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Summary

The activation of Calcium-Sensing Receptors (CaSRs) reduces
detrusor activity in bladder tissues. Also, hydrogen sulfide (H2S)
produces in bladder tissue and regulates the bladder smooth
muscles tone. However, there is no evidence of the interaction
between CaSRs and H>S in bladder tissue. The aim of this study
is to investigate the possible contribution of L-cysteine/H.S
pathway in CaSRs-mediated relaxation responses in isolated
mouse bladder tissue. CaCl. (1, 2, 3, 5, 10 mM) was applied to
isolated mouse bladder tissues pre-contracted with carbachol
(1 pM). CaCl-induced relaxations were performed in the
presence of PAG (10 mM), AOCAA (1 mM), and Calhex-231
(5 pM), cystathionine-gamma-lyase (CSE), cystathionine-beta-
synthase (CBS) and CaSR inhibitor, respectively. L-cysteine
(1 pM-10 mM),
a concentration-dependent relaxant response in isolated bladder

an HxS substrate, was used to induced

tissues pre-contracted with carbachol. L-cysteine induced
relaxations were performed in the presence of PAG (CSE
inhibitor, 10 mM), AOAA (CBS inhibitor, 1 mM) and Calhex-231
(CaSR inhibitor, 5 pM). CaClz-induced relaxations were decreased
by PAG and AOAA. Also, Calhex-231 decreased the CaClz-induced
relaxant responses. L-cysteine-induced relaxant responses were
reduced in the presence of PAG (10 mM) and AOAA (1 mM).
Calhex-231 (5 uM) caused a significant decrease in L-cysteine-
induced relaxations. Also, Calhex-231 reduced the increase in
H2S production in the presence of L-cysteine. In addition,
CaClz increased basal H.S generation, and PAG (10 mM), AOAA
(1 mM) and Calhex-231 (5 M)

H2S production stimulated with CaCl.. In conclusion, CSE and

reduced the increase in

CBS-derived endogenous H.S formation may, at least in part,
contribute to CaSR-mediated relaxation responses, and CaSRs

involve in endogenous H.S relaxation responses in isolated
mouse bladder tissue.
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Introduction

Calcium-sensing receptors (CaSRs) are found in
many tissues and induce numerous functions [1]. CaSRs
were firstly expressed from the bovine parathyroid gland,
where they regulate parathyroid hormone-dependent
CaSRs are
G protein-coupled receptors (GPCRs) located on the cell

extracellular calcium homeostasis [2].
membrane and sense the levels of extracellular Ca®*, and
activate signaling pathways that modulate calcium
homeostasis. The activation of CaSRs by increased
extracellular Ca*" or with other CaSRs agonists triggers
the phosphatidylinositol-specific phospholipase C (PLC),
initiating the formation of diacylglycerol (DAG) and
inositol 1,4,5-trisphoshpate (IP3), inhibition of adenylyl
cyclase and activation of MAPK/ERK1/2 pathway [3,4].
Recent studies have demonstrated that tissues
previously considered non-calciotropic, such as vascular
smooth muscle may play a role in modulating
Ca’" homeostasis [5,6]. Also, it has been shown that
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CaSRs produced hyperpolarization and vasodilation in
mesenteric artery tissues of rat and rabbit [7,8]. CaSRs is
also expressed in vascular endothelium [9] and in smooth
muscle cells [10,11]. Alam et al. suggested that CaSRs-
mediated relaxation may contribute to multiple
components within the mesenteric vasculature [12].
Bukoski and co-workers have reported that increasing
extracellular [Ca?'] within the physiological range (from
1 to 5 mM) induces relaxation in rat mesenteric arteries
and also showed that the Ca?"-induced relaxation was
independent of a functional endothelium [13]. Moreover,
Ca*"-induced

iberiotoxin and capsaicin, suggesting that Ca*" activates

relaxation was also attenuated by
CaSRs on perivascular nerves, leading to the release of
a diffusible substance which in turn activates large
conductance calcium-activated potassium (BKCa) in
vascular smooth muscle cells (VSMCs) [14].

In addition, Calhex-231 (a negative allosteric
modulator of CaSR) antagonized the effects of CaCl, and
calindol which are positive allosteric modulators of
CaSRs [15]. Also, it has been shown that stimulation of
endothelial CaSRs induces nitric oxide (NO)- and
endothelium derived hyperpolarizing factor (EDHF)-
mediated vasorelaxation in pre-contracted arteries.

