Physiological Research Pre-Press Article

1	Inflammation and fibrosis induced by joint remobilization, and relevance to progression of
2	arthrogenic joint contracture: A narrative review
3	
4	Akinori Kaneguchi ¹ and Junya Ozawa ¹ *
5	
6	¹ Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-
7	Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
8	
9	* Corresponding author
10	Junya Ozawa
11	Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-
12	Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan
13	E-mail: j-ozawa@hirokoku-u.ac.jp
14	Tel: +81-823-70-4547
15	Fax: +81-823-70-4542
16	
17	Short title: Remobilization-induced joint inflammation and fibrosis
18	

19 Summary

20 Joint immobilization is frequently administered after fractures and ligament injuries and can cause joint 21 contracture as a side effect. The structures responsible for immobilization-induced joint contracture can be 22 roughly divided into muscular and articular. During remobilization, although myogenic contracture 23 recovers spontaneously, arthrogenic contracture is irreversible or deteriorates further. Immediately after 24 remobilization, an inflammatory response is observed, characterized by joint swelling, deposit formation 25 in the joint space, edema, inflammatory cell infiltration, and the upregulation of genes encoding 26 proinflammatory cytokines in the joint capsule. Subsequently, fibrosis in the joint capsule develops, in 27 parallel with progressing arthrogenic contracture. The triggers of remobilization-induced joint 28 inflammation are not fully understood, but two potential mechanisms are proposed: 1) micro-damage 29 induced by mechanical stress in the joint capsule, and 2) nitric oxide (NO) production via NO synthase 2. 30 Some interventions can modulate remobilization-induced inflammatory and subsequent fibrotic reactions. 31 Anti-inflammatory treatments, such as steroidal anti-inflammatory drugs and low-level laser therapy, can 32 attenuate joint capsule fibrosis and the progression of arthrogenic contracture in remobilized joints. 33 Antiproliferative treatment using the cell-proliferation inhibitor mitomycin C can also attenuate joint

34	capsule fibrosis by inhibiting fibroblast proliferation without suppressing inflammation. Conversely,
35	aggressive exercise during the early remobilization phases is counterproductive, because it facilitates
36	inflammatory and then fibrotic reactions in the joint. However, the adverse effects of aggressive exercise
37	on remobilization-induced inflammation and fibrosis are offset by anti-inflammatory treatment. To prevent
38	the progression of arthrogenic contracture during remobilization, therefore, care should be taken to control
39	inflammatory and fibrotic reactions in the joints.
40	
41	Key words: Joint immobilization, Joint remobilization, Joint contracture, Inflammation, Fibrosis

43 Introduction: immobilization-induced joint contracture

44	Joint immobilization is frequently administered after fractures and ligament injuries to maintain the
45	resting state of injured tissues [1-5]. However, it has the side effect of causing joint contracture, muscle
46	atrophy, articular cartilage degeneration, and reduced bone mineral density [2-6]. Immobilization-induced
47	joint contracture induces pain, the increase in risk of falls, and pressure ulcers, which contribute to long-
48	term sequelae [7]. Prevention and/or improvement of immobilization-induced joint contracture are thus
49	critical issues in rehabilitation medicine. Several studies using animal models have investigated the
50	pathophysiology of immobilization-induced joint contracture. Among these, knee flexion contracture
51	models induced by immobilization in a flexed position are the most common [8-18]. Previous studies using
52	these animal models had revealed that the structures responsible for immobilization-induced joint
53	contracture can be roughly divided into muscular and articular structures [16,17]. Muscular structures are
54	mainly responsible for short-term (less than four weeks) immobilization-induced joint contracture, while
55	articular structures, especially the joint capsule, play a central role in prolonged (four or more weeks)
56	immobilization-induced joint contracture [8,12,15-17]. After the injured tissues have healed, joints are
57	released from immobilization, i.e., they are remobilized [3-5]. During remobilization, myogenic contracture

58	recovers spontaneously, but arthrogenic contracture is generally irreversible [11,16,19,20]. Surprisingly,
59	arthrogenic contracture deteriorates further during remobilization following immobilization for three weeks
60	or less [16,21-26]. For instance, during remobilization following three weeks of immobilization, range of
61	motion (ROM) before myotomy, which mainly reflects myogenic factors, recovers partially [22]. In contrast,
62	after myotomy, which reflects arthrogenic factors, ROM decreases further [22]. Progression of arthrogenic
63	contracture during remobilization should thus be targeted to avoid irreversible joint contracture. In clinical
64	practice, passive stretching is frequently performed to treat immobilization-induced joint contractures [7].
65	However, a randomized controlled trial revealed that passive stretching after cast immobilization for ankle
66	fracture does not improve ankle plantar flexion contracture. [2] Thus, developing new therapeutic strategies
67	for immobilization-induced joint contracture is an important issue. An understanding of the natural course
68	of intra-articular changes during remobilization is crucial for developing therapeutic strategies. In this
69	review, we describe the natural course of intraarticular changes during remobilization and its modification
70	by some interventions.

