# Physiological Research Pre-Press Article

| 2  | Eicosapentaenoic acid enhances skeletal muscle hypertrophy without altering the protein anabolic                                                                                  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  | signaling pathway                                                                                                                                                                 |
| 4  |                                                                                                                                                                                   |
| 5  | Siriguleng <sup>1, 2, 3</sup> , Teruhiko Koike <sup>1, 3</sup> , Yukie Natsume <sup>1</sup> , Haiying Jiang <sup>4</sup> , Lan Mu <sup>1</sup> , Yoshiharu Oshida <sup>1, 3</sup> |
| 6  | <sup>1</sup> Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan                                                                    |
| 7  | <sup>2</sup> Department of Physiology, Chifeng University Medical College, Chifeng 024000, Inner Mongolia, PR,                                                                    |
| 8  | China                                                                                                                                                                             |
| 9  | <sup>3</sup> Department of Sports Medicine, Graduate School of Medicine, Nagoya University, Nagoya 464-8601,                                                                      |
| 10 | Japan                                                                                                                                                                             |
| 11 | <sup>4</sup> Department of Physiology and Pathophysiology, Jiaxing University Medical College, Jiaxing 314001,                                                                    |
| 12 | Zhejiang PR, China                                                                                                                                                                |
| 13 |                                                                                                                                                                                   |
| 14 | Corresponding author: T. Koike                                                                                                                                                    |
| 15 | Research Center of Health, Physical Fitness and Sports, Nagoya University                                                                                                         |
| 16 | Nagoya 464-8601                                                                                                                                                                   |
| 17 | Japan                                                                                                                                                                             |
| 18 | Phone: 81-52-789-3963                                                                                                                                                             |
| 19 | Fax: 81-52-789-3957                                                                                                                                                               |
| 20 | E-mail: koike@htc.nagoya-u.ac.jp                                                                                                                                                  |
| 21 |                                                                                                                                                                                   |
| 22 | Short title: Eicosapentaenoic Acid and Muscle Hypertrophy                                                                                                                         |
| 23 |                                                                                                                                                                                   |
| 24 | E mail: Siriguleng (siriguleng19@163.com), Y. Natsume (natsume@htc.nagoya-u.ac.jp), H. Jiang                                                                                      |
| 25 | (jiangyang7689@aliyun.com), L. Mu (mlxinlxin73@yahoo.co.jp),                                                                                                                      |

26 Y. Oshida (heisei20081031@yahoo.co.jp)

# 27 Summary

| 28 | This study aimed to examine the effect of eicosapentaenoic acid (EPA) on skeletal muscle hypertrophy      |
|----|-----------------------------------------------------------------------------------------------------------|
| 29 | induced by muscle overload and the associated intracellular signaling pathways. Male C57BL/6J mice        |
| 30 | were randomly assigned to oral treatment with either EPA or corn oil for 6 weeks. After 4 weeks of        |
| 31 | treatment, the gastrocnemius muscle of the right hindlimb was surgically removed to overload the          |
| 32 | plantaris and soleus muscles for 1 or 2 weeks. We examined the effect of EPA on the signaling pathway     |
| 33 | associated with protein synthesis using the soleus muscles. According to our analysis of the compensatory |
| 34 | muscle growth, EPA administration enhanced hypertrophy of the soleus muscle but not hypertrophy of the    |
| 35 | plantaris muscle. Nevertheless, EPA administration did not enhance the expression or phosphorylation of   |
| 36 | Akt, mechanistic target of rapamycin (mTOR), or S6 kinase (S6K) in the soleus muscle. In conclusion,      |
| 37 | EPA enhances skeletal muscle hypertrophy, which can be independent of changes in the AKT-mTOR-            |
| 38 | S6K pathway.                                                                                              |
| 39 | Keywords eicosapentaenoic acid  Hypertrophy  protein synthesis  mTOR protein                              |

# 40 Introduction

| 41 | Skeletal muscles perform important functions in both physical movements and metabolic regulation                   |
|----|--------------------------------------------------------------------------------------------------------------------|
| 42 | Decline in muscle protein synthesis, increase in protein degradation, impairment of neuromuscular integrity        |
| 43 | and metabolic disorders contribute to the loss of muscle mass strength (Cruz-Jentoft et al. 2010). Sarcopenia      |
| 44 | which is defined as the age-related loss of muscle mass and strength, is a growing concern in the aging            |
| 45 | society. Nutrition and physical exercise can be strategically used to overcome age-related protein synthesis       |
| 46 | impairment and slow the progression of sarcopenia (Dickinson et al. 2013, Robinson et al. 2018). Skeletal          |
| 47 | muscle mass primarily depends on the dynamic relationship between protein synthesis and degradation                |
| 48 | (Schiaffino et al. 2013). Proteins and amino acids, especially branched-chain amino acids and anabolic             |
| 49 | hormones (i.e., insulin), stimulate protein synthesis; however, sarcopenia involves resistance to this system,     |
| 50 | which is called anabolic resistance (Burd et al. 2013).                                                            |
| 51 | Eicosapentaenoic acid (EPA) is an $\omega$ -3 polyunsaturated fatty acid with various health benefits. $\omega$ -3 |
| 52 | polyunsaturated fatty acids exhibit anti-inflammatory effects and prevent cardiovascular disease (De               |
| 53 | Caterina et al. 2011, Trebaticka et al. 2017). They may exert their biological effects through the following       |
| 54 | mechanisms: release of bioactive mediators; direct effect on ion channels; direct action on membranes,             |
| 55 | which requires incorporation into the phospholipid layer of the plasma membrane; and activation of G               |
| 56 | protein-coupled receptor 120, an ω-3 polyunsaturated fatty acid receptor (De Caterina et al. 2011, OH et           |
| 57 | <i>al.</i> 2011, White <i>et al.</i> 2014).                                                                        |