Furthermore, the increase in extracellular

Ca*" concentration or  calcimimetics stimulates
endothelial CaSRs and produces NO, which causes
vasorelaxation via stimulation of BKCa channels in
VSMCs [16-20]. Hydrogen sulfide (H.S) was known as
atoxic gas in the past. For the first time, H,S was
synthesized in brain tissue of mammals, and recognized
a gaseous neurotransmitter such as NO and carbon
monoxide [21]. H2S is synthesized through cystathionine
gamma lyase (CSE), cystathionine beta synthase (CBS)
(3-MST)
enzymes in various tissues [21-23]. H,S synthesis occurs

and 3-mercaptopyruvate sulfurtransferase
in the bladder tissue and urothelium of various species,
such as mice, rats, pigs, and human, where it plays a role
in the regulation of muscle tone and is associated with
conditions including overactive bladder [24-29]. Eto and
Kimura have been shown that CBS are involved in the
regulation of its activity in the presence of Ca?" and
calmodulin in brain tissue [30].

Also, recent studies suggest that the elevation in
intracellular Ca®" increases CSE activity and H,S gene-
ration in vascular smooth muscle cells [31,32]. In
CSE-induced
H>S synthesis is enhanced by the activation of CaSRs

addition, it has been reported that

with CaCl; in vascular tissues [33]. Furthermore, Wang et

al. found that the CaSRs-induced upregulation of
CSE expression and the production of endogenous H,S
are related to the PLC-IP3 receptor and calcium-
calmodulin (CaM) signaling pathways [34]. However, it
is not known that CaSRs regulates detrusor activity by
which mechanism. Wu et al. reported that CaSRs are
expressed in the rat bladder urothelium and the activation
of these receptors reduces detrusor activity [35]. To our
knowledge, there are no studies investigating the possible
interaction between CaSRs and H»S pathway in bladder
tissue. For the first time, we investigated the role of the
L-cysteine/H,S pathway in CaSRs-mediated responses in
mouse bladder tissue. Our data first demonstrate that
there is an interaction between L-cysteine/H,S pathway
and CaSRs, and, CSE/CBS-induced endogenous H>S may
partly contribute to the relaxation responses due to
CaSRs activation in mouse bladder.

Materials and Methods

Animals

Swiss albino male mice were used in the
experiments. All experimental protocols were approved
by the Cukurova University Local Ethics Committee of
Animal Experiments (the approval  number
3/11/04.05.2023). The animals were kept under a 12 h
light/dark cycle and allowed free access to food and
water. The present study was followed by the Guide for
the Care and Use of Laboratory Animals published by the
US National Institutes of Health (Bethesda, MA, USA;
NIH Publication No. 85-23 revised 1996).

Tissue preparation

Male Swiss albino mice, weighing 20-25 g, were
used for these experiments. They were killed by stunning
and cervical dislocation. The bladder tissue was carefully
removed. Strips (0.5 mm wide and 4-5 mm long) from
the midportion of the urinary bladder with urothelium
were mounted in a (5 ml) organ bath filled with Krebs
solution (in mM: NaCl 118.1, KCl 4.7, CaCl, 2.5,
MgCl, 6H,O 1.2, KH,PO4 1.2, NaHCO; 25, glucose
11.5). The bath medium was maintained at 37 °C and
gassed with a mixture of 95 % O, and 5 % CO, at pH 7.4.
Muscle strips were allowed to equilibrate for 60 min,
during which the medium was changed every 15 min.
Changes in muscle length were recorded isometrically via
an isometric transducer (MP35).
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Experimental protocol