72 The natural course of intra-articular changes during remobilization

73	Joint inflammation is observed during the early phases of immobilization (within two weeks), but this
74	inflammation is transient and subsides thereafter [13,27-29]. Accordingly, signs of inflammation were not
75	detected in the rat joint capsule after three weeks of knee immobilization [22]. On day 1 of remobilization,
76	however, an inflammatory response characterized by joint swelling, deposit formation in the joint space,
77	edema, inflammatory cell infiltration, upregulation of genes encoding the proinflammatory cytokines
78	interleukin-1 β (IL-1 β), IL-6, and tumor necrosis factor- α (TNF- α) in the joint capsule was detected
79	[22,25,30]. Similarly, Michelsson and Hunneyball reported development of synovitis during remobilization
80	in the rabbit knee after five weeks of immobilization [31]. Following the inflammatory response, increased
81	bromodeoxyuridine (BrdU)-positive cells in the joint capsule, which signify proliferating cells, which
82	peaked on day 3 of remobilization was observed [22]. Fibroblasts isolated from the synovium express high
83	levels of IL-1 receptors [32] and proliferate in response to IL-1ß [33]. Therefore, increased BrdU-positive
84	cells may represent fibroblast proliferation in response to IL-1 β upregulation. Indeed, a significant increase
85	in fibroblasts on day 7 of remobilization was observed [23,24,26]. Moreover, day 7 of remobilization was
86	characterized by increased expression levels of the gene encoding the profibrotic cytokine transforming
87	growth factor- β 1 (TGF- β 1) [22]. It is well known that TGF- β 1 stimulates the differentiation of fibroblasts

88	into myofibroblasts and enhances the synthesis of matrix proteins such as collagen from these cells [34].
89	Accordingly, increased numbers of myofibroblasts and the upregulation of type I (COL1A1) and III
90	(COL3A1) collagen genes were also detected on day 7 of remobilization [22,25]. Consequently, joint
91	capsule fibrosis characterized by densely packed capsules via overexpression of type I and III collagen and
92	the shortening of synovial lengths was observed [22-26]. Fibrosis of joint components is considered a main
93	cause of arthrogenic contracture [15,35,36], and supporting this, the progression of arthrogenic contracture
94	was observed in parallel with remobilization-induced joint capsule fibrosis [22-26]. These results highlight
95	the importance of preventing remobilization-induced joint inflammation and subsequent fibrosis for
96	blocking arthrogenic contracture progression.
97	The following two triggers of remobilization-induced joint inflammation are proposed, although the
98	mechanisms are not fully understood: 1) micro-damage induced by mechanical stress in the joint capsule,
99	and 2) nitric oxide (NO) production via NO synthase (NOS) 2. On day 1 of remobilization following three
100	weeks of knee immobilization in a flexed position, extravascular erythrocytes (i.e., internal bleeding) were
101	observed histologically in the posterior joint capsule [22]. This finding suggests the presence of micro-
102	damage in the joint capsule, which may trigger remobilization-induced joint inflammation [22], although

103	the possibility that erythrocytes had leaked out due to increased vascular permeability associated with
104	inflammation cannot be excluded. Damage in the posterior joint capsule has crucial roles for the
105	development of knee flexion contracture. Knee hyperextension followed by immobilization induced
106	posterior joint capsule damage characterized by inflammatory cell infiltration with fibrosis in rats [37]. The
107	effect of posterior joint capsule damage on knee joint contracture induced by immobilization after cortical
108	bone removal were examined in rabbits. As a result, immobilization with capsule damage induced by knee
109	hyperextension caused more severe contracture compared with immobilization only [38]. These findings
110	suggest that joint capsule damage, even if the damage is minor, triggers inflammation and subsequent
111	fibrosis that can aggravate arthrogenic contractures. The knee posterior joint capsule (synovium) is
112	shortened by joint immobilization in a flexed position [22-25,39,40]. In addition, knee immobilization in
113	the flexed position induces the thinning of collagen fiber bundles in the posterior joint capsule, suggesting
114	weakening of the posterior joint capsule [41]. The tensile stress generated by remobilization on the
115	shortened and weakened joint capsule may cause the micro-damage [22]. Therefore, aggressive active
116	exercise or violent passive joint movement for immobilized joints will induce or facilitate joint
117	inflammation via micro-damage in the joint capsule. In fact, a previous study reported that forced