| 58 | Supplementation with $\omega$ -3 polyunsaturated fatty acids can increase muscle mass and function and           |
|----|------------------------------------------------------------------------------------------------------------------|
| 59 | exert anti-sarcopenic effects (Gray et al. 2018, Ochi et al. 2018). Supplementation with dietary ω-3 fatty       |
| 60 | acids or fish oil increases muscle mass or strength (Da Boit et al. 2017, Rodacki et al. 2012, Smith et al.      |
| 61 | 2015) and muscle protein synthesis (Smith et al. 2011a, Smith et al. 2011b) in human subjects. Activation        |
| 62 | of protein anabolic signaling by $\omega$ -3 polyunsaturated fatty acids has been demonstrated in steer (Gingras |
| 63 | et al. 2007), rats (Kamolrat et al. 2013a), and C2C12 myotubes (Kamolrat et al. 2013b). In contrast,             |
| 64 | McGlory recently demonstrated that fish oil supplementation suppresses resistance exercise and protein           |
| 65 | feeding-induced increase in anabolic signaling through the Akt-S6 kinase (S6K) pathway, which did not            |
| 66 | affect muscle protein synthesis in young men (Mcglory et al. 2016). These data suggest the involvement           |
| 67 | of anabolic signaling-dependent and anabolic signaling-independent mechanisms in the effect of EPA on            |
| 68 | muscle protein synthesis. Additionally, $\omega$ -3 polyunsaturated fatty acids attenuated protein catabolism in |
| 69 | skeletal muscles in rodents with cancer cachexia (Whitehouse et al. 2001a), sepsis (Khal et al. 2008), and       |
| 70 | arthritis (Castillero et al. 2009) and during immobilization (You et al. 2010). Furthermore, treatment with      |
| 71 | EPA or docosahexaenoic acid suppresses protein degradation in C2C12 cells (Smith et al. 2005, Smith et           |
| 72 | al. 1999).                                                                                                       |
| 73 | In the present study, we examined the effect of EPA on muscle protein synthesis by evaluating                    |

compensatory muscle growth in mice, which can involve multiple mechanisms (Spangenburg et al.

- 75 2009). We investigated the effect of EPA alone, whereas most previous studies had evaluated the effect of
- $76 \qquad \omega$ -3 polyunsaturated fatty acids in the form of fish oil.

## 77 Materials and methods

78 Animals

| 79 | All experimental procedures were performed according to the Guide for the Care and Use of             |
|----|-------------------------------------------------------------------------------------------------------|
| 80 | Laboratory Animals of Nagoya University. Male C57BL/6J mice (8 weeks of age) were obtained from       |
| 81 | Chubu Kagakushizai Co., Ltd (Nagoya, Japan). After a week of acclimation, the mice were randomly      |
| 82 | distributed into 2 groups: the control group, which was fed standard chow (Oriental Yeast Co., Ltd.,  |
| 83 | Tokyo, Japan) containing 6% corn oil (Ajinomoto Co., Inc., Tokyo, Japan), and the EPA group, which    |
| 84 | was fed standard chow containing 6% EPA (Mochida Pharmaceutical Co., Ltd., Tokyo, Japan). The feed    |
| 85 | was prepared daily. The mice were maintained in a 12:12 h reversal light-dark environment at 23°C and |
| 86 | supplied with feed and water ad libitum.                                                              |
| 87 |                                                                                                       |
| 88 | Materials                                                                                             |
| 89 | EPA ethyl ester (>98%) was kindly donated by Mochida Pharmaceutical Co., Ltd. We purchased            |
| 90 | primary antibodies against phospho-Akt (Ser473), phospho-S6 kinase (Ser371), and S6 kinase (49D7)     |
| 91 | from Cell Signaling Technology, Inc. (Beverly, MA, USA) and antibodies against Akt 1/2/3 (H-136)      |
| 92 | from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA). Enhanced chemiluminescence (ECL) western       |
| 93 | blotting detection reagents were obtained from GE Healthcare UK Limited (Buckinghamshire, UK).        |
| 94 | Overload-induced muscle hypertrophy                                                                   |

| 95  | Overload-induced muscle hypertrophy is the model used to examine molecular and cellular                   |
|-----|-----------------------------------------------------------------------------------------------------------|
| 96  | mechanisms that regulate muscle growth (Spangenburg et al. 2009). The procedure for the overloading       |
| 97  | study is presented in Fig. 1. Hypertrophic muscle growth was evaluated, as described previously           |
| 98  | (Makanae et al. 2013, Serrano et al. 2008). Briefly, mice were anesthetized using an intraperitoneal      |
| 99  | injection of sodium pentobarbital (50 mg/kg). The gastrocnemius muscle of the right hindlimb was          |
| 100 | surgically removed to induce compensatory hypertrophy of the soleus and plantaris muscles through         |
| 101 | functional overloading. An incision was made through the skin, and the Achilles tendon was exposed in     |
| 102 | the left hind legs (sham-operated), which were used as controls. After 1 or 2 weeks of overloading, the   |
| 103 | muscles and epididymal fats were dissected under anesthesia, and the mice were sacrificed. The wet        |
| 104 | weight of the muscles was measured; subsequently, the muscles were frozen in liquid nitrogen and stored   |
| 105 | at -80°C until analysis.                                                                                  |
| 106 |                                                                                                           |
| 107 | Insulin tolerance test                                                                                    |
| 108 | At 4 weeks, an insulin tolerance test (ITT) was conducted to assess global insulin sensitivity.           |
| 109 | Blood was collected from the tail tip. Mice that were fasted for 5 h were weighed, and insulin (0.5 UI/kg |
| 110 | body weight; Novorapid, Novo Nordisk A/S, Bagsvaerd, Denmark) was injected intraperitoneally. Blood       |
| 111 | glucose was measured before insulin injection and 20, 40, and 60 min after the injection.                 |
| 112 | Insulin signaling in muscle                                                                               |