In this study, the interaction between CaSRs and
the first
experiments, the contribution of endogenous H»S to the

the HoS pathway was investigated. In

CaCly-induced relaxations was investigated. Firstly,
tissues were contracted with carbachol (1 uM) to assess
the viability of bladder strips. After the contractions to
carbachol were obtained, tissues were washed and
incubated for 30 min in Krebs solutions. Then, the tissues
were re-contracted with carbachol (1 uM), and after the
contractile responses were reached a plateau, bolus
CaCl; (1, 2, 3, 5 and 10 mM) was applied for relaxation
responses. To demonstrate the role of CaSRs in the
CaCl,-induced relaxations, experiments were run in the
presence of Calhex-231, a CaSRs — specific inhibitor. For
this purpose, after the contractile responses to carbachol
were obtained, tissues were washed and incubated with
5uM Calhex-231 for 30 min and then responses to
CaCl, were obtained in the same manner. Also, the
contribution of endogenous H»S to the relaxant responses
to CaCl, (1, 2, 3, 5 and 10 mM) was investigated in the
presence of propargylglycine (PAG: CSE inhibitor;
10 mM) or aminooxyacetic acid (AOAA: CBS inhibitor;
1 mM). For this purpose, the tissues were washed and
incubated with PAG (10 mM) or AOAA (1 mM) for
60 and 30 min, respectively, and then responses to
CaCl; were obtained in the same manner. Furthermore,
the contribution of CaSRs to the relaxant responses to
L-cysteine (H,S substrate) was investigated. Firstly, the
bladder tissues were contracted with carbachol (1 uM)
and relaxation responses were obtained by applying
cumulatively L-cysteine (1 uM-10 mM) to the tissues.
After the first series of relaxation responses to L-cysteine
were obtained, tissues were incubated for 30 min with
Krebs solutions and the second series of relaxations were
recorded in the same manner. In mouse bladder tissue, to
that
dependent on the endogenous H»S, the effects of CSE and

confirm L-cysteine-induced  relaxations are
CBS enzyme inhibitors on these relaxations were
investigated. For this purpose, after the first series of
L-cysteine relaxations, the tissues were incubated with
PAG (10 mM) or AOAA (1 mM) for 60 and 30 min,
respectively, and then the second series of responses to
L-cysteine were obtained in the same manner. The
involvement of CaSRs in L-cysteine-induced relaxations
was investigated in the presence of Calhex-231,
a CaSRs inhibitor. After
L-cysteine (1 pM-10mM) were obtained, tissues were
washed and incubated with 5 pM Calhex-231 for 30 min,

the relaxant responses to

and then responses to L-cysteine (1 pM-10 mM) were
obtained in the same manner.

Measurement of endogenous H>S release in mouse
bladder strips

H,S levels were measured as described in our
previous studies [29,36]. In the presence of Fe’”,
HaS reacts with color developing agent to form stable
methylene blue, and methylene blue has the maximum
absorption peak at 665nm. The H>S content can be
calculated by measuring its absorption value.
H:>S production in bladder tissue samples was determined
with a commercially available H>S colorimetric assay kit
(Elabscience Biotechnology Co., Ltd., Wuhan, China)
through the reaction between H,S and zinc acetate,
N, N-dimethyl-p-phenylenediamine, and ammonium
ferric sulfate. Protein concentration was determined by
using a bicinchoninic acid assay kit (Sigma Chemical
Co., St. Louis, MO, USA). Bladder tissues at 10 % (W/v)
concentration were homogenized in normal saline (0.9 %)
at 4°C. And then centrifuged for 10 min at 4 °C at
10000x g to

supernatant was collected. The supernatant solution was

remove insoluble material, and the
mixed with an equal volume of reagents 1 and 2. After
centrifugation, the sediment was dissolved in reagents 1,
3, and 4. The supernatant obtained after centrifugation
was mixed with reagent 5. The absorbance of solutions
was measured after 20 min at a wavelength of 665 nm
and H,S concentrations in bladder tissues, expressed as
nmol/mg protein.

Drugs

The following drugs were used; amino-oxyacetic
acid (o-carboxymethyl), dl-propargylglycine, carbachol,
L-cysteine (Sigma Chemical Co., St Louis, MO, USA),
Calhex-231 (4-Chloro-N-[(18S,2S)-2-[[(1R)-1-(1-
naphthalenyl)ethyl]amino]cyclohexyl]-benzamide
hydrochloride) (CAYMAN Chemical Company, USA)
and; CaCl, (MERCK). All drugs were dissolved in
distilled water except calhex-321, which was dissolved in
dimethyl sulphoxide (DMSO) up to 1 mM; further
dilutions were made in distilled water. DMSO per se did
not affect the tone of the strips. The final concentration of
DMSO was less then 0.001 M.