118	remobilization (abrupt movement through the full ROM immediately after removal of the fixator followed
119	by free remobilization) induced a tear intra-articular connective tissue accompanied by bleeding [42]. In
120	addition, other previous study indicated that intermittent violent exercise (exercise using the full ROM)
121	during rabbit knee immobilization was injurious and aggravated joint contracture and swelling [43].
122	The NO synthesized via NOS2 is considered an important mediator of the pathogenesis of
123	inflammatory diseases, such as rheumatoid arthritis and osteoarthritis, in joints [44]. NOS2 in the joint
124	capsule was upregulated on day 1 of remobilization after three weeks of immobilization [30]. The NOS
125	inhibitor L-NG-nitroarginine methyl ester (L-NAME) administration before and during remobilization can
126	attenuate several aspects of the inflammatory response: joint swelling, inflammatory cell infiltration, edema,
127	and upregulation of <i>TNF-a</i> in the joint capsule [30]. These results suggest that NO production via NOS2
128	contributes, at least in part, to remobilization-induced joint inflammation.
129	In osteoarthritic joints, hypoxia/reoxygenation is an underlying mechanism that induces NOS2 [45].
130	Previous studies reported that joint immobilization induces hypoxic conditions in the joint capsule [29,46].
131	However, another study investigated the expression of hypoxia marker gene hypoxia inducible factor- 1α
132	(<i>HIF-1</i> α) in the joint capsule during immobilization and remobilization in rat knee joints and reported that

133	the expression of HIF-1 α was not upregulated by immobilization, but was instead upregulated by
134	remobilization [30]. Therefore, the mechanisms behind remobilization-induced NOS2 upregulation may
135	not stem from hypoxia/reoxygenation. Further research is needed to identify these mechanisms.
136	

- 137 Effects of interventions on inflammation and fibrosis
- 138 Anti-inflammatory therapies

139	Inflammation can trigger fibrosis in various organs, including joints [47,48]. It is speculated that anti-
140	inflammatory therapies during joint remobilization can prevent fibrosis and the subsequent progression of
141	arthrogenic contracture. A previous study examined the effects of the steroidal anti-inflammatory drug
142	dexamethasone during remobilization on joint capsule fibrosis and arthrogenic contracture progression. The
143	anti-inflammatory effects of subcutaneous injections of dexamethasone were confirmed by a complete
144	blockade of upregulation of <i>IL-1</i> β and <i>IL-6</i> in the joint capsule and joint swelling on day 1 of remobilization
145	following three weeks of immobilization [25]. Thereafter, dexamethasone prevented increases in
146	myofibroblasts, overexpression of type I and III collagen at both the gene and the protein level, and
147	shortening of the synovium on day 7 of remobilization [25]. Progression of arthrogenic contracture during

148	remobilization was thus completely prevented by this treatment [25]. These results confirm that
149	inflammation is a trigger for fibrosis in the remobilized joint, which induces arthrogenic contracture
150	progression.
151	Steroidal anti-inflammatory drugs have strong anti-inflammatory effects, but also many side effects,
152	including muscle atrophy and osteoporosis [49]. The effects of low-level laser therapy (LLLT), which has
153	anti-inflammatory and anti-fibrotic effects with few adverse side effects, on remobilization-induced joint
154	fibrosis and progression of arthrogenic contracture was also tested. Only 120 s/day of LLLT during
155	remobilization attenuated fibrotic reactions in the joint capsule and progression of arthrogenic contracture,
156	although whether remobilization-induced joint inflammation was prevented by LLLT was not confirmed
157	[21]. A previous study reported that LLLT for cultured synoviocytes from rheumatoid arthritis patients
158	decreased expression of IL-1 β and TNF- α at both the gene and the protein level [50]. In post-surgical knee
159	joint contracture model, it is confirmed that LLLT could downregulate the gene expression of $IL-1\beta$ in the
160	joint capsule [51]. Thus, LLLT will attenuate fibrosis through inhibition of remobilization-induced joint
161	inflammation. In addition, LLLT for cultured fibroblasts can attenuate the fibrotic reactions in the pro-
162	fibrotic environments. For instance, LLLT on murine embryonic fibroblasts stimulated with TGF-B1

163	decreased expression of TGF- β and type I collagen proteins [52]. Therefore, LLLT may suppress the fibrotic
164	reactions not only through indirect mechanisms via anti-inflammatory effects, but also through direct
165	mechanisms. Combined, these results indicate that anti-inflammatory therapies during remobilization are
166	effective for preventing joint fibrosis and progression of arthrogenic contracture.
167	
168	Exercise
169	Clinically, it is generally believed that aggressive exercise is effective for preventing or
170	improving joint contracture. However, recent reviews suggest that if inflammation is not well controlled,
171	aggressive exercise soon after joint surgery can lead to joint fibrosis and contracture formation by enhancing
172	inflammation [53,54]. Therefore, aggressive exercise during the early phases of remobilization, when joint
173	inflammation occurs, may cause the progression of arthrogenic contracture by enhancing inflammatory and
174	fibrotic reactions in the joints. This possibility was tested by examining the effects of treadmill exercise on
175	remobilized rat knee joints. Treadmill exercise (12 m/min, 60 min/day) performed immediately after
176	remobilization following three weeks of immobilization upregulated the proinflammatory <i>IL-1</i> β gene in the
177	joint capsule on day 1 [23]. By day 7 of remobilization, the daily treadmill exercise had caused an increase

