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Abstract  

Mitochondrial dysfunction is currently acknowledged as a central pathomechanism of 

most common diseases of the 21st century. Recently, the assessment of the bioenergetic profile 

of human peripheral blood cells has emerged as a novel research field with potential applications 

in the development of disease biomarkers. In particular, platelets have been successfully used for 

the ex vivo analysis of mitochondrial respiratory function in several acute and chronic 

pathologies. An increasing number of studies support the idea that evaluation of the bioenergetic 

function in circulating platelets may represent the peripheral signature of mitochondrial 

dysfunction in metabolically active tissues (brain, heart, liver, skeletal muscle). Accordingly, 

impairment of mitochondrial respiration in peripheral platelets might have potential clinical 

applicability as a diagnostic and prognostic tool as well as a biomarker in treatment monitoring.  

The aim of this minireview is to summarize current information in the field of platelet 

mitochondrial dysfunction in both acute and chronic diseases.  

Key words: blood platelets, mitochondrial respiration, high-resolution respirometry, 

extracellular flux analysis, acute and chronic diseases 

 

 

 

 

 

 

 

 



Introduction 

 Chronic non-communicable pathologies, mainly cardiovascular and neurodegenerative 

diseases, cancer, and type 2 diabetes are nowadays the leading causes of mortality, being 

collectively responsible for almost 70% of deaths worldwide (WHO, 2017). Importantly, all 

lifestyle-related conditions (unhealthy diet, tobacco use, lack of physical activity and alcohol 

abuse), classic risk factors (obesity, dys/hyperlipidemia, and high blood glucose) and 

comorbidities (eg, depression) associated with these pathologies negatively impact on cellular 

metabolism, including mitochondrial function (Arduino et al. 2013, Medina-Gomez 2012, 

Nicolson 2014, Ouyang et al. 2013).  

 More recently, mitochondria have emerged as acute contributors to both pathogenesis and 

ultimate outcome of acute severe conditions, such as sepsis, trauma and stroke (Arulkumaran et 

al. 2016, Busija et al. 2016, Jang et al. 2017).  

 Tissue biopsy, although the most relevant method to confirm various pathological 

changes in diseased organs, implies high costs and is not feasible in all clinical conditions, 

especially those related to older individuals who cannot cooperate during the procedure or in the 

presence of hemostasis disorders (Tyrrell et al. 2016). On the other hand, circulating human 

blood cells such as peripheral blood mononuclear cells (PBMC) and platelets are increasingly 

used in translational research for the assessment of organ-specific mitochondrial dys/function 

relevant for the clinical outcome (Chacko et al. 2013, Hsiao and Hoppel 2018, Sjovall et al. 

2013). These abundant, readily available samples, obtained through minimally invasive 

procedures are ideal tools that allow dynamic monitoring of mitochondrial status, view the 

possibility to perform serial measurements. Indeed, the impairment of mitochondrial respiration 



has emerged in the past decade as a disease biomarker and a quantification tool for the evaluation 

of disease prognosis and/or therapeutic response.  

 The occurrence of an energy crisis has been widely acknowledged as a central event in 

the pathophysiological sequence of common degenerative and metabolic pathologies that are 

nowadays viewed as "primarily systemic bioenergetic diseases" (Wallace 2013). In this respect, 

high-throughput assays have been developed and constantly improved in order to allow the 

assessment of the bioenergetic profile of blood cells as a mirror of the energetic capacity of body 

tissues (Chacko et al. 2014, Tyrrell et al. 2016). In particular, there is increasing evidence that 

measurement of platelet mitochondrial function can serve as a good proxy for tissue-specific 

defects in cellular respiration (Zharikov and Shiva 2013).   

 The aim of this mini review was to summarize current information in the field of platelet 

mitochondrial dysfunction in both acute and chronic pathologies. 

 

SEARCH STRATEGY 

 The PubMed data base was searched for English-language literature following MeSH 

(Medical Subject Headings): "peripheral platelets", "circulating blood platelets", "mitochondrial 

dysfunction", "mitochondrial respiration", "bioenergetics", "profile", "biomarker", "mechanism", 

"interaction, "correlation"", "human", "acute", "chronic",  and "disease". All articles addressing 

the topic were studied in detail and additional relevant literature was extracted from the 

references of the cited papers. The "related articles" function on PubMed was also used to further 

identify relevant information. No publication date restrictions were applied. 

 

 



Platelet Function Regulation and Mitochondria 

 Platelets are short-lived (5-7 days), anucleated blood cells primarily involved in the 

regulation of hemostasis and thrombosis (Koupenova et al. 2018) that also play important roles 

in inflammation, immunity, and cancer (Li 2016, Rondina et al. 2013, Semple et al. 2011).  