Statistical analysis

The relaxant responses to CaCl, and L-cysteine
were expressed as a percentage of the carbachol-induced
contraction. Due to CaCl, was applied to the tissues as
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asingle series, the single-series relaxations of the
inhibitor groups were compared with those in the control
group. Also, since a difference was observed between the
first and second relaxation series in the L-cysteine control
group, the relaxant responses to L-cysteine obtained in
the presence of specific inhibitors were compared to the
second series of the control group. Student unpaired
t-tests and analysis of variance (ANOVA) were used for
statistical comparison of mean values, and corrected for
multiple comparisons (Bonferroni corrections). All data
are presented as means + standard error of the mean
(SEM), and “n” refers to the number of tissues used in
each experiment. Maximum relaxant response (Emax)
was expressed as the relaxation induced by CaCl, and
L-cysteine. The sensitivities of the bladder tissues to
CaCl, and L-cysteine were calculated as the effective
concentration the elicits 50 % of the maximal response by
using nonlinear regression curve fit and expressed as
pEC50 (-Log M) (GraphPAD Software, version 5.00, San
Diego, USA). P<0.05 was considered to be statistically
significant.

Results

The role of L-cysteine/H>S pathway on CaClr-induced
relaxations

To elucidate the relaxant effect of CaCl, on
carbachol-induced contractions in mouse bladder strips,
the effects of CaCl, were studied. After a steady-state
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dependent relaxations in bladder tissues pre-contracted
with carbachol (1 uM) (Fig. 1A). To determine the

involvement of L-cysteine/H,S pathway in the relaxant

CaCl, caused concentration-

action of CaCl, in mouse bladder tissues, we investigated
the inhibitory effects of PAG (10 mM) and AOAA
(1 mM), CSE and CBS inhibitor, respectively, on
relaxations induced by CaCl, (1, 2, 3, 5 and 10 mM). Pre-
incubation of bladder strips with PAG and AOAA
significantly reduced the relaxant responses to CaCl,
(P<0.05; Fig. 1A, B, C). Emax to CaCl, were significantly
decreased by PAG and AOAA from 37.40+1.30 % to
18.87+4.37 % and 18.20+4.34 %, respectively (P<0.05).
But there was no significant difference in pEC50 values for
CaCl, between control (2.894+0.39), PAG (2.25+0.40) and
AOAA (2.72+0.37) groups.

To confirm that the relaxant effect of CaCl, is
mediated through CaSR, we examined the effect of
Calhex-231, a CaSRs
relaxations in the bladder tissues. Pre-incubation of
bladder tissues with Calhex-231 (5 uM) significantly
reduced the relaxant responses to CaCl, (P<0.05; Fig. 1A
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Fig. 1. The role of L-cysteine/H.S pathway on CaCl-induced relaxations. Representative traces CaCl-induced relaxations (A). Graph
showing that CaCl-induced relaxations in the presence of PAG (Cystathionine-gamma-lyase (CSE) inhibitor, 10 mM) (B), AOCAA
(Cystathionine beta synthase (CBS) inhibitor, 1 mM) (C), and Calhex-231 (Calcium Sensing Receptors (CaSRs) inhibitor, 5 pM) (D). All
values are mean + S.E.M. (n=6). * P<0.05 significantly different from the control; unpaired #test followed by Bonferroni's comparison test.
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The role of CaSR on L-cysteine-induced relaxations

To investigate the involvement of CaSR in
HsS
L-cysteine in bladder strips, we studied the inhibitory
effects of Calhex-231, a CaSRs-specific inhibitor, on
relaxations induced by L-cysteine. After a steady-state of
(1 uM),
L-cysteine was applied cumulatively at concentrations
from 1 pM to 10 mM. L-cysteine (1 uM-10 mM) caused
concentration-dependent relaxations in bladder strips pre-
contracted with carbachol (1 pM) (Fig. 2A).

To confirm that endogenous H,S-dependent

relaxant responses to endogenous substrate

contraction was obtained with carbachol

relaxation of L-cysteine, we studied the effect of H»S
synthesis inhibitors on L-cysteine-induce relaxations.
PAG (10 mM), a CSE inhibitor and AOAA (1 mM),
a CBS inhibitor, significantly decreased the relaxant
responses to L-cysteine (1 uM-10 mM) (P<0.05; Fig. 2A,
B and C). Also, pEC50 for L-cysteine was significantly
reduced by PAG from 3.88+0.15 to 2.99+0.15 (P<0.05).
The Emax for L-cysteine were significantly decreased by
AOAA  79.27+£5.47 % 62.06+2.43 %  (P<0.05).
However, there was no significant difference in pEC50

to

values for L-cysteine between the control (3.88+0.15) and
AOAA (3.79£0.15) groups.