178	in fibrotic reactions in the joint capsule, characterized by upregulation of the profibrotic $TGF-\beta I$ gene,
179	fibroblast proliferation, and increased type I and III collagen at both the gene and the protein level, which
180	led to progression of arthrogenic contracture [23]. These results indicate that aggressive exercise during the
181	early phases of remobilization aggravates arthrogenic contracture by enhancing inflammatory and
182	subsequent fibrotic reactions in the joints.
183	However, exercise during joint remobilization is indispensable for recovering muscle mass,
184	muscle strength, and daily activities [3-5]. A previous study investigated whether anti-inflammatory
185	treatments combined with exercise can offset the adverse effects of exercise during the early phases of
186	remobilization on inflammatory and subsequent fibrotic reactions. When anti-inflammatory LLLT was
187	combined with treadmill exercises, the enhancement of inflammatory and subsequent fibrotic reactions by
188	treadmill exercise was attenuated, and arthrogenic contracture during remobilization was completely
189	prevented [24]. These results suggest that if exercise during the early phases of joint remobilization is
190	essential, it should be combined with anti-inflammatory treatments to offset the adverse effects of exercise
191	on inflammatory and subsequent fibrotic reactions in the joints.
192	

193 Antiproliferative agent

194 Because fibroblasts produce extracellular matrix proteins, such as collagens, the proliferation of this type 195 of cell is important part of the development of fibrosis in various organs, including joints [55,56]. Therefore, 196 remobilization-induced joint fibrosis may be blocked by the inhibition of fibroblast proliferation, 197 irrespective of whether inflammation is prevented. To test this possibility, a previous study tested the effects of cell proliferation inhibitor mitomycin C (MMC) on fibroblast proliferation as well as joint capsule 198 199 fibrosis [26]. MMC is used as an anticancer drug in clinical practice [57], but is also used to inhibit 200 fibroblast proliferation in animals and in vitro experiments [58-60]. Because cell proliferation peaks three 201 days following joint remobilization [22], intra-articular injections of MMC were performed immediately 202 after and three days after remobilization [26]. As a result, fibroblast proliferation and joint capsule fibrosis 203 during remobilization were partially attenuated, which prevented the progression of arthrogenic contracture 204 [26]. These results indicate that fibroblast proliferation triggered by inflammation mediates joint capsule 205 fibrosis, which induces the progression of arthrogenic contracture in remobilized joints. Therefore, both 206 inflammation and the subsequent fibroblast proliferation are potential therapeutic targets for preventing 207 remobilization-induced joint fibrosis and the resulting progression of arthrogenic contracture.

209 **Future directions** 210 The anti-inflammatory and antiproliferative treatments featured here can attenuate joint 211 remobilization-induced inflammation, fibrosis, and arthrogenic contracture progression, but cannot restore 212 joint contracture to normal levels. To prevent permanent joint contracture, future studies should develop more-effective treatment strategies and/or combinations of multiple treatments, including preventive 213 214 intervention during immobilization. Joint immobilization periods vary among types of injured tissue and 215 the degree of injury. The immobilization periods in previous studies reporting remobilization-induced joint 216 inflammation were three or five weeks [22-25,30,31]. Future studies should examine whether inflammatory 217 and fibrotic reactions are induced by remobilization following shorter- or longer-term joint immobilization. 218 In addition, most of the findings in this review were derived from basic research using young animals. 219 Further studies are needed to confirm whether similar reactions occur in human patients. Accumulation of 220 advanced-glycation end products in the joint is detected in the elderly [61] and amplifies inflammatory 221 changes induced by immobilization [13]. In elderly patients, thus, immobilization-induced joint contracture 222 may be aggravated, and recovery from joint contracture may be difficult compared with young patients.

223 These possibilities should be tested in future studies.

224

225 Conclusion

226 To prevent permanent joint contracture, treatments for arthrogenic contracture during remobilization 227 are indispensable. After joint remobilization, inflammation, fibrosis, and the subsequent progression of 228 arthrogenic contracture occur within seven days (Fig. 1). Therefore, inflammatory and fibrotic reactions 229 should be controlled by qualified professionals such as physiotherapists, especially during the early stage 230 of remobilization. Anti-inflammatory and antiproliferative treatments are effective for preventing 231 inflammatory and/or fibrotic reactions. Conversely, aggressive exercise during the early phases of 232 remobilization is counterproductive, since it facilitates inflammatory and then fibrotic reactions in the joints. 233 Combining exercises during the early phases of joint remobilization that are essential for recovering muscle 234 mass, strength, and daily activities with anti-inflammatory treatments such as LLLT and anti-inflammatory 235 drugs may limit excess inflammation.