113 Insulin (0.5 UI/kg) was injected intraperitoneally, and the soleus muscles were extracted after 10 114 min of injection. The muscles were frozen using liquid nitrogen and stored at  $-80^{\circ}$ C until analysis. 115 116 Western blotting 117 The muscles were homogenized in ice-cold homogenization buffer (50 mM HEPES, pH 7.4; 150 118 mM NaCl; 1.5 mM MgCl<sub>2</sub>; 0.01% trypsin inhibitor; 10% glycerol, 1% Triton X-100; and 2 mM 119 phenylmethylsulfonyl fluoride). The lysates were incubated on ice for 1 h and centrifuged at  $3873 \times g$  for 120 30 min at 4°C. The supernatants were stored at  $-20^{\circ}$ C until analysis. Protein concentrations in the 121 samples were determined using a protein assay kit (Bio-Rad Laboratories Inc., Hercules, CA, USA). The 122 lysate was solubilized in 2× loading sample buffer (0.125 M Tris-HCl, pH 6.8; 10% 2-mercaptoethanol; 123 4% sodium dodecyl sulfate; 20% glycerol; and 0.01% bromophenol blue) and boiled at 100°C for 5 min. 124 For each sample, 10 µg of protein extract was separated by sodium dodecyl sulfate polyacrylamide gel 125 electrophoresis (SDS-PAGE) at 20 mA. The proteins were transferred to polyvinylidene difluoride 126 membranes (EMD Millipore Corporation, Billerica, MA, USA) through semi-dry transfer at 25 V for 60 127 min. Each membrane was blocked with 5% nonfat dry milk for 1 h and rinsed with 1× phosphate-buffered 128 saline (PBS) containing 0.1% Tween 20 before the blots were incubated with a 1:1000 dilution of the 129 primary antibodies overnight at 4°C. Subsequently, the blots were washed in 1× PBS with 0.1% Tween

130 20, followed by incubation with a 1:1000 dilution of goat anti-rabbit IgG (H+L)–horseradish peroxidase

| 131 | conjugated antibody (Bio-Rad Laboratories Inc., Hercules, CA, USA) or human-serum-adsorbed and            |
|-----|-----------------------------------------------------------------------------------------------------------|
| 132 | peroxidase-labeled goat anti-mouse IgG (H+L) antibody (KPL, Gaithersburg, MD, USA) for 1 h at room        |
| 133 | temperature. Immunoreactive bands were detected using ECL detection reagents, and band intensity was      |
| 134 | quantified using the ImageJ densitometry software (National Institutes of Health, Bethesda, MD, USA).     |
| 135 | The individual control/overload data points were divided by the mean value for the control/overload       |
| 136 | group; thus, the mean value for the normalized control/overload group was 1 with variability. The density |
| 137 | of the protein band for the control/sham-operated, EPA/overload, and EPA/sham-operated groups was         |
| 138 | expressed as the fold change of the density of the control/overload values (Siriguleng et al. 2018).      |
| 139 |                                                                                                           |
| 140 | Statistical analysis                                                                                      |
| 141 | All values are expressed as the mean $\pm$ SD. Differences were analyzed using Student's unpaired or      |
| 142 | paired <i>t</i> -test or one-way analysis of variance (ANOVA) followed by Tukey's test. One-way ANOVA     |
| 143 | analysis was performed among the 4 groups (control/overload, control/sham-operated, EPA/overload, and     |
| 144 | EPA/sham-operated). Differences with p<0.05 were considered statistically significant. All analyses were  |
| 145 | performed using GraphPad Prism 6.0 (GraphPad Software Inc., La Jolla, CA, USA).                           |

| 146 | Results                                                                                             |
|-----|-----------------------------------------------------------------------------------------------------|
| 147 | Effect of 4-week administration of EPA on body weight, muscle weight, epididymal fat, and food      |
| 148 | intake                                                                                              |
| 149 | As shown in Table 1, the food intake during the 4 weeks and the amount of epididymal fat            |
| 150 | after 4 weeks of EPA administration were lower in the EPA-administered group than in the control    |
| 151 | group. Neither body weight nor muscle weight was different between the two groups.                  |
| 152 |                                                                                                     |
| 153 | Effect of 4-week administration of EPA on insulin sensitivity                                       |
| 154 | The fasting blood glucose level in the EPA group was significantly lower than that in the           |
| 155 | control group (Fig. 2a). The ITT showed that the blood glucose level 20 min after insulin injection |
| 156 | was significantly lower in the EPA group than in the control group (Fig. 2b), suggesting that EPA   |
| 157 | administration increased systemic insulin sensitivity. However, the phosphorylation (Ser473) and    |
| 158 | protein expression of Akt in the soleus muscles after 10 min of intraperitoneal insulin injection   |
| 159 | were similar between the control group and the EPA group (Fig. 2c). The Akt-mechanistic target      |
| 160 | of rapamycin (mTOR)-S6K signaling in the soleus muscles of the fasted mice was not different        |
| 161 | between the control and the EPA groups after 4 weeks of EPA administration (Fig. 3).                |
| 162 |                                                                                                     |
| 163 | Effect of EPA on the weight of the soleus and plantaris muscles in overload-induced muscle          |