 Despite having a relatively low number of functional mitochondria, platelets are highly 

energy consuming, metabolically active cells. Accordingly, the main role of platelet 

mitochondria is to provide the ATP required for their activation within the process of thrombus 

formation (Rendu and Brohard-Bohn 2001, Zharikov and Shiva 2013). Although platelets in 

basal state are powered by both oxidative phosphorylation and glycolysis, the former has been 

reported to be the prevalent source of energy when platelets are activated (Aibibula et al. 2018, 

Chacko et al. 2013). Platelets have a higher oxygen consumption rates as compared to leucocytes 

since higher levels of ATP are required for the normal functioning of ion channels that maintain 

the intracellular ionic balance (particularly of calcium ions) that is essential for preventing 

platelet activation in basal conditions (Kramer et al. 2014). Another important platelet trait is the 

fact that mitochondrial complex III and IV proteins are low (Kramer et al. 2014) which means 

that even a slight degree of mitochondrial damage could have a very severe impact on platelet 

function. Also, this feature serves to validate the important role of platelet mitochondrial 

respiration monitoring as a very useful, minimally invasive diagnostic and prognostic tool in 

widespread pathologies proven to affect mitochondrial complexes III and IV, such as diabetes 

(Raza et al. 2011), Alzheimer’s disease (Parker et al. 1990b) or Parkinson’s disease (Benecke et 

al. 1993, Haas et al. 1995).  

In platelets, as in other cells, oxidative phosphorylation and glycolysis are inter-linked in 

such a way that a decrease/inhibition of one process leads to the compensatory increase of the 



other (Akkerman et al. 1979). It has been reported more than 2 decades ago that a significant 

increase in lactate production (a hallmark of basal glycolysis) secondary to the impairment of 

oxidative phosphorylation occurred in platelets isolated from elderly people (as compared to 

young individuals) suggesting that changes in peripheral blood cells reflect the ones reported in 

post-mitotic tissues with ageing (D'Aurelio et al. 2001). Also, since it is now clear that there is 

an age-related decline in platelet counts for both male and female patients (Mahlknecht and 

Kaiser 2010) it is tempting to assume that platelets with disrupted mitochondrial function, as 

reflected by the impaired oxidative phosphorylation, have a higher clearance than the healthy 

ones. Indeed, a direct link between excessive reactive oxygen species (ROS) generated by 

inadequate mitochondrial respiration and platelet apoptosis has been described, suggesting that 

human platelet senescence is at least in part mediated by mitochondrial dysfunction (Wang et al. 

2017, Wang et al. 2015b). 

  There has been a debate about the roles of the two processes, oxidative phosphorylation 

or glycolysis, in platelet aggregation. While early studies supported the major role of the latter as 

the main source of energy (Chaudhry et al. 1973, Misselwitz et al. 1987), more recent ones 

concluded that ATP provided by mitochondrial oxidative phosphorylation plays the critical part 

(Barile et al. 2012, Yamagishi et al. 2001). Recent bioenergetic studies in intact platelets 

demonstrate that, upon thrombin stimulation, oxidative phosphorylation is rapidly engaged and 

the process is supported by both L-glutamine and fatty acids oxidation (Ravi et al. 2015). 

Moreover, in order to evaluate whether the inhibition of mitochondrial respiration can disrupt 

platelet function, several groups assessed the effects of various chemicals on the electron 

transport chain complexes. Thus, Barile et al. 2012 tested different heterocyclic compounds 

belonging to the tetrazole, thiazole and 1,2,3-triazole classes. These compounds were able to 



interfere with blood clotting, most probably via the inhibition of cytochrome oxidase. Tomasiak 

et al. (2004) also proved that impairment of  mitochondrial complex III (cytochrome oxydase) by 

nitric oxide (NO) or mitochondrial complex IV reduced mitochondrial energy production which 

in turn inhibited platelet aggregation and secretion, thus demonstrating that platelet-activated 

coagulation depends on adequate mitochondrial respiratory function.  

 However, mitochondria also regulate the activation of platelets during thrombogenesis 

via non-ATP-mediated mechanisms, such as the mild generation of signalling molecules 

including mitochondrial ROS or the increase in mitochondrial calcium (Pignatelli et al. 1998). 

Importantly, these pathways that can equally trigger platelet apoptosis when released in high 

amounts (Lebois and Josefsson 2016, Lopez et al. 2007) - Fig. 1. Eukaryotic cells display a high 

efficiency of oxidative phosphorylation but this process inevitably leads to mitochondrial ROS 

release, thus rendering mitochondria as the main source of cellular ROS (Muntean et al. 2016). 