236

237 Acknowledgement

238 This study was supported by JSPS KAKENHI grant number 20K19400.

239

240 Declaration of Conflicting Interests

241 The Authors declare that there is no conflict of interest.

242	References

243	1. Kannus P, Jarvinen M. Nonoperative treatment of acute knee ligament injuries. A review with special
244	reference to indications and methods. Sports Med 1990;9:244-260.
245	2. Moseley AM, Herbert RD, Nightingale EJ, Taylor DA, Evans TM, Robertson GJ, Gupta SK, Penn J.
246	Passive stretching does not enhance outcomes in patients with plantarflexion contracture after cast
247	immobilization for ankle fracture: A randomized controlled trial. Arch Phys Med Rehabil
248	2005;86:1118-1126. https://doi.org/10.1016/j.apmr.2004.11.017
249	3. Stevens JE, Pathare NC, Tillman SM, Scarborough MT, Gibbs CP, Shah P, Jayaraman A, Walter GA,
250	Vandenborne K. Relative contributions of muscle activation and muscle size to plantarflexor
251	torque during rehabilitation after immobilization. J Orthop Res 2006;24:1729-1736.
252	https://doi.org/10.1002/jor.20153
253	4. Stevens JE, Walter GA, Okereke E, Scarborough MT, Esterhai JL, George SZ, Kelley MJ, Tillman SM,
254	Gibbs JD, Elliott MA, Frimel TN, Gibbs CP, Vandenborne K. Muscle adaptations with
255	immobilization and rehabilitation after ankle fracture. Med Sci Sports Exerc 2004;36:1695-1701.

256 https://doi.org/10.1249/01.mss.0000142407.25188.05

257	5. Vandenborne K, Elliott MA, Walter GA, Abdus S, Okereke E, Shaffer M, Tahernia D, Esterhai JL.
258	Longitudinal study of skeletal muscle adaptations during immobilization and rehabilitation.
259	Muscle Nerve 1998;21:1006-1012. <u>https://doi.org/10.1002/(sici)1097-</u>
260	4598(199808)21:8<1006::aid-mus4>3.0.co;2-c
261	6. Hudelmaier M, Glaser C, Hausschild A, Burgkart R, Eckstein F. Effects of joint unloading and reloading
262	on human cartilage morphology and function, muscle cross-sectional areas, and bone density - a
263	quantitative case report. J Musculoskelet Neuronal Interact 2006;6:284-290.
264	7. Born CT, Gil JA, Goodman AD. Joint contractures resulting from prolonged immobilization: Etiology,
265	prevention, and management. J Am Acad Orthop Surg 2017;25:110-116.
266	https://doi.org/10.5435/JAAOS-D-15-00697
267	8. Chimoto E, Hagiwara Y, Ando A, Itoi E. Progression of an arthrogenic motion restriction after
268	immobilization in a rat experimental knee model. Ups J Med Sci 2007;112:347-355.
269	9. Goto K, Sakamoto J, Nakano J, Kataoka H, Honda Y, Sasabe R, Origuchi T, Okita M. Development and
270	progression of immobilization-induced skin fibrosis through overexpression of transforming
271	growth factor-ss1 and hypoxic conditions in a rat knee joint contracture model. Connect Tissue

272	Res 2017;58:586-596. <u>https://doi.org/10.1080/03008207.2017.1284823</u>

- 273 10. Hagiwara Y, Ando A, Onoda Y, Matsui H, Chimoto E, Suda H, Itoi E. Expression patterns of collagen
- types i and iii in the capsule of a rat knee contracture model. J Orthop Res 2010;28:315-321.
- 275 <u>https://doi.org/10.1002/jor.20997</u>
- 276 11. Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Morphological and biomechanical adaptations of
- 277 skeletal muscle in the recovery phase after immobilization in a rat. Clin Biomech (Bristol, Avon)
- 278 2020;75:104992. <u>https://doi.org/10.1016/j.clinbiomech.2020.104992</u>
- 279 12. Nagai M, Aoyama T, Ito A, Iijima H, Yamaguchi S, Tajino J, Zhang X, Akiyama H, Kuroki H.
- 280 Contributions of biarticular myogenic components to the limitation of the range of motion after
- 281 immobilization of rat knee joint. BMC Musculoskelet Disord 2014;15:224.
- 282 <u>https://doi.org/10.1186/1471-2474-15-224</u>
- 283 13. Ozawa J, Kaneguchi A, Minamimoto K, Tanaka R, Kito N, Moriyama H. Accumulation of advanced-
- 284 glycation end products (ages) accelerates arthrogenic joint contracture in immobilized rat knee. J
- 285 Orthop Res 2017;36:854-863. <u>https://doi.org/10.1002/jor.23719</u>
- 286 14. Ozawa J, Kaneguchi A, Tanaka R, Kito N, Moriyama H. Cyclooxygenase-2 inhibitor celecoxib

