluated ex vivo in fragments of epididymal fat.  

Incorporation of 14C- glucose into glycerol residue (FA re-esterification); (C) was 

calculated based on the data in A and B. a p<0.05 for the effect of insulin, b p<0.05 for the 

effect of cHF+F compared to cHF diet. 
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