Complexes I and III of the electron transport chain also play a significant role in platelet ROS 

production as they generate the superoxide ion, which is then converted by superoxide dismutase 

into hydrogen peroxide (H2O2) (Pietraforte et al. 2014). These ROS are now recognized as 

second messengers in collagen-stimulated platelet activation (Zharikov and Shiva 2013). Indeed, 

exogenous treatment with H2O2 induces platelet activation while intracellular H2O2 scavenging 

inhibits calcium mobilization and platelet aggregation (Pignatelli et al. 1998). ROS production is 

regulated mainly by the redox state of the electron transport chain and therefore by the proton 

motive force/mitochondrial membrane potential () (Lambert and Brand 2004). In this regard, 

several studies demonstrated a link between hyperpolarization of the mitochondrial membrane, 

ROS production and platelet activation (Matarrese et al. 2009, Yamagishi et al. 2001). For 

example, platelets from patients with diabetes expressed a decreased rate of oxygen consumption 



together with hallmark signs of increased ROS production (Avila et al. 2012). Matarrese et al. 

(2009) demonstrated that an activator of the complement system can also induce membrane 

hyperpolarization, oxidative stress and platelet activation. Moreover, the group of Brownlee 

reported that hyperglycaemia induces membrane hyperpolarization in healthy platelets, a process 

that increased ROS generation and elicited platelet activation (Yamagishi et al. 2001).  

 Apart from superoxide and H2O2, mitochondria are able to produce •NO (Rusak et al. 

2006). A rapid reaction between superoxide and NO leads to the formation of peroxynitrite 

(ONOO-), a powerful oxidizing and nitrating compound. In collagen-stimulated platelets, 

ONOO- was reported to decrease ATP concentration and mitochondrial respiration via the 

inhibition of complexes I, II and IV of the respiratory chain (Rusak et al. 2006) - Fig. 1 (left 

dotted line). Moreover, the inhibitory effect observed on platelet secretion (but not on 

aggregation) may be due, at least in part, to the decrease of mitochondrial ATP production 

(Rusak et al. 2006). 

 

Figure 1. Mitochondrial regulation of platelet function (explications in text). 



 Therefore, accumulating evidence suggests that platelet mitochondria are not limited to 

providing ATP from oxidative phosphorylation but that they play crucial roles in triggering 

platelet activation through many interlinked mitochondrial processes: i) the increase in ROS 

production, caused by a dysfunctional electron transport chain; ii) the collapse of the 

mitochondrial membrane potential (ΔΨm) caused by the impaired proton shift towards the 

mitochondrial intermembrane space and iii) the opening of a “megachannel”, the mitochondrial 

permeability transition pore (mPTP) (Hottz et al. 2013, Leytin et al. 2009, Lopez et al. 2007) by 

increased to ROS and ROS-induced calcium mobilization via phospholipase C activation 

(Pietraforte et al. 2014). Thus, a vicious circle is created, in which the decreased ΔΨm opens the 

mPTP which will further reduce the mitochondrial membrane potential (Wang et al. 2017) - Fig 

1 - right. Several studies have demonstrated that mPTP opening is associated with an increase of 

the inner mitochondrial membrane permeability to different compounds (ions, protons, and small 

metabolites) that cause mitochondrial swelling and the consecutive collapse of the mitochondrial 

membrane potential which finally leads to ATP exhaustion and cell death (Bernardi et al. 2015, 

Ong et al. 2015). Apart from this, mPTP also seems to be an important determinant of platelet PS 

(phosphatidylserine) exposure to the plasma milieu, an event that holds an important place in 

normal homeostasis since it is involved in thrombin production regulation (Lentz 2003). Studies 

have demonstrated that in stimulated platelets, exposure of PS is closely linked to mPTP 

formation (Jobe et al. 2008, Remenyi et al. 2005), release of cytochrome c and subsequent  

apoptosis (Pietraforte et al. 2014). Elevated levels of cytoplasmic Ca2+ are a necessary but 

insufficient condition for an initial PS exposure signal; conversely, inhibition of mitochondrial 

Ca2+ entry abolishes elevation of mitochondrial Ca2+ levels along with mPTP formation and PS 

exposure but does not affect platelet granule release or aggregation (Choo et al. 2012).  