287	attenuates joint contracture following immobilization in rat knees. BMC Musculoskelet Disord
288	2016;17:446. https://doi.org/10.1186/s12891-016-1303-5
289	15. Sasabe R, Sakamoto J, Goto K, Honda Y, Kataoka H, Nakano J, Origuchi T, Endo D, Koji T, Okita M.
290	Effects of joint immobilization on changes in myofibroblasts and collagen in the rat knee
291	contracture model. J Orthop Res 2017;35:1998-2006. <u>https://doi.org/10.1002/jor.23498</u>
292	16. Trudel G, Laneuville O, Coletta E, Goudreau L, Uhthoff HK. Quantitative and temporal differential
293	recovery of articular and muscular limitations of knee joint contractures; results in a rat model. J
294	Appl Physiol (1985) 2014;117:730-737. https://doi.org/10.1152/japplphysiol.00409.2014
295	17. Trudel G, Uhthoff HK. Contractures secondary to immobility: Is the restriction articular or muscular?
296	An experimental longitudinal study in the rat knee. Arch Phys Med Rehabil 2000;81:6-13.
297	https://doi.org/10.1016/s0003-9993(00)90213-2.
298	18. Trudel G, Uhthoff HK, Brown M. Extent and direction of joint motion limitation after prolonged
299	immobility: An experimental study in the rat. Arch Phys Med Rehabil 1999;80:1542-1547.
300	19. Ando A, Suda H, Hagiwara Y, Onoda Y, Chimoto E, Itoi E. Remobilization does not restore
301	immobilization-induced adhesion of capsule and restricted joint motion in rat knee joints. Tohoku

302	J Exp Med 2	012;227:13-22.	https://doi.org	g/10.1620/t	jem.227.13

- 20. Trudel G, Zhou J, Uhthoff HK, Laneuville O. Four weeks of mobility after 8 weeks of immobility fails
- to restore normal motion: A preliminary study. Clin Orthop Relat Res 2008;466:1239-1244.
- 305 <u>https://doi.org/10.1007/s11999-008-0181-z</u>
- 306 21. Kaneguchi A, Ozawa J. The preventive effects of low-level laser therapy on arthrogenic contracture
- 307 progression in remobilized rat knee (in japanese). Japanese Journal of Electrophysical Agents
 308 2017;24:47-51.
- 309 22. Kaneguchi A, Ozawa J, Kawamata S, Yamaoka K. Development of arthrogenic joint contracture as a
- 310 result of pathological changes in remobilized rat knees. J Orthop Res 2017;35:1414-1423.
- 311 <u>https://doi.org/10.1002/jor.23419</u>
- 312 23. Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Active exercise on immobilization-induced
- 313 contractured rat knees develops arthrogenic joint contracture with pathological changes. J Appl
- 314 Physiol (1985) 2018;124:291-301. <u>https://doi.org/10.1152/japplphysiol.00438.2017</u>
- 315 24. Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Low-level laser therapy prevents treadmill
- 316 exercise-induced progression of arthrogenic joint contracture via attenuation of inflammation and

317	fibrosis in remobilized rat knees. Inflammation 2019;42:857-873. https://doi.org/10.1007/s10753-
318	<u>018-0941-1</u>
319	25. Kaneguchi A, Ozawa J, Yamaoka K. Anti-inflammatory drug dexamethasone treatment during the
320	remobilization period improves range of motion in a rat knee model of joint contracture.
321	Inflammation 2018;41:1409-1423. https://doi.org/10.1007/s10753-018-0788-5
322	26. Kaneguchi A, Ozawa J, Yamaoka K. Intra-articular injection of mitomycin c prevents progression of
323	immobilization-induced arthrogenic contracture in the remobilized rat knee. Physiol Res
324	2020;69:145-156. https://doi.org/10.33549/physiolres.934149.
325	27. Cho CH, Lho YM, Hwang I, Kim DH. Role of matrix metalloproteinases 2 and 9 in the development
326	of frozen shoulder: Human data and experimental analysis in a rat contracture model. J Shoulder
327	Elbow Surg 2019;28:1265-1272. https://doi.org/10.1016/j.jse.2018.11.072
328	28. Kim DH, Lee KH, Lho YM, Ha E, Hwang I, Song KS, Cho CH. Characterization of a frozen shoulder
329	model using immobilization in rats. J Orthop Surg Res 2016;11:160.
330	https://doi.org/10.1186/s13018-016-0493-8

331 29. Yabe Y, Hagiwara Y, Suda H, Ando A, Onoda Y, Tsuchiya M, Hatori K, Itoi E. Joint immobilization