164 hypertrophy

| 165 | We examined the effect of EPA administration on the growth of overloaded muscles for 1              |
|-----|-----------------------------------------------------------------------------------------------------|
| 166 | or 2 weeks. To evaluate the time course of muscle growth, we measured the muscle weights at 1       |
| 167 | and 2 weeks of overloading. The overloaded muscles were significantly heavier than the sham-        |
| 168 | operated leg muscles in all groups for both the soleus and plantaris muscles (Fig. 4). In addition, |
| 169 | the soleus muscles from the overloaded legs of mice in the EPA group were heavier than that in      |
| 170 | the control group at 2 weeks of overloading but not at 1 week of overloading (Fig. 4a). The         |
| 171 | plantaris muscle weight in the overloaded leg was not significantly different among the groups at   |
| 172 | both 1 and 2 weeks of overloading (Fig. 4b). Table 2 presents the changes in body weight,           |
| 173 | overloaded leg muscle weight, epididymal fat weight, and total food intake after 1 or 2 weeks of    |
| 174 | overload. Body weight, epididymal fat weight, and food intake per day were significantly lower in   |
| 175 | the EPA group than in the control group at both 1 and 2 weeks of overloading. The weights of the    |
| 176 | tibialis anterior and extensor digitorum longus muscles in the overloading leg were not             |
| 177 | significantly different among the groups at both 1 and 2 weeks of overloading.                      |
| 178 |                                                                                                     |
| 179 | Effect of EPA on overload-induced anabolic signaling in soleus muscle                               |
| 180 | We evaluated the skeletal muscle cell signaling pathway associated with protein synthesis           |
| 181 | in the soleus muscles. The phosphorylation (Ser473) and protein expression of Akt, mTOR, and        |
| 182 | S6K were examined (Fig. 5). The protein expression and phosphorylation of Akt (Ser473), mTOR,       |
| 183 | and S6K (Ser371) were higher in the soleus muscles of the overloaded legs, compared to that in      |

- 184 the sham-operated legs, and were not significantly different between the control and EPA groups at
- 185 both 1 and 2 weeks of overload (Fig. 5).

## 187 Discussion

| 188 | The principal finding in the present study was that EPA administration can enhance muscle                   |
|-----|-------------------------------------------------------------------------------------------------------------|
| 189 | growth induced by muscle overload in vivo. To the best of our knowledge, this is the first report on        |
| 190 | the effects of EPA on compensatory muscle hypertrophy. The AKT-mTOR-S6K signaling                           |
| 191 | pathway for protein synthesis was not affected by EPA administration. Although epidemiological              |
| 192 | studies and studies on human subjects, animal models, and skeletal-muscle cell lines indicate the           |
| 193 | role of EPA in the regulation of muscle weight, the mechanisms underlying this effect remain                |
| 194 | unclear (Gray et al. 2018, Ochi et al. 2018).                                                               |
| 195 | We hypothesized that improvement in insulin sensitivity enhances muscle protein synthesis                   |
| 196 | because insulin is a major anabolic hormone. The beneficial effect of $\omega$ -3 fatty acids on insulin    |
| 197 | sensitivity, which improves glucose metabolism, has been reported in animal models of obesity               |
| 198 | and diabetes; however, this effect remains controversial in human studies (Lalia et al. 2016).              |
| 199 | Recently, $\omega$ -3 fatty acid administration resulted in an increase in muscle protein synthesis, the    |
| 200 | anabolic response to insulin and amino acid infusion, in healthy young and middle-aged people               |
| 201 | (Smith et al. 2011b) and older adults (Smith et al. 2011a). Smith et al. additionally reported that         |
| 202 | insulin and amino acid-induced phosphorylation of AKT, mTOR, and S6K, the major signal                      |
| 203 | molecules associated with skeletal-muscle protein synthesis, was enhanced after supplementation             |
| 204 | with $\omega$ -3 fatty acids; neither the basal rate of muscle protein synthesis nor signaling element      |
| 205 | phosphorylation was altered in response to $\omega$ -3 fatty acid administration (Smith et al. 2011a, Smith |

| 206 | et al. 2011b). Enhancement of amino acid-induced protein synthesis by $\omega$ -3 fatty acids has also                |
|-----|-----------------------------------------------------------------------------------------------------------------------|
| 207 | been reported in C2C12 cells, with increased S6K phosphorylation (Kamolrat et al. 2013b). In the                      |
| 208 | present study, the mice administered EPA for 4 weeks exhibited a decrease in fasting blood glucose                    |
| 209 | levels and an improved response in the ITT compared with the control mice, which indicates that                       |
| 210 | EPA improved insulin sensitivity. The following overloading experiments demonstrated enhanced                         |
| 211 | muscle growth of the soleus muscle. However, phosphorylation of the signaling molecules                               |
| 212 | associated with muscle protein synthesis was not altered, suggesting that the increase in soleus                      |
| 213 | growth observed in the present study is not caused by the enhancement of anabolic signaling.                          |
| 214 | In catabolic states, the anti-inflammatory effects of EPA possibly have crucial functions in                          |
| 215 | the reduction of muscle degradation. The role of EPA in the regulation of the ubiquitin-proteasome                    |
| 216 | pathway has been demonstrated in pathological states such as cancer (Whitehouse et al. 2001a),                        |
| 217 | starvation (Whitehouse et al. 2001b), hyperthermia (Smith et al. 2005), and sepsis (Khal et al.                       |
| 218 | 2008). Administration of EPA downregulated muscle TNF- $\alpha$ , which activates nuclear factor-kB                   |
| 219 | (NF-KB), the major transcription factor for the ubiquitin-proteasome pathway, in a rat model of                       |
| 220 | arthritis (Castillero et al. 2009) and a mouse model of Duchenne muscular dystrophy (Machado et                       |
| 221 | <i>al.</i> 2011). Additionally, the effects of EPA on TNF- $\alpha$ , NF- $\kappa$ B, and the proteasome pathway have |
| 222 | been demonstrated in C2C12 myoblasts and myotubes (Smith et al. 2005, Smith et al. 1999,                              |
| 223 | Huang et al. 2011, Magee et al. 2008). In the present study, we observed a lower amount of                            |
| 224 | epididymal fat in the EPA group than in the control group. A lower amount of epididymal fat is                        |