Besides their physiological role in platelet plug formation within the process of primary 

hemostasis (Cimmino and Golino 2013), it has been shown that platelets can recruit leukocytes 

at the site of inflammation and/or vascular injury, with the subsequent release of several 

inflammatory mediators and angiogenic factors (Smyth et al. 2009). Moreover, since platelets 

express toll-like receptors on their surface that are able to recognize pathogen-associated 

molecular patterns, they also play a significant role as mediators of innate immune response 

against invading microorganisms (Aslam et al. 2006). Platelet activation also lead to the release 

of respiratory-competent mitochondria. Boudreau et al. (2014) demonstrated that these 

extracellular platelet mitochondria are key mediators in inflammatory conditions. When found in 

high amounts in platelet concentrates, extracellular mitochondria induce transfusion-related acute 

reactions (e.g. fever, skin manifestations, etc.). Also, due to the presence of mitochondrial N-

formylated peptides, leukocyte recruitment and neutrophil rolling along the vascular wall are 

promoted (Boudreau et al. 2014, Schiffmann et al. 1975). Owing to their ancestral bacterial 

origin, extracellular mitochondria serve as a substrate for the bactericidal sPLA2-IIA (secreted 

phospholipase A2-IIA), leading to mitochondrial integrity disruption and the release of ATP and 

mitochondrial DNA (mtDNA). Moreover, the interaction between mitochondria and sPLA2-IIA 

induces neutrophil activation and the formation of neutrophil extracellular traps (Boudreau et al. 

2014) which in turn promotes platelet activation and aggregation (Fuchs et al. 2010, Gros et al. 

2014); this might explain the long- time observed clinical link between sterile inflammation 

states (e.g. cancer) and thrombosis. It is important to mention that, since platelets lack nuclei. 

they also represent the ideal tool for future mtDNA studies aimed at anti-inflammatory 

therapeutic development (Wang et al. 2017).  



As previously reported in the literature, not only thrombocytes but also leukocytes have 

been started to be used as biomarker of mitochondrial dysfunction in various pathologies such as 

neurodegenerative diseases, diabetes, cancer and cardiovascular pathologies (Briet et al. 2003, 

Clayton and Vinograd 1969, Cordero et al. 2010, Japiassu et al. 2011, Widlansky et al. 2010). 

Specifically, monocytes are considered a good sensor of metabolic stressors, such as 

hyperlipidemia or hyperglycemia. Also, lymphocytes bioenergetics can be used an index of 

disease processes that are associated with inflammation, as recently reviewed by Kramer et al. 

(Kramer et al. 2014).  

  

Methods Used To Assess Respiratory Mitochondrial Function In Platelets 

 A large number of studies have already shown that mitochondrial dysfunction is present 

in various frequent pathologies, such as diabetes (Duicu et al. 2016), cancer (Sturza et al. 2018), 

neurodegenerative pathologies (Nicolson 2014) and cardiovascular diseases, the most significant 

cause of morbidity and mortality globally in the last 15 years (World Health Organization, 2018). 

As previously stated, in such pathological settings the easily accessible platelets demonstrate the 

potential for being used as markers for disease monitoring and recovery after therapeutic 

interventions.  

 The investigation of maximal enzymatic activity of the respiratory chain complexes is a 

widespread spectrophotometric method used to assess mitochondrial function (Sjovall et al. 

2013). However, the evaluation of isolated complex activity does not offer an accurate account 

on the global mitochondrial function because respiratory chain complexes are interdependent and 

work as a whole, regulating up-stream other enzymes and supercomplexes (Lenaz and Genova 

2009). Therefore, in order to correctly analyse mitochondrial function, a technique that operates 

as close as possible to a physiological environment (such as platelet-rich plasma) and without or 



at least with a minimal cell disturbance should be used. Of note, assessment of platelet 

respiration can be traced back to the late 60s (Kitchens and Newcomb,1968). 

 Nowadays high resolution respirometry using the Oxygraph-2K equipment (Oroboros 

Instr.), is widely used for the assesment of peripheral blood cells respiration, including platelets 

(Sjovall et al. 2010). The development of this equipment allows nowadays the study of either 

intact or permeabilized cells for which exogenous substrates, inhibitors or uncouplers can be 

added, in order to analyse mitochondrial function (Pesta and Gnaiger 2012, Sumbalová Z 2018).  

 There is an increasing interest of the research community in performing mitochondrial 

respiratory studies in blood cells yet standardization of the assays is still needed. This is one of 

the objectives of the COST Action CA15203 MITOEAGLE (MitoEAGLE 2018). The group of 

Eskil Elmer was among the first to attempt standardization of the assay. Currently, two 

consecutive centrifugations at room temperature are required to obtain platelet-rich plasma for 

respirometry studies (Sjovall et al. 2013).  These researchers also evaluated the impact of whole 

blood storage at either room temperature or at 4 °C and found that respiration remained stable 

after 24 hours but after 48 hours platelet mitochondria showed reduced respiratory capacity. A 

decline of both mitochondrial respiration and platelet function with the storage was also 

demonstrated by other studies, platelet storage time being associated with an increase in proton 

leak, ROS production and platelet apoptosis (Perales Villarroel et al. 2013, Ravi et al. 2015). 