To determine the involvement of CaSRs in the
relaxant action of L-cysteine/H,S in mouse bladder
tissues, we inhibitory effects of
Calhex-231 on relaxations induced by L-cysteine
(1 uM-10 mM). Pre-incubation of bladder strips with

investigated the
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Calhex-231 significantly reduced the relaxations at lower
concentrations of L-cysteine (P<0.05; Fig. 2A and 2D)
but the Emax value did not change. The pEC50 for L-
cysteine was significantly reduced by Calhex-231 from
3.8840.15 to 3.31+0.15 (P<0.05).

Effects of CaCl; and Calhex-231 on H>S generation in
mouse bladder tissue

We studied the effects of CaCl, and Calhex-231
on H,S generation. Mouse bladder tissue generated
detectable amounts of basal H>S (0.11+0.02 nmol/mg).
L-cysteine increased basal H,S generation
(0.28+0.05 nmol/mg), and CSE inhibitor PAG (10 mM)
and CBS inhibitor AOAA (1 mM) reduced the increase in
H,S  production by
0.284+0.05 nmol/mg 0.13+0.03
0.1340.02 nmol/mg respectively, suggesting that mouse

induced L-cysteine  from

to nmol/mg and
bladder tissue is capable of synthesizing H,S from
L-cysteine. Also, Calhex-231, a CaSRs-specific inhibitor,
reduced the increase in H,S production in the presence of
L-cysteine (0.07+0.02 nmol/mg). addition,
CaCl; increased basal H>S generation (0.31+0.04 nmol/mg),
and PAG, AOAA and Calhex-231 reduced the increase in
HaS production induced by CaCl, from 0.32+0.04 nmol/mg
to 0.19+0.01 nmol/mg, 0.18+0.01 nmol/mg
0.16+0.02 nmol/mg respectively, (Fig.3), suggesting an
interaction between H,S and CaSRs pathway, and the
interaction may be occur through the CSE and CBS enzyme
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Fig. 2. The role of Calcium Sensing Receptors (CaSRs) on L-cysteine-induced relaxations. Representative traces L-cysteine-induced
relaxations (A). Graph showing that L-cysteine-induced relaxations in the presence of PAG (Cystathionine-gamma-lyase (CSE) inhibitor,
10 mM) (B), AOAA (Cystathionine beta synthase (CBS) inhibitor, 1 mM) (C) and Calhex-231 (CaSR inhibitor, 5 uM) (D) in mouse
bladder strips All values are mean * S.E.M. (n=6). *P<0.05 significantly different from the control; unpaired #test followed by

Bonferroni's comparison test.
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0.8+ Fig. 3. The role of CBS, CSE and
Calcium Sensing Receptors (CaSRs)
inhibition on  endogenous  H.S
formation. The bar graph shows the
_ 0.6+ effects of L-cysteine (L-cyst; 10 mM),
£ and CaCl (10 mM) in the absence or
< ‘9'_' presence of PAG (Cystathionine-
Y . gamma-lyase (CSE) inhibitor, 10 mM),
;l, 3’04- T AOAA (Cystathionine beta synthase
=3 _*T (CBS) inhibitor, 1 mM), and Calhex-
£ 231 (CaSRs inhibitor, 5 uM), All values
£ & 5 " are mean + S.E.M. (n=4). *P<0.05
0.2+ * i = i T significantly  different from basal;
T T 1 + *P<0.05 significantly different from
L-cysteine; &P<0.05  significantly
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0.0 T T T T T T T T T followed by Bonferroni's comparison
Basal L-cyst L-cyst L-cyst Lcyst CaCl, CaCl, CaCl, CaCl, test.
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Discussion tissues [25,27,29,39]. H»S produced a concentration-