| 225 | associated with reduced inflammation (Sato et al. 2010, Figueras et al. 2011). However, the anti-         |
|-----|-----------------------------------------------------------------------------------------------------------|
| 226 | inflammatory effect of EPA is usually observed in obese models but not in normal models (Itoh et          |
| 227 | al. 2012). Furthermore, it has been demonstrated that $\omega$ -3 fatty acids can increase muscle mass in |
| 228 | healthy people (Smith et al. 2011b) and healthy animals (Gingras et al. 2007) without activation of       |
| 229 | the catabolic system. In the present study, although the lack of inflammatory marker analysis limits      |
| 230 | our argument, it is unlikely that the anti-inflammatory effects of EPA enhanced the growth of             |
| 231 | soleus in the healthy mice.                                                                               |
| 232 | In the present study, we observed the enhancement effect of EPA on overload-induced                       |
| 233 | muscle hypertrophy only in the soleus muscle, a primarily type I muscle, but not in the plantaris         |
| 234 | muscle, a primarily type II muscle. This effect was in contrast to the effect of prior chronic aerobic    |
| 235 | exercise on overload-induced muscle hypertrophy, in which the effect was only observed in the             |
| 236 | plantaris muscle (Siriguleng et al. 2018). Type II muscles are more sensitive to the effects of           |
| 237 | various physiological and pathological conditions than type I muscles (Holecek et al. 2017,               |
| 238 | Koopman et al. 2006, Muthny et al. 2008). Thus, we hypothesized that enhanced hypertrophy                 |
| 239 | through EPA administration would be observed in the plantaris muscle. We observed a significant           |
| 240 | increase or a tendency toward increase in the phosphorylation of AKT (p<0.01), mTOR (p=0.08),             |
| 241 | and S6K (p=0.05) in the plantaris muscles of the overloaded legs in the EPA group compared to             |
| 242 | those in the control group (data not shown). These data indicate that administration of EPA               |
| 243 | potentially augments the AKT-mTOR-S6K pathway, which can be associated with increase in                   |

| 244 | insulin sensitivity. However, the muscle growth of plantaris was not affected by EPA               |
|-----|----------------------------------------------------------------------------------------------------|
| 245 | administration, indicating that our hypothesis was not true in the present study. The AKT-mTOR-    |
| 246 | S6K pathway in the soleus muscles was not affected despite the EPA-induced enhancement in          |
| 247 | soleus muscle growth. In summary, the present results suggest that a different mechanism or        |
| 248 | signaling pathway is involved in EPA-induced muscle hypertrophy.                                   |
| 249 | Compensatory muscle hypertrophy is regulated in several steps. The IGF-Akt-FoxO                    |
| 250 | signaling pathway plays a major role in this type of muscle growth; however, the precise           |
| 251 | mechanisms remain to be clarified (Schiaffino et al. 2011, Schiaffino et al. 2013). The present    |
| 252 | results, which demonstrate that the AKT-mTOR-S6K signaling was not affected, suggest that this     |
| 253 | pathway does not play a role in enhancing soleus muscle growth. Recently, the involvement of       |
| 254 | satellite-cell recruitment and the role of IL-6 signaling have been demonstrated (Serrano et al.   |
| 255 | 2008). Furthermore, the autophagy-lysosome system and ubiquitin-proteasome system need to be       |
| 256 | appropriately regulated during these processes (Schiaffino et al. 2013). These complicated systems |
| 257 | are regulated by the intracellular signal transduction system in the skeletal muscles.             |
| 258 | Conclusion                                                                                         |
| 259 | EPA enhances growth of the soleus muscle without affecting anabolic signaling. Although            |
| 260 | the mechanism underlying this effect remains unclear, our findings suggest that EPA or fish oil    |
| 261 | may be promising prophylactic agents against decline in physical strength in healthy people.       |

#### **Conflicts of interest**

The authors have no potential conflicts of interest.

#### Acknowledgements

This study was supported in part by a Grant-in-Aid for Scientific Research from the Japanese Ministry

of Education, Culture, Sports, Science and Technology (Grant no. 24500853). We thank Mochida

Pharmaceutical Co., Ltd. (Tokyo, Japan) for donating the EPA.

#### References

BURD NA, GORISSEN SH, VAN LOON LJ: Anabolic resistance of muscle protein synthesis with aging. *Exerc Sport Sci Rev* **41**: 169-173, 2013.

CASTILLERO E, MARTIN AI, LOPEZ-MENDUINA M, VILLANUA MA, LOPEZ-CALDERON A: Eicosapentaenoic acid attenuates arthritis-induced muscle wasting acting on atrogin-1 and on myogenic regulatory factors. *Am J Physiol Regul Integr Comp Physiol* **297**: R1322-1331, 2009.

CRUZ-JENTOFT AJ, BAEYENS JP, BAUER JM, BOIRIE Y, CEDERHOLM T, LANDI F, MARTIN

FC, MICHEL JP, POLLAND Y, SCHNEIDER SM, TOPINKOVA E, VANDEWOUDE M, ZAMBONI M: Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. *Age Ageing* **39**: 412-423, 2010.