Further studies are required to address the effects of time of sampling, anticoagulants used, 

transportation, separation procedures etc on platelet activation and how they will impact on 

respirometry studies. 

 Despite the fact that evidence points to the major role of oxidative phosphorylation in 

platelets, glycolysis remains also an important source of energy. The study of both processes is 



possibly by means of the extracellular flux analyzer (Agilent Seahorse Bioscience) that requires 

small numbers of intact cells to evaluate the oxygen consumption rate related to mitochondrial 

respiration as well as pH modifications ascribed to changes in the glycolytic process (Avila et al. 

2012, Chacko et al. 2013, Kramer et al. 2014).  

 

Impairment of Platelet Mitochondrial Function in Particular Diseases 

 The process of collecting an appropriate amount of a viable tissue samples in systemic or 

organ-specific pathologies requires a high degree of invasiveness, thus the development of 

relevant cellular models to study mitochondrial function in humans is hindered. From this point 

of view, blood platelets are abundant and are easily obtainable through a simple blood draw, 

therefore they represent an attractive source for mitochondria studies in man (Zharikov and 

Shiva 2013). The study of platelet mitochondrial function in various disease states provides an 

effective way to investigate the underlying pathology. There is an abundance of literature 

demonstrating the association between platelet mitochondrial dysfunction and ageing/ageing-

related diseases; therefore platelet respirometry is viewed as a viable marker of systemic 

mitochondrial dysfunction (Hauptmann 2006, Sjovall et al. 2013, Sjovall et al. 2010). Besides, 

due to the lack of nuclei, metabolic alterations can be investigated without the transcriptional 

regulation interference.  

Table 1 reviews several studies aimed at elucidating platelet mitochondrial function in 

acute and chronic pathologies together with the reported change in mitochondrial function.  

 

 

 



Table 1. Mechanisms of platelet mitochondrial dysfunction in various pathologies 

Pathologies Special conditions Mitochondrial functional changes Reference 

ACUTE CONDITIONS 

Sepsis  Platelet mitochondrial uncoupling 

Increased respiratory capacity 

 

Lower mitochondrial nicotinamide 

adenine dinucleotide dehydrogenase 

(NADH) 

Decreased CI,III and IV activity 

 

Non-survivors presented a higher 

basal and maximal respiratory rate as 

compared to survivors, rates 

associated with organ failure and 

initial lactate level 

(Sjovall et 

al. 2010) 

 

(Protti et al. 

2015) 

 

 

 

(Puskarich 

MA 2016) 

 

Cardiac arrest 

 

Cardiac arrest 

induced in a 

porcine model via 

an asphyxia-

associated 

ventricular 

fibrillation 

Platelet mitochondrial bioenergetics 

are correlated with cerebral 

bioenergetic function 

Increase of CII-driven convergent 

respiration 

 (Ferguson 

MA 2016) 



Cardiogenic 

shock 

 Lower mitochondrial nicotinamide 

adenine dinucleotide dehydrogenase 

(NADH) 

Decreased CI,II,III and IV activity 

(Protti et al. 

2015) 

CHRONIC CONDITIONS 

Ageing  Decreased stability of CI 

Decreased energy conservation 

Decreased CIV activity 

(D'Aurelio 

et al. 2001) 

Asthma  Astmatic patients present increased 

oxygen utilization and efficients 

usage of substrates in platelets as 

previously shown in the airways 

(Weiling 

Xu 2015) 

Pulmonary 

hypertension  

- Increased mitochondrial reserve 

capacity 

Increased CII activity 

(Nguyen et 

al. 2017) 

Dyslipidaemia  Treatment with 

statins 

Decreases ADP stimulated 

respiration  

Decreases CI-linked respiration 

(Vevera et 

al. 2016) 

Cardio-

pulmonary 

bypass 

 Unchanged platelet mitochondrial 

function  

(Mazzeffi et 

al. 2016) 

Sickle Cell 

Disease 

 Decreased complex V activity 

Decreased mitochondrial respiration 

(Cardenes 

et al. 2014) 



Membrane hyperpolarization 

Increased ROS production 

Bipolar 

affective 

disorder 

Manic patients 

 

Depressive 

patients 

 

Patients in 

remission 

Increased CI-linked respiration 

 

Decreased CIV activity 

 

 

Increased CI-linked respiration 

(Hroudová 

et al. 2016) 

Depression Intact platelets 

 

 

 

Permeabilized 

platelets 

Decreased physiological respiration, 

ETS capacity and respiratory 

rate after complex I inhibition 

No changes in mitochondrial 

respiratory rates 

(Hroudova 

et al. 2013) 

Alzheimer’s 

disease 

 

 

 

Intact platelets 

 

 

 

 

Decreased CIV activity 

 

 

Decreased endogenous basal 

respiration rates, CIV activity and 

ETS capacity,  increased respiratory 

rates after CI inhibition 

 

(Parker et 

al. 1990b),  

 

(Mancuso 

et al. 2003) 

 

 

 



Permeabilized 

platelets 

Mitochondrial respiration was 

completely rescued by the addition of 

CI substrates 

(Fisar et al. 

