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Abstract 10 

RNA modifications affect key stages of the RNA life cycle, including splicing, export, decay, and 11 

translation. Epitranscriptomic regulations therefore significantly influence cellular physiology and 12 

pathophysiology. Here, we selected some of the most abundant modifications and reviewed their 13 

roles in the heart and in cardiovascular diseases: N6-methyladenosine (m6A), N6,2‘-O-14 

dimethyladenosine (m6Am), N1-methyladenosine (m1A), pseudouridine (Ψ), 5-methylcytosine (m5C), 15 

and inosine (I). Dysregulation of epitranscriptomic machinery affecting these modifications vastly 16 

changes the cardiac phenotype and is linked with many cardiovascular diseases such as myocardial 17 

infarction, cardiomyopathies, or heart failure. Thus, a deeper understanding of these 18 

epitranscriptomic changes and their regulatory mechanisms can enhance our knowledge of the 19 

molecular underpinnings of prevalent cardiac diseases, potentially paving the way for novel 20 

therapeutic strategies. 21 
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1. Introduction22 

The original central dogma of molecular biology states that DNA is transcribed into RNA, which is 23 

subsequently translated into proteins [1]. However, the whole process is under the control of 24 

epigenetic mechanisms. Epigenetic mechanisms involve chemical modifications to the DNA itself, to 25 

the proteins that package DNA into chromatin (histones), or to the RNA molecules transcribed from 26 

the DNA (Figure 1). Importantly, the epigenome is responsive to various environmental factors (diet, 27 

stress, exposure to toxins, etc.) and can produce heritable phenotypic changes without altering the 28 

DNA sequence [2, 3].  29 

Fig. 1: Basic overview of epigenetic modifications 30 

31 



RNA modifications are specifically known as the epitranscriptome. The research field of 32 

epitranscriptomics is rapidly developing. Currently, over 170 chemical RNA modifications are known 33 

(common RNA modifications overviewed in Figure 2) [4]. The largest number of modifications with 34 

the widest chemical diversity is present in tRNA; however, various modifications also occur in other 35 

RNA types, including mRNA [5]. These modifications may be either irreversible or reversible [6]. 36 

Epitranscriptomic regulators can be described according to their function as writers (addition of the 37 

epitranscriptomic mark), erasers (removal of the epitranscriptomic mark), and readers (binding to 38 

the modified nucleotide). Dynamic regulation of epitranscriptomic modifications can affect key 39 

stages of the RNA life cycle, including splicing, export, decay, and translation [7, 8]. 40 

Fig. 2: Common RNA modifications 41 
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Remodeling of the cardiac epitranscriptome has been described in several physiological as well as 43 

pathological states. This review summarizes the current knowledge and gaps about RNA 44 

modifications in cardiac biology and cardiovascular diseases (CVDs). A better understanding of 45 

epitranscriptomic regulations in the healthy and diseased heart opens the door for clinically relevant 46 

discoveries in the future. 47 

2. Common RNA modifications and their role in cardiac physiology48 

2.1. N6-methyladenosine 49 

N6-methyladenosine (m6A) is the most numerous modification in eukaryotic mRNA; however, it also 50 

occurs in other RNA types [9-12]. Multicomponent methyltransferase complex (MTC) is responsible 51 

for the deposition of the methyl group to adenosine, forming m6A. The two main regulatory subunits 52 

of the MTC are methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14). The 53 

catalytic function of the MTC is carried by METTL3 while METTL14 facilitates RNA binding [13, 14]. 54 

The removal of the methyl group is mediated by two main demethylases. AlkB homolog 5 (ALKBH5) is 55 

the primary m6A eraser [15]. Fat mass and obesity-associated protein (FTO) is not an m6A-specific 56 

demethylase, however, m6A is the preferable target of FTO in the nucleus [16-18]. There are many 57 

described m6A readers. The most characterized include YTH domain-containing family proteins 1-3 58 

(YTHDF1-3) and YTH domain-containing proteins 1-2 (YTHDC1-2). While readers YTHDF1-3 mediate 59 

primarily mRNA degradation, YTHDC1 regulates mRNA splicing and YTHDC2 promotes translation 60 