DA BOIT M, SIBSON R, SIVASUBRAMANIAM S, MEAKIN JR, GREIG CA, ASPDEN RM, THIES F, JEROMSON S, HAMILTON DL, SPEAKMAN JR, HAMBLY C, MANGONI AA, PRESTON T, GRAY SR: Sex differences in the effect of fish-oil supplementation on the adaptive response to resistance exercise training in older people: a randomized controlled trial. *Am J Clin Nutr* **105**: 151-158, 2017.

DE CATERINA R: n-3 fatty acids in cardiovascular disease. N Engl J Med 364: 2439-2450, 2011.

- DICKINSON JM, VOLPI E, RASMUSSEN BB: Exercise and nutrition to target protein synthesis impairments in aging skeletal muscle. *Exerc Sport Sci Rev* **41**: 216-223, 2013.
- FIGUERAS M, OLIVAN M, BUSQUETS S. LOPEZ-SORIANO FJ, ARGILES M: Effects of eicosapentaenoic acid (EPA) treatment on insulin sensitivity in an animal model of diabetes: Improvement of the inflammatory status. *Obesity* 19: 362-369, 2011.

GINGRAS AA, WHITE PJ, CHOUINARD PY, JULIEN P, DAVIS TA, DOMBROWSKI L, COUTURE

Y, DUBREUIL P, MYRE A, BERGERON K, MARETTE A, THIVIERGE MC: Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity. *J Physiol* **579**: 269-284, 2007.

- GRAY SR, and MITTENDORFER B: Fish oil-derived n-3 polyunsaturated fatty acids for the prevention and treatment of sarcopenia. *Curr Opin Clin Nutr Metab Care* **21**:104-109, 2018.
- HOLECEK M, and MICUDA S: Amino acid concentrations and protein metabolism of two types of rat skeletal muscle in *postprandial state and after brief starvation*. *Physiol Res* **66**: 959-967, 2017.
- HUANG F, WEI H, LUO H, JIANG S, PENG J: EPA inhibits the inhibitor of kappaBalpha (IkappaBalpha)/NF-kappaB/muscle RING finger 1 pathway in C2C12 myotubes in a PPARgamma-dependent manner. *Br J Nutr* **105**: 348-356, 2011.
- ITOH M, SUGANAMI T, SATOH N, TANIMOTO-KOYAMA K, YUAN X, TANAKA M, KAWANO H, YANO T, AOE S, TAKEYA M, SHIMATSU A, KUZUYA H, KAMEI Y, OGAWA Y: Increased adiponectin secretion by highly purified eicosapentaenoic acid in rodent models of obesity and human obese subjects. *Arterioscler Thromb Vasc Biol* 27: 1918-1925, 2007.
- KAMOLRAT T, GRAY SR, THIVIERGE MC: Fish oil positively regulates anabolic signalling alongside an increase in whole-body gluconeogenesis in ageing skeletal muscle. *Eur J Nutr* 52: 647-657, 2013a.
- KAMOLRAT T, and GRAY SR: The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. *Biochem Biophys Res Commun* 432: 593-598, 2013b.
- KHAL J, and TISDALE MJ: Downregulation of muscle protein degradation in sepsis by eicosapentaenoic acid (EPA). *Biochem Biophys Res Commun* **375**: 238-240, 2008.

- KOOPMAN R, ZORENC AH, GRANSIER RJ, CAMERON-SMITH D, VAN-LOON LJ: Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers. *Am J Physiol. Endocrinol Metab* **290**: E1245-1252, 2006.
- LALIA AZ, and LANZA IR: Insulin-sensitizing effects of omega-3 fatty acids: lost in translation? *Nutrients* **8**: 329, 2016, doi:10.3390/nu8060329.

MACHADO RV, MAURICIO AF, TANIGUTI AP, FERRETTI R, NETO HS, MARQUES MJ:

Eicosapentaenoic acid decreases TNF-alpha and protects dystrophic muscles of mdx mice from degeneration. *J Neuroimmunol* **232**: 145-150, 2011.

- MAGEE P, PEARSON S, ALLEN J: The omega-3 fatty acid, eicosapentaenoic acid (EPA), prevents the damaging effects of tumour necrosis factor (TNF)-alpha during murine skeletal muscle cell differentiation. *Lipids Health Dis* **7**,24, 2008, doi:10.1186/1476-511X-7-24.
- MAKANAE Y, KAWADA S, SASAKI K, NAKAZATO K, ISHII N: Vitamin C administration attenuates overload-induced skeletal muscle hypertrophy in rats. *Acta physiol (Oxf)* **208**: 57-65, 2013.
- MCGLORY C, WARDLE SL, MACNAUGHTON LS, WITARD OC, SCOTT F, DICK J, BELL JG, PHILLIPS SM, GALLOWAY SD, HAMILTON DL: Fish oil supplementation suppresses resistance exercise and feeding-induced increases in anabolic signaling without affecting myofibrillar protein synthesis in young men. *Physiological reports* **4**, 2016.
- MUTHNY T, KOVARIK M, SISPERA L, TILSER I, HOLECEK M: Protein metabolism in slow- and fast-twitch skeletal muscle during turpentine-induced inflammation. *Int J Exp Pathol* **89**: 64-71, 2008.

OCHI E, and TSUCHIYA Y: Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) in muscle

damage and function. Nutrients 10: 552, 2018, doi: 10.3390/nu10050552.