2016) 

Parkinson’s 

disease 

 Mild CI defect 

 

 

Decreased CI and CIV activity 

 

Decreased CI and CII/III activity  

(Krige et al. 

1992) 

 

(Benecke et 

al. 1993) 

(Haas et al. 

1995) 

Huntington's 

disease 

 Decreased CI activity 

 

 

Decreased mitochondrial CI and CII 

function, lower maximal 

phosphorylation capacity 

(Parker et 

al. 1990a) 

 

(Johannes 

K. Ehinger 

2016) 

Schizophrenia High positive 

schizophrenics 

 

Low positive 

schizophrenics 

Increased CI activity 

 

 

No changes in CI activity 

(Ben-

Shachar et 

al. 2007) 

Amyotrophic 

lateral 

 Decreased CIV activity (Ehinger et 

al. 2015) 



sclerosis 

 

Platelet Mitochondrial Function In Diabetes Mellitus 

 Cardiovascular disease (CVD) remains the world's most common cause of death with 

more than 17 millions annual global deaths (Roth et al. 2017). Moreover, CVD is the most 

common comorbidity in type 2 diabetes mellitus (DM); overall CVD affects approximately 1/3 

of diabetic patients and accounts for approximately 1/2 of all deaths (Einarson et al. 2018). 

Several factors such as endothelial dysfunction, oxidative stress, increased coagulability and 

chronic inflammation are direct contributors to the development of CVD (Leon and Maddox 

2015). As presented above, besides their central role in coagulation, platelets are involved in 

inflammation, due to their ability to secrete several mediators, with the acceleration of both 

atherogenesis and progression towards diabetic micro- and macroangiopathy (Siewiera et al. 

2016, Vieira-de-Abreu et al. 2012). Currently, it is widely known that atherosclerosis is the most 

frequent complication of both type 1 and 2 DM (Ersoy et al. 2015, Tomkin and Owens 2015) 

and platelet dysfunction is contributing to the occurrence of cardiovascular complications 

(Tomkin and Owens 2015). Nevertheless, there are rather few studies that comprehensively 

aimed at elucidating the role of platelet mitochondrial dys/function in DM (Tschoepe et al. 

1991). Brownlee stated already back to (Brownlee 2001) that mitochondrial dysfunction can be 

at the root of pathomechanisms by which hyperglycaemia causes diabetic complications. 

Moreover, it has been reported that a high concentration of glucose can induce mitochondrial 

damage in heart muscle fibres, skeletal muscle, brain and kidney tissue (Chowdhury et al. 2011) 

and therefore, the hypothesis of platelet mitochondrial dysfunction in high glucose conditions is 

conceivable. Indeed, Wu et al. (2015) demonstrated platelet mitochondrial changes such as 



swollen mitochondria with damaged inner membrane, an increased ROS production and a 

decreased ATP content in diabetic rats and patients, concluding that platelets can be used as a 

model to further analyse the changes of mitochondrial function in DM complications (Wu et al. 

2015). Similarly,  Siewiera et al. (2016) showed that untreated DM produces an increase of the 

mitochondrial mass and also changes in the bioenergetic profile of platelets by hyperpolarization 

of the mitochondrial membrane. At variance, other studies found no differences in platelet 

size/volume between type 2 DM and healthy patients (Schaeffer et al. 1999). Also, non-

proliferative diabetic retinopathy seems to hamper platelet submitochondrial particles membrane 

fluidity and to increase F0/F1-ATPase hydrolytic activity, both of which being recognized 

markers of mitochondrial dysfunction (Rodriguez-Carrizalez et al. 2014). Regarding the role of 

mitochondria in DM as sources of ROS Fink et al. (2012) suggested that acute or chronic 

exposure of isolated human platelets to high glucose concentrations does not accelerate the 

mitochondrial oxidative metabolism and hence, the probability of an enhanced ROS 

production/altered redox status. However, several studies have shown that, apart from its ability 

to potentiate collagen-mediated platelet activation, hyperglycemia leads to increased ROS 

production and that ROS scavengers could prevent platelet hypersensitivity caused by activation 

(Yamagishi et al. 2001, Wu et al. 2015, Wang et al. 2017). Two antidiabetic drugs, metformin 

and phenformin (the latter being withdrawn due to an increased incidence of lactic acidosis) were 

tested on isolated platelets from healthy volunteers; respirometry results revealed that both 

compounds inhibit mitochondrial respiration via a complex I defect (Piel et al. 2015). As a 

consequence of this inhibition, ATP production was reduced, the enzyme AMP-activated protein 

kinase (AMPK) was activated, whereas the glucose turnover was accelerated via an increased 



glycolysis (Piel et al. 2015). In addition, mitochondrial inhibition was considered a direct 

consequence of lactic acidosis in patients treated with phenformin (Piel et al. 2015).  