332	induced hypoxic and inflammatory conditions in rat knee joints. Connect Tissue Res 2013;54:210-
333	217. https://doi.org/10.3109/03008207.2013.786056
334	30. Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Nitric oxide synthase inhibitor l-ng-nitroarginine
335	methyl ester (l-name) attenuates remobilization-induced joint inflammation. Nitric Oxide
336	2020;96:13-19. https://doi.org/10.1016/j.niox.2020.01.003
337	31. Michelsson JE, Hunneyball IM. Inflammatory involvement in rabbit knee following immobilization
338	and resulting in osteoarthritis. Scand J Rheumatol 1984;13:273-281.
339	32. Dixon D, Coates J, del Carpio Pons A, Horabin J, Walker A, Abdul N, Kalson NS, Brewster NT, Weir
340	DJ, Deehan DJ, Mann DA, Borthwick LA. A potential mode of action for anakinra in patients with
341	arthrofibrosis following total knee arthroplasty. Sci Rep 2015;5:16466.
342	https://doi.org/10.1038/srep16466
343	33. Lee WS, Lim JH, Sung MS, Lee EG, Oh YJ, Yoo WH. Ethyl acetate fraction from angelica sinensis
344	inhibits il-1beta-induced rheumatoid synovial fibroblast proliferation and cox-2, pge2, and mmps
345	production. Biol Res 2014;47:41. https://doi.org/10.1186/0717-6287-47-41
346	34. Biernacka A, Dobaczewski M, Frangogiannis NG. Tgf-beta signaling in fibrosis. Growth Factors

347 2011;29:196-202. <u>https://doi.org/10.3109/08977194.2011.595714</u>

348	35. Fukui N, Fukuda A, Kojima K, Nakajima K, Oda H, Nakamura K. Suppression of fibrous adhesion by
349	proteoglycan decorin. J Orthop Res 2001;19:456-462. https://doi.org/10.1016/S0736-
350	<u>0266(00)90016-0</u>
351	36. Fukui N, Tashiro T, Hiraoka H, Oda H, Nakamura K. Adhesion formation can be reduced by the
352	suppression of transforming growth factor-beta1 activity. J Orthop Res 2000;18:212-219.
353	https://doi.org/10.1002/jor.1100180208
354	37. Zhang Y, Lu S, Fan S, Xu L, Jiang X, Wang K, Cai B. Macrophage migration inhibitory factor activates
355	the inflammatory response in joint capsule fibroblasts following post-traumatic joint contracture.
356	Aging (Albany NY) 2021;13:5804-5823. https://doi.org/10.18632/aging.202505
357	38. Nesterenko S, Morrey ME, Abdel MP, An KN, Steinmann SP, Morrey BF, Sanchez-Sotelo J. New rabbit
358	knee model of posttraumatic joint contracture: Indirect capsular damage induces a severe
359	contracture. J Orthop Res 2009;27:1028-1032. <u>https://doi.org/10.1002/jor.20845</u>
360	39. Ando A, Hagiwara Y, Onoda Y, Hatori K, Suda H, Chimoto E, Itoi E. Distribution of type a and b
361	synoviocytes in the adhesive and shortened synovial membrane during immobilization of the knee

362	joint in rats. Tohoku J Exp Med 2010;221:161-168. <u>https://doi.org/10.1620/tjem.221.161</u>
363	40. Trudel G, Seki M, Uhthoff HK. Synovial adhesions are more important than pannus proliferation in the
364	pathogenesis of knee joint contracture after immobilization: An experimental investigation in the
365	rat. J Rheumatol 2000;27:351-357.
366	41. Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Three-week joint immobilization increases
367	anterior-posterior laxity without alterations in mechanical properties of the anterior cruciate
368	ligament in the rat knee. Clin Biomech (Bristol, Avon) 2020;75:104993.
369	https://doi.org/10.1016/j.clinbiomech.2020.104993
370	42. Evans EB, Eggers GWN, Butler JK, Blumel J. Experimental immobilization and remobilization of rat
371	knee joints. JBJS 1960;42:737-758.
372	43. Michelsson JE, Riska EB. The effect of temporary exercising of a joint during an immobilization period:
373	An experimental study on rabbits. Clin Orthop Relat Res 1979:321-325.
374	44. Cuzzocrea S. Role of nitric oxide and reactive oxygen species in arthritis. Curr Pharm Des
375	2006;12:3551-3570.
376	45. Chenevier-Gobeaux C, Simonneau C, Lemarechal H, Bonnefont-Rousselot D, Poiraudeau S, Rannou F,