[19-25]. 61 

The heart is affected by m6A already during its ontogenetic development as m6A machinery regulates 62 

cardiomyocyte growth, proliferation, and differentiation [26-29]. Children born with a loss-of-63 

function mutation in the FTO gene (m6A demethylase) exhibited heart defects (ventricular septal 64 

defect, atrioventricular defect, patent ductus arteriosus), hypertrophic cardiomyopathy and died 65 

before 3 years of age [30]. Moreover, various gene variants of m6A regulators were linked with CVDs, 66 

including myocardial infarction, acute coronary syndrome, increased risk of rejection in heart 67 



transplant patients, and sudden cardiac death [31-37]. It has been reported that m6A also controls 68 

cardiac hypertrophy [38-40]. Dorn et al. [41] suggested that enhanced m6A RNA methylation results 69 

in compensated cardiac hypertrophy, whereas diminished m6A drives eccentric cardiomyocyte 70 

remodeling and dysfunction. Changes in m6A methylation and dysregulation of m6A machinery can 71 

contribute to the progression of heart failure [42-47]. Altered cardiac m6A patterns were detected 72 

also in diabetic cardiomyopathy with distinct dysregulation of m6A machinery in the two types of 73 

diabetes [48-50]. The heterogeneous role of m6A modification in CVDs has been reviewed in several 74 

recent publications [51-60]. 75 

Altered m6A levels in different CVDs might also serve as useful biomarkers. For instance, it has been 76 

described that patients with coronary artery disease (CAD) had significantly lower urine m6A levels 77 

compared to healthy individuals [61]. 78 

Since cardiac m6A machinery is dysregulated under many pathophysiological conditions, targeting 79 

m6A modifiers can also induce cardioprotection. Several studies showed that demethylases FTO and 80 

ALKBH5 can protect cardiomyocytes against detrimental effects, such as treatment with cardiotoxic 81 

compounds or hypoxia/reoxygenation injury [43, 62-68]. On the contrary, loss of METTL3 or 82 

METTL14 can alleviate myocardial injury and promote heart regeneration [69, 70]. Thus, improving 83 

our knowledge of the m6A regulations in the heart may lead to novel cardioprotective strategies 84 

using specific pharmacological activators or inhibitors targeting m6A modifiers. 85 

2.2. N6,2‘-O-dimethyladenosine 86 

N6,2‘-O-dimethyladenosine (m6Am) is formed by N6-methylation of 2’-O-methyladenosine (Am). It 87 

has been described only in mRNA and snRNA [50, 71]. This modification is present at the first 88 

transcribed nucleotide and forms the extended cap structure in at least 30-40% of all vertebrate 89 

mRNA [72, 73]. Moreover, m6Am is also present at the internal sites of snRNAs [17]. The formation of 90 

m6Am in the cap is mediated by phosphorylated CTD interacting factor 1 (PCIF1), while 91 

methyltransferase-like 4 (METTL4) is responsible for internal m6Am formation [74-77]. The 92 



demethylation of m6Am takes place mainly in the cytosol where it is mediated by FTO, the same 93 

eraser that targets m6A in the nucleus [17, 18, 78, 79]. There are currently no m6Am readers 94 

mediating the biological functions of this modification described, but it is known that the presence of 95 

m6Am in the cap structure markedly enhances mRNA stability (in mRNA cap) and splicing (in snRNA 96 

cap) [78, 80].  97 

The function of m6Am modification in the heart is mostly unknown. There are several problems 98 

associated with m6Am research: 1) many m6A detection methods do not distinguish between m6A 99 

and m6Am; 2) FTO is not a specific eraser because it demethylates also m6A and m1A; 3) METTL4 can 100 

also catalyze 6mA methylation. Thus, the potential effect of m6Am on cardiac function could be 101 

masked as m6A in many studies [71]. Besides the non-specific demethylase FTO covered in the 102 

previous chapter, not much is known about the role of m6Am and its regulators in the heart. Publicly 103 

available RNA-seq datasets generated from human left ventricles of failing and non-failing hearts 104 

reported some degree of regulation of METTL4 (down-regulation) and PCIF1 (up-regulation) [71]. 105 