- OH DY, TALUKDAR S, BAE EJ, IMAMURA T, MORINAGA H, FAN W, LI P, LU WJ, WATKINS SM, OLEFSKY JM: GPR120 is an omega-3 fatty acid receptor mediating potent antiinflammatory and insulin-sensitizing effects. *Cell* **142**: 687-698, 2011.
- ROBINSON SM, REGINSTER JY, RIZZOLI R, SHAW SC, KANIS JA, BAUTMANS I, BISCHOFF-FERRARI H, BRUYERE O, CESARI M, DAWSON-HUGHES B, FIELDING RA, KAUFMAN JM, LANDI F, MALAFARINA V, ROLLAND Y, VAN LOON LJ, VELLAS B, VISSER M, COOPER C: Does nutrition play a role in the prevention and management of sarcopenia? *Clin Nutr* **37**:1121-1132, 2018.
- RODACKI CL, RODACKI AL, PEREIRA G, NALIWAIKO K, COELHO I, PEQUITO D, FEMANDES LC: Fish-oil supplementation enhances the effects of strength training in elderly women. *Am J Clin Nutr* **95**: 428-436, 2012.
- SATO A, KAWANO H, NOTSU T, OHTA M, NAKAKUKI M, MIZUGUCHI K, ITOH M, SUGANAMI T, OGAWA Y: Antiobesity effect of eicosapentaenoic acid in high-fat/high-sucrose diet-induced obesity. Importance of hepatic lipogenesis. *Diabetes* 59: 2495-2504, 2010.
- SCHIAFFINO S, MAMMUCARI C: Regulation of skeletal muscle growth by the IFG1-Akt/PKB pathway: insights from genetic models. *Skeletal Muscle* 1:4, 2013.
- SCHIAFFINO S, DYAR K A, CICILIOT S,BLAAUW B, SANDRI M: Mechanisms regulating skeletal muscle growth and atrophy. *FEBS J* 280: 4294-4314, 2011.
- SERRANO AL, BAEZA-RAJA B, PERDIGUERO E, JARDI M, MUNOZ-CANOVES P: Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. *Cell Metab* 7:33-44, 2008.

- SIRIGULENG, KOIKE T, NATSUME Y, IWAMA S, OSHIDA Y: Effect of prior chronic aerobic exercise on overload-induced skeletal muscle hypertrophy in mice. *Physiol Res* 67: 765-775, 2008.
- SMITH HJ, LORITE MJ, TISDALE MJ: Effect of a cancer cachectic factor on protein synthesis/degradation in murine C2C12 myoblasts: modulation by eicosapentaenoic acid. *Cancer Res* 59: 5507-5513, 1999.
- SMITH HJ, KHAL J, TISDALE MJ: Downregulation of ubiquitin-dependent protein degradation in murine myotubes during hyperthermia by eicosapentaenoic acid. *Biochem Biophys Res Commun* 332: 83-88, 2005.
- SMITH GI, ATHERTON P, REEDS DN, MOHAMMED BS, RANKIN D, RENNIE MJ, MITTENDORFER B: Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. *Am J Clin Nutr* **93**: 402-412, 2011a.
- SMITH GI, ATHERTON P, REEDS DN, MOHAMMED BS, RANKIN D, RENNIE MJ, MITTENDORFER B: Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. *Clin Sci (Lond)* **121**: 267-278, 2011b.
- SMITH GI, JULLIAND S, REEDS DN, SINACORE DR, KLEIN S, MITTENDORFER B: Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. *Am J Clin Nutr* **102**: 115-22, 2015.
- SPANGENBURG EE: Changes in muscle mass with mechanical load: possible cellular mechanisms. *Appl Physiol Nutr Metab* **34**: 328-335, 2009.

- TREBATICKA J, DURACKOVA Z, and MUCHOVA J: Cardiovascular diseases, depression disorders and potential effects of omega-3 fatty acids. *Physiol. Res.* **66**: 363-382, 2017
- WHITE PJ, and MARETTE A: Potential role of omega-3-derived resolution mediators in metabolic inflammation. *Immunol Cell Biol* **92**: 324-330, 2014.
- WHITEHOUSE AS, SMITH HJ, DRAKE JL, TISDALE MJ: Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. *Cancer Res* **61**: 3604-3609, 2001a.
- WHITEHOUSE AS, and TISDALE MJ: Downregulation of ubiquitin-dependent proteolysis by eicosapentaenoic acid in acute starvation. *Biochem Biophys Res Commun* **285**: 598-602, 2001b.
- YOU JS, PARK MN, SONG W, LEE YS: Dietary fish oil alleviates soleus atrophy during immobilization in association with Akt signaling to S6K and E3 ubiquitin ligases in rats. *Appl Physiol Nutr Metab* **35**: 310-318, 2010.

#### **Figure legends**

Figure 1. The sequence of the study procedure for functional overloading.

#### Figure 2. Effect of EPA administration on insulin sensitivity.

Fasting glucose levels after 4 weeks of EPA administration (a). Insulin tolerance test (ITT) was performed after 4 weeks of EPA administration (\*p<0.05) (b). Phosphorylation (c) and protein expression (d) of Akt in the soleus muscles were analyzed by western blotting. Representative immunoblots are displayed in the top panels. Control group (n=6); EPA group (n=7). Data are expressed as the mean ± SD.

#### Figure 3. Effect of EPA administration on the Akt-mTOR-S6K pathway in soleus muscles.

Phosphorylation and protein expression of Akt, mTOR, and S6K in the soleus muscles after 4 weeks of EPA administration were analyzed by western blotting. Representative immunoblots are displayed in the top panels. Control group (n=6); EPA group (n=7). Data are expressed as the mean  $\pm$  SD. The density of the protein band of the EPA groups was expressed as the fold change in the density with respect to the mean of the Control group values.