377	Ekindjian OG, Anract P, Borderie D. Effect of hypoxia/reoxygenation on the cytokine-induced
378	production of nitric oxide and superoxide anion in cultured osteoarthritic synoviocytes.
379	Osteoarthritis Cartilage 2013;21:874-881. https://doi.org/10.1016/j.joca.2013.03.010
380	46. Sotobayashi D, Kawahata H, Anada N, Ogihara T, Morishita R, Aoki M. Therapeutic effect of intra-
381	articular injection of ribbon-type decoy oligonucleotides for hypoxia inducible factor-1 on joint
382	contracture in an immobilized knee animal model. J Gene Med 2016;18:180-192.
383	https://doi.org/10.1002/jgm.2891
384	47. dos Santos G, Kutuzov MA, Ridge KM. The inflammasome in lung diseases. Am J Physiol Lung Cell
385	Mol Physiol 2012;303:L627-633. https://doi.org/10.1152/ajplung.00225.2012
386	48. Morrey ME, Abdel MP, Riester SM, Dudakovic A, van Wijnen AJ, Morrey BF, Sanchez-Sotelo J.
387	Molecular landscape of arthrofibrosis: Microarray and bioinformatic analysis of the temporal
388	expression of 380 genes during contracture genesis. Gene 2017;610:15-23.
389	https://doi.org/10.1016/j.gene.2017.01.025
390	49. Schacke H, Docke WD, Asadullah K. Mechanisms involved in the side effects of glucocorticoids.
391	Pharmacol Ther 2002;96:23-43. https://doi.org/10.1016/s0163-7258(02)00297-8

392	50. Yamaura M, Yao M, Yaroslavsky I, Cohen R, Smotrich M, Kochevar IE. Low level light effects on
393	inflammatory cytokine production by rheumatoid arthritis synoviocytes. Lasers Surg Med
394	2009;41:282-290. https://doi.org/10.1002/lsm.20766
395	51. Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Low-level laser therapy attenuates arthrogenic
396	contracture induced by anterior cruciate ligament reconstruction surgery in rats. Physiol Res In
397	press.
398	52. Lee Y, Kim H, Hong N, Ahn JC, Kang HW. Combined treatment of low-level laser therapy and
399	phloroglucinol for inhibition of fibrosis. Lasers Surg Med 2020;52:276-285.
400	https://doi.org/10.1002/lsm.23131
401	53. Cheuy VA, Foran JRH, Paxton RJ, Bade MJ, Zeni JA, Stevens-Lapsley JE. Arthrofibrosis associated
402	with total knee arthroplasty. J Arthroplasty 2017;32:2604-2611.
403	https://doi.org/10.1016/j.arth.2017.02.005
404	54. Usher KM, Zhu S, Mavropalias G, Carrino JA, Zhao J, Xu J. Pathological mechanisms and therapeutic
405	outlooks for arthrofibrosis. Bone Res 2019;7:9. https://doi.org/10.1038/s41413-019-0047-x
406	55. Abdul N, Dixon D, Walker A, Horabin J, Smith N, Weir DJ, Brewster NT, Deehan DJ, Mann DA,

407	Borthwick LA. Fibrosis is a common outcome following total knee arthroplasty. Sci Rep
408	2015;5:16469. https://doi.org/10.1038/srep16469
409	56. Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: Novel roles and mediators. Front Pharmacol
410	2014;5:123. https://doi.org/10.3389/fphar.2014.00123
411	57. Volpe A, Racioppi M, D'Agostino D, Cappa E, Filianoti A, Bassi PF. Mitomycin c for the treatment of
412	bladder cancer. Minerva Urol Nefrol 2010;62:133-144.
413	58. Chen N, Zhang J, Xu M, Wang YL, Pei YH. Inhibitory effect of mitomycin c on proliferation of primary
414	cultured fibroblasts from human airway granulation tissues. Respiration 2013;85:500-504.
415	https://doi.org/10.1159/000346648
416	59. Li X, Yan L, Wang J, Sun Y, Wang Q, Lu Z, Wang Q, Liu Z, Hu J. Comparison of the effects of
417	mitomycin c and 10-hydroxycamptothecin on an experimental intraarticular adhesion model in
418	rabbits. Eur J Pharmacol 2013;703:42-45. <u>https://doi.org/10.1016/j.ejphar.2013.02.001</u>
419	60. Wang J, Yan L, Sun Y, Wang D, Dai S, Yu T, Gu J, Jiang B, Feng X, Hu H, Wang Q, Yin B, Lv G. A
420	comparative study of the preventive effects of mitomycin c and chitosan on intraarticular adhesion
421	after knee surgery in rabbits. Cell Biochem Biophys 2012;62:101-105.

422 https://doi.org/10.1007/s12013-011-9266-5

423 61. DeGroot J, Verzijl N, Bank RA, Lafeber FP, Bijlsma JW, TeKoppele JM. Age-related decrease in

424 proteoglycan synthesis of human articular chondrocytes: The role of nonenzymatic glycation.

426 <u>0131(199905)42:5</u><1003::AID-ANR20>3.0.CO;2-K

427

Figure 1

429 Figure legend

430 Fig. 1 Schema illustrating intra-articular changes during immobilization and remobilization.