In the present study, we investigated the role of
L-cysteine/H,S pathway in CaSR-mediated responses in
mouse bladder tissue. We found that 1) CaCl, produced
relaxant responses. 2) CaCl,-induced relaxations were
inhibited by Calhex-231, a CaSR-specific inhibitor.
3) L-cysteine-induced-relaxations were inhibited by PAG
and AOAA, CSE and CBS enzyme inhibitors,
respectively. 4) PAG and AOAA reduced the relaxations
to CaCl,. 5) Calhex-231 reduced the relaxations to
L-cysteine. 6) Calhex-231 reduced the increase in H»S
production in the presence of L-cysteine. In addition,
CaCl; increased basal H»>S generation, and PAG, AOAA
and Calhex-231 reduced the increase in H,S production
stimulated with CaCl,. These findings suggest that there
is an interaction between L-cysteine/H>S pathway and
CaSRs, and CSE/CBS-induced endogenous H>S may
partly contribute to the relaxation responses due to
CaSRs activation in mouse bladder.

CaSRs, a G-protein coupled receptor, trigger
intracellular signals via the modulation of a series of
intracellular signaling proteins and modulate several
physiological functions. The presence of CaSRs has been
demonstrated in aortic endothelial cells and vascular
smooth muscle cells including human artery [7,8,37,38].
Also, it has been reported that CaSRs are expressed in rat
bladder urothelium and activation of these receptors
H»S
neurotransmitter that has a relaxing effect on vascular and
extravascular smooth muscles. H,S is synthesized
endogenously from L-cysteine via CSE, CBS and 3-MST
enzymes in mammalian tissues. It has been reported that

reduces detrusor activity [28]. is a gaseous

H,S is synthesized in mouse, rat, pig and human bladder

dependent contraction and relaxation response in isolated
bladder tissues [25,40]. In the present study, we obtained
concentration-dependent relaxation to L-cysteine in
mouse bladder. Taken together, we propose that the effect
of L-cysteine on bladder smooth muscle tone may vary
depending on the type of pre-treatment and its
concentration. It has been reported that H,S synthesis is
associated with an increase in the amount of intracellular
and CaSRs

activation increases CSE expression and H>S synthesis in

Ca?'in vascular smooth muscle cells
vascular smooth muscle [33]. However, it has not been
previously investigated the interaction between H,S and
CaSRs in bladder smooth muscle tissue. In the present
study, we investigated the role of L-cysteine/H,S
pathway in CaSRs-mediated responses in mouse bladder
tissue. For this purpose, CaCl, was applied as a bolus into
bladder tissues contracted by carbachol for CaSRs
activation, and CaCl, produced concentration-dependent
relaxations. To confirm that CaCl, relaxation is mediated
via CaSRs,
studied in the presence of Calhex-231, negative allosteric
of CaSRs or [15,41,42].
CaCl, relaxations significantly decreased in the presence

CaCl-induced relaxant responses were

modulators calcilytics
of Calhex-231, suggesting that CaCl, responses are
dependent on CaSRs activation in bladder tissue. In
consistent with our findings, it has been reported that
CaClr-induced relaxant responses were significantly
reduced in the presence of Calhex-231 in rat and rabbit
mesenteric artery tissues, suggesting that CaSRs mediate
CaCl, relaxations [8,14,17]. In our study, we aimed to
investigate the role of endogenous H,S in CaSRs-
mediated relaxations, we studied the effects of PAG and
AOAA, CSE and CBS enzyme inhibitor, respectively, on
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CaClz-induced PAG and
AOAA caused a significant decrease in CaCl, relaxation

relaxant  responses.
responses. This finding functionally suggests that CaCl,-
mediated relaxations may partly dependent on CSE/CBS-
induced endogenous H,S formation. Consistent with this,
we observed that CaCl, enhanced basal H,S formation,
and PAG, AOAA and Calhex-231 markedly reduced the
augmentation in H»S production in the presence of CaCl,,
indicating that the interaction between CaSRs and
L-cysteine/H>S pathway mainly occurs through the CSE
and CBS enzymes in the mouse bladder tissues. Also, it
has been reported that CSE-induced H,S synthesis
increases by CaSRs activation with CaCl, in VSMCs [33].
Furthermore, there may be a two-way interaction
between CaSRs and H,S, such as CaCl, increasing
H,S production through CSE/CBS enzyme activation and

H,S causing relaxation by activating CaSRs.
Consequently, we studied the role of CaSRs in relaxant
responses to L-cysteine/H,S in bladder tissues.

L-cysteine, H,S