**Figure 4 Effect of EPA administration on muscle weight after 1 or 2 weeks of overloading.** Weight of the soleus muscles (a) and plantaris muscles (b) of functionally overloaded legs or sham-operated legs was measured after 1 or 2 weeks of overloading. Control group (1 week: n=6; 2 weeks: n=6); EPA group (1 week: n=8; 2 weeks: n=6); 1W, Overload of 1 week; 2W, Overload of 2 weeks. Significant differences between the overloaded and sham-operated legs in each group after 1 or 2 weeks of

overloading (\*p<0.05, \*\*\*p<0.001, \*\*\*\*p<0.0001) and between the overloaded legs in the control and EPA groups ( $^{\&\&}$ p<0.01) are indicated. Statistical analysis of the differences between 1 week and 2 weeks of overloading was not performed. Data are expressed as the mean ± SD.

## Figure 5. Effect of EPA administration on the Akt-mTOR-S6K pathway in the soleus muscles

**during overloading.** Phosphorylation and protein expression of Akt, mTOR, and S6K after 1 or 2 weeks of overloading in the soleus muscles were analyzed by western blotting. Control group (1 week: n=6; 2 weeks: n=6); EPA group (1 week: n=8; 2 weeks: n=6); 1W, Overload of 1 week; 2W, Overload of 2 weeks. Significant differences between overloaded and sham-operated legs after 1 or 2 weeks of overloading (\*p<0.05, \*\*p<0.01) are indicated. Statistical analysis of the differences between 1 week and 2 weeks of overloading was not performed. Data are expressed as the mean  $\pm$  SD.

|                             | Control (n=6)   | EPA (n=7)                    |  |
|-----------------------------|-----------------|------------------------------|--|
| Body weight (g)             | 27.9 ± 0.8      | 27.5 ± 0.5                   |  |
| Weight of muscles (mg)      |                 |                              |  |
| Gastrocnemius               | 146 ± 5         | 147 ± 8                      |  |
| Plantaris                   | 23.4 ± 1.5      | 23.1 ± 2.5                   |  |
| Soleus                      | $10.9 \pm 0.6$  | $10.6 \pm 0.4$               |  |
| Tibialis anterior           | 50.7 ± 2.5      | 52.9 ± 2.6                   |  |
| Extensor digitorum longus   | $12.3 \pm 0.6$  | 12.1 ± 0.9                   |  |
| Epididymal fat weight (mg)  | 493 ± 89        | $298 \pm 78^{***}$           |  |
| Food intake per day (g/day) | $3.71 \pm 0.07$ | $3.47 \pm 0.09^{***}$        |  |
| Total food intake (g)       | 107.58 ± 1.91   | 101.01 ± 2.74 <sup>***</sup> |  |

Table 1. Body weight, weight of muscles, and epididymal fat weight after 4 weeks of EPA administration

Data are expressed as mean ± SD. Statistical difference vs. the Control group (\*\*\*p<0.001) Table 2. Body weight, weight of muscles, and epididymal fat weight after 1 week or 2 weeks of overloading

|                                                           | 1 week of overloading |                            | 2 weeks of overloading |                      |
|-----------------------------------------------------------|-----------------------|----------------------------|------------------------|----------------------|
|                                                           | Control (n=6)         | EPA (n=8)                  | Control (n=6)          | EPA (n=6)            |
| Body weight (g)                                           | $25.9 \pm 0.9$        | $24.8 \pm 1.0^{*}$         | 28.5 ± 1.6             | $26.4 \pm 0.9^{**}$  |
| Weight of muscles of overloaded legs (mg)                 |                       |                            |                        |                      |
| Tibialis anterior                                         | $45.6 \pm 3.3$        | 46.1 ± 3.7                 | $43.9 \pm 5.6$         | $47.5 \pm 2.6$       |
| Extensor digitorum longus                                 | 11.1 ± 0.9            | $11.2 \pm 0.7$             | 11.1 ± 0.8             | $10.2 \pm 0.9$       |
| Weight of muscles of overloaded legs (mg)/body weight (g) |                       |                            |                        |                      |
| Tibialis anterior                                         | $1.71 \pm 0.12$       | $1.84 \pm 0.13$            | 1.57 ± 0.25            | $1.79 \pm 0.16$      |
| Extensor digitorum longus                                 | $0.42 \pm 0.16$       | $0.45 \pm 0.15$            | $0.40 \pm 0.21$        | $0.39 \pm 0.18$      |
| Epididymal fat weight (mg)                                | 449 ± 13              | $199 \pm 5^{***}$          | $309 \pm 32$           | $210 \pm 11^{***}$   |
| Epididymal fat weight (mg)/body weight (g)                | 16.77 ± 4.18          | 7.91 ± 1.79 <sup>***</sup> | 11.06 ± 1.01           | $7.91 \pm 0.39^{**}$ |
| Food intake per day (g/day)                               | 3.10 ± 0.11           | $2.96 \pm 0.15^{*}$        | $3.52 \pm 0.08$        | $3.44 \pm 0.05^{*}$  |
| Total food intake (g)                                     | $110.29 \pm 4.79$     | 105.23 ± 6.89              | 148.08 ± 3.23          | 144.58 ± 2.08*       |

Data are expressed as mean  $\pm$  SD.

Statistical difference vs. the Control group in 1 week or 2 weeks of overloading (\*p<0.05, \*\*p<0.01, \*\*\*p<0.001)



# Figure 1. SIRIGULENG et al.



Figure 2. SIRIGULENG et al.



Figure 3. SIRIGULENG et al.





# Figure 4. SIRIGULENG et al.





Figure 5. SIRIGULENG et al.