 

Platelet Mitochondrial Function In Cancer 

 The development of cancer-specific therapies is the current aim of numerous research 

studies. In the past decade, as we attained new insights into cancer cells, mitochondria have 

emerged as key players of cell survival and growth signalling pathways as well as chemotherapy-

induced apoptosis. It is now a known fact that mitochondria are effectors of cell death by being 

involved in the regulation of the intrinsic and extrinsic apoptotic pathway, the autophagic cell 

death pathway and the necrotic pathway - for a comprehensive review the reader is referred to 

the paper by Giorgi et al. (2008). Nowadays, scientists have proposed several mechanisms by 

which the Warburg effect observed in cancer cells (i.e., the shift of cancer cells to a high rate of 

glycolysis even if oxygen is in a high concentration) can take place. The proposed mechanisms 

include: i) mitochondrial dysfunction that leads to a decrease in ATP production; ii) adaptation 

of cancer cells to hypoxia; iii) interference of oncogenes with mitochondrial function; iv) a high 

upregulation of enzymes and glycolysis processes by cancer cells; and v) mtDNA mutations that 

can either increase ROS production and tumour proliferation or the adaptation of cancer cells to 

new environments (reviewed in (Kroemer 2006).  

 The role of platelets in cancer is partially elucidated. It is known that platelets work in 

favour of cancer progression being involved in crucial steps of cancer evolution such as 

angiogenesis (by releasing both pro-angiogenic and anti-angiogenic regulators), cancer invasion 

(by releasing factors that control vessel permeability), tumour growth (by releasing growth 

factors), and cancer cell adhesion (by forming platelet-cancer cell conjugates) that facilitate 



cancer metastasis (Li 2016). Moreover, cancer itself seems to induce platelet activation via the 

release of platelet-activating factors like thromboxane A2, ADP and thrombin (Li 2016).  

 In patients with ovarian cancer, (Wang et al. 2015a) observed a significant difference in 

platelet mitochondria and microtubule system when compared to healthy donors. Thus, cancer 

patients had 50% more platelets mitochondria as compared to healthy donors and these 

organelles occupied a larger part of the platelet area. When doxorubicin, a chemotherapeutic 

agent that has thrombocytopenic side-effects, was tested on platelet function, it was found that 

the drug dose-dependently impaired platelet adhesion and aggregation, induced mitochondrial-

mediated apoptosis via the intrinsic pathway, and increased mitochondrial ROS generation 

(Wang et al. 2015b). Interestingly, these effects were prevented by a mitochondrial selective 

ROS scavenger , an observation which stresses once more mitochondrial ROS are key players in 

platelet apoptosis and mitochondrial ROS scavengers are potential therapeutic agents in platelet-

associated disorders that also involve mitochondrial oxidative damage, respectively (Wang et al. 

2015b). Several studies reported on the effects of various compounds to induce platelet apoptosis 

via the mitochondria pathway. Another chemotherapeutic drug, cisplatin, increased ROS 

production, induced the mitochondrial translocation of the proapoptotic Bax  with subsequent 

mitochondrial membrane depolarization (Thushara et al. 2015). Of note, two of increasingly 

used supplements,  resveratrol and melatonin, were reported to also induce platelet apoptosis via 

Bax translocation  into mitochondria, increase cytochrome c release and caspase-3 activation 

(Thushara et al. 2015).  

 

 

 



Platelet Mitochondrial Function In Hematologic Malignancies  

 Hematologic malignancies (HM) are tumours of hematopoietic and  lymphoid tissues that 

include leukemias, lymphomas, and plasma cell neoplasms (multiple myeloma). Even though the 

general tendency of HM survival rates has slightly increased over the past decade due to 

treatment advances (Dunham-Snary et al. 2014), these diseases represent the fourth most 

common type of cancer in both male and female populations (Caimari et al. 2010). In this 

context, a biomarker that can be correlated with the evolution, progression, severity and 

treatment response, might be advantageous in HM monitoring and therapy.  