Besides that, we recently found that m6Am writers were regulated also in cardioprotective 106 

interventions. METTL4 was decreased in the hearts of rats adapted to chronic hypoxia and PCIF1 was 107 

increased in the hearts of rats subjected to fasting [71, 81].  108 

2.3. N1-methyladenosine  109 

N1-methyladenosine (m1A) is found mainly in tRNA and rRNA, but less numerously also in mRNA [82-110 

85]. The writer proteins responsible for m1A methylation include tRNA methyltransferase 6 (TRMT6), 111 

TRMT61A, TRMT61B, TRMT10C or ribosomal RNA-processing protein 8 (RRP8; also known as 112 

NML)[86-90]. Demethylation of m1A is catalysed by erasers ALKBH1, and ALKBH3 [85, 91-93]. 113 

Moreover, FTO (m6A and m6Am eraser) also works as a demethylase of m1A in tRNA [17]. The m1A 114 

modification affects the structure and stability of tRNA and rRNA and its presence in mRNA regulates 115 

translation [85, 86, 94-96]. 116 



So far, no association between m1A and CVDs has been found [97]. Analysis of methylated 117 

nucleosides in urine that revealed altered m6A levels in CAD patients did not find any changes in the 118 

case of m1A [61]. 119 

2.4. Pseudouridine 120 

Pseudouridine (Ψ), the C5-glycoside isomer of uridine (U), is the first discovered and overall the most 121 

prevalent RNA modification that has been identified in almost all known RNA types [98-100]. The 122 

conversion of U to Ψ is mediated by the diverse pseudouridine synthase (PUS) family [101]. So far, 13 123 

members of PUSs have been described in eukaryotes [100]. The human homologs of PUSs include 124 

PUS1, PUS3, PUS7, PUS10, PUSL1, PUSL7, TRUB1-2 (TruB pseudouridine synthase 1-2), RPUSD1-4 125 

(RNA pseudouridine synthase D1-4), and DKC1 (dyskerin pseudouridine synthase 1) [102]. The 126 

formation of Ψ is irreversible (unlike the aforementioned modifications) [103]. The only known Ψ 127 

reader is a yeast RNA helicase Prp5 interacting with snRNA [104, 105]. The molecular functions of Ψ 128 

include stabilization of RNA conformations and destabilization of interactions with RNA-binding 129 

proteins; the most well-characterized function of Ψ in mRNA is the promotion of a stop codon read-130 

through [100, 106].  131 

Plasma and urine levels of Ψ were linked to CVDs [107]. Patients with heart failure exhibited higher 132 

plasma concentrations of Ψ than healthy controls and this modification was suggested as a suitable 133 

biomarker for heart failure diagnosis [108-110]. Tetralogy of Fallot, the most common cyanotic 134 

congenital heart defect, is associated with decreased Ψ levels in ventricular myocardial tissues, which 135 

is under the control of small Cajal body-specific RNAs [111, 112]. 136 

2.5. 5-methylcytosine 137 

5-methylcytosine (m5C) is an abundant RNA modification present in a wide variety of RNA types. The 138 

writers responsible for the installation of m5C in humans are NOL1/NOP2/SUN domain proteins 1-7 139 

(NSUN1-7) and DNA methyltransferase homolog DNMT2 [113, 114]. Ten-eleven translocation 140 

proteins 1-3 (TET1-3) and ALKBH1 are known as m5C erasers. TET-mediated oxidation results in a 141 



formation of 5-hydroxymethylcytosin (hm5C), while ALKBH1 is responsible for the oxidation of m5C in 142 

mitochondrial tRNA generating 5-formylcytosine (f5C) [115, 116]. The readers of m5C include Aly/REF 143 

export factor (ALYREF), which influences nuclear-cytoplasmic shuttling [117], and Y-box-binding 144 

protein 1 (YBX1), which preserves the stability of its target mRNA by recruiting ELAVL1 [118]. This 145 

modification is an important regulator of RNA export, ribosome assembly, translation, and RNA 146 

stability [113, 119, 120]. 147 

In mammals, m5C modification occurs more frequently in the myocardium and skeletal muscle 148 

compared to other organs. The enrichment of m5C is especially present in mitochondrial-related 149 

genes, suggesting a particularly important function of m5C in the high-energy demanding 150 