 Mitochondrial dysfunction has been reported to play a critical role in the development 

and progression of HM, especially in leukemias where various mtDNA alterations (of 

mitochondrial-encoded cytochrome b, cytochrome c, COX-I and COX-II genes) were described - 

reviewed by (Sternfeld et al. 2009). Schimmer and Skrtic (2012) showed that in leukemic cells a 

significant increase of mitochondrial mass accompanied by a higher rate of oxygen consumption, 

as compared to normal cells occur. Moreover, at variance from other neoplasias, in acute 

myeloid leukemia cancer cells are more dependent on oxidative phosphorylation than on 

glycolysis (Ferguson et al,  2016, Ehinger et al. 2016). Interestingly, in both leukemia and 

lymphoma cells it was demonstrated that a mitochondrial respiratory defect exhibits a survival 

advantage (Puskarich et al. 2016). The mitochondrial uncoupling process (the disruption 

between substrate oxidation and ADP phosphorylation into ATP) has also been reported in 

leukemia cell, where it supports a shift to oxidation of fatty acids with increased resistance to the 

intrinsic apoptosis pathway (Weiling Xu et al. 2015). 

In a recent pilot study we aimed at assessing the respiratory function of platelets isolated 

from patients with a number HM (non-Hodgkin lymphoma, acute myeloid leukemia, chronic 



lymphocytic leukemia). A significant decrease of all respiratory parameters in the HM group vs. 

control was found; a decrease of  80% for OXPHOS, 81% for State 2 and 75% for State 4 were 

recorded (unpublished data). These preliminary results clearly suggest that platelet 

mitochondrial function is impaired in patients with HM and further studies are mandatory to 

dynamically assess these parameters and their correlations with the prognostic, severity, survival 

rate and treatment response.  

 

Platelet Mitochondrial Function In Neurodegenerative Disorders 

 The literature review shows that mitochondrial dysfunction is involved in 

neurodegenerative diseases, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), 

Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS), disorders characterized by a 

gradual and selective loss of related neuronal system (DiMauro and Schon 2008, Lin and Beal 

2006, Reddy 2008). As neurons have a high-energy demand, they rely on mitochondria for a 

proper function, thus being sensitive to every mitochondrial dysfunction. Neuronal damage 

and/or death can occur as a consequence of mitochondrial dysfunction via apoptosis, 

excitotoxicity, ETC abnormalities and increased ROS production, that can alter mitochondrial 

ATP production, calcium homeostasis, mitochondrial membrane potential and the opening of 

mPTP (Dong et al. 2009, Emerit et al. 2004, Rao et al. 2014, Schapira 1993). 

 A crucial finding in the assessment of mitochondrial function in patients with 

neurodegenerative disorders was made by studies that revealed that blood cells can recapitulate 

the mitochondrial alterations present in the central nervous system (Parker et al. 1989, Schapira 

1993). Accordingly, it was firstly reported that patients with Parkinson's disease presented a 

complex I deficiency in both mitochondria from substantia nigra and platelets, respectively 



(Parker et al. 1989, Schapira 1993). Low complex I, complex II/III and complex I and complex 

IV activities in platelets from Parkinson's disease patients were described by Benecke et al. 

(Benecke et al. 1993) and Haas et al. (Haas et al. 1995), respectively. Interestingly, Bronstein et 

al.  (Bronstein et al. 2015) found no impairments of ETC activity in PD patients. In Alzheimer 

disease, researchers found a decreased activity of complex IV (Mancuso et al. 2003, Parker et al. 

1989) and later, also in complex III (Valla et al. 2006). A more recent study reported besides a 

decreased activity of complex IV, a low concentration of coenzyme Q10 in blood and an 

increased activity of complex I in platelets isolate from patients with AD (Fisar et al. 2016). In 

platelets from ALS patients, complex IV activity was also decreased, accompanied by a 

compensatory increase in cellular mitochondrial content (Ehinger et al. 2015). In HD, studies 

yielded unclear results. Accordingly, Powers et al. (2007) found no significant difference in 

complex I or complex I/III activities in these patients, while a more recent study by Ehinger et al. 

(2016), revealed a decreased function of complex I, but this result was not uniformly confirmed.  

 Albeit a straightforward relationship between mitochondrial respiration and the 

pathogenesis of these disorders is lacking, assessment of platelet respiration has emerged as a 

putative biomarker in these pathologies as well.  

 

Conclusions 

 An increasing number of studies are currently focused on mitochondrial dysfunction in 

disease, as they emerged a key organelles at the crossroad between health and disease and 

valuable tools for drug development. Due to their content of functional mitochondria, platelets 

are considered to be an easily accessible and reliable source for the assays aimed at evaluating 

mitochondrial dys/function in various pathologies. Assessment of mitochondrial platelet 



respiration has emerged as a minimally invasive tool able to provide insights about the systemic 

mitochondrial function. Future studies are required for the standardization of the assays using 

platelets as a substitute to characterize organ mitochondrial function in various pathologies.  
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