myocardium [121]. Indeed, specific inactivation of the methyltransferase NSUN4 in the heart caused 151 

cardiomyopathy with mitochondrial dysfunction [122]. Deficiency of methyltransferase Dnmt2 gene 152 

in mice resulted in cardiac hypertrophy [123]. RNA binding protein and known m5C reader YBX1 was 153 

also identified as a cardiac hypertrophy regulator [124, 125]. NSUN2 was found to increase Nrf2 154 

expression by promoting m5C methylation of its mRNA and enhancing its antioxidant stress effect, 155 

which attenuates doxorubicin-induced myocardial damage [126].  156 

2.6. RNA editing 157 

RNA editing includes nucleoside modifications such as adenosine deamination to inosine (A-to-I 158 

editing) or cytosine deamination to uridine (C-to-U editing), as well as insertion and deletion of 159 

nucleotides [127, 128]. Deamination of A to I is irreversible and it is performed by enzymes belonging 160 

to the adenosine deaminase acting on RNA (ADAR) family, which is represented by three ADAR 161 

orthologs (ADAR1-3) in mammals. ADAR1 and ADAR2 are widely expressed, while ADAR3 was 162 

detected only in the brain [129, 130]. C-to-U editing is not as common as A-to-I editing [131]. The 163 

deamination of C to U is performed by a multiple-protein editosome, which includes the catalytic 164 

subunit apolipoprotein B mRNA editing enzyme catalytic subunit 1 (APOBEC1) and an RNA-binding 165 

protein APOBEC1 complementation factor (A1CF) [132]. RNA editing in protein-coding regions of 166 



mRNAs can result in the expression of functionally altered proteins while editing in microRNA 167 

(miRNA) precursors leads to reduced expression or altered function of mature miRNAs [133].  168 

ADAR1 is an essential enzyme for normal embryonic cardiac growth and development [134]. 169 

Cardiomyocyte-specific deletion of Adar1 in adult mice caused severe ventricular remodeling and 170 

spontaneous cardiac dysfunction associated with a significant rise in lethality [135]. ADAR1 was also 171 

shown to prevent autoinflammatory processes in the heart [136]. A-to-I RNA editing has been 172 

significantly increased among children with cyanotic congenital heart disease compared to acyanotic 173 

controls [137]. On the contrary, reduction of A-to-I editing and decreased levels of ADAR2 have been 174 

described in the failing human heart [138]. Strong down-regulation of ADAR2 and up-regulation of 175 

ADAR1 expression was observed in blood samples of patients with congenital heart disease. The 176 

decrease in ADAR2 levels was in line with its down-regulation in ventricular tissues of dilated 177 

cardiomyopathy patients. Thus, it has been suggested that ADAR2 activity might play a critical role in 178 

preventing cardiovascular disorders [139]. Indeed, Wu et al. [140] described that ADAR2 was up-179 

regulated in the heart during exercise and that this enzyme protects the heart against myocardial 180 

infarction as well as doxorubicin-induced cardiotoxicity, supporting the hypothesis of the beneficial 181 

effect of ADAR2 on the heart. So far, RNA editing therapeutics have not been established for the 182 

treatment of CVDs, however, it is a prospective therapeutic approach that could be implemented in 183 

the near future [141]. 184 

Conclusion 185 

CVDs remain the leading cause of death worldwide. The search for appropriate cardioprotective 186 

strategies is therefore of crucial importance. The significant role of epitranscriptomics in cellular 187 

physiology and pathophysiology has been already accepted by the scientific community in the past 188 

few years. However, the exact role of complex epitranscriptomic regulations in the heart and CVDs is 189 

still far from being understood. It is becoming clear that RNA modifications and their regulators play 190 

a vital role in the ontogenetic development of the heart. Many CVDs, such as myocardial infarction, 191 



cardiomyopathies, or heart failure, have been also associated with dysregulated epitranscriptomic 192 

machinery (Figure 3). Most importantly, targeting the enzymes responsible for regulating the RNA 193 

modifications affected by these diseases proved to be beneficial for the heart. Thus, it is only a 194 

matter of time before targeting epitranscriptomic regulations becomes a part of clinical practice. 195 

Fig. 3: Role of RNA modifications in the heart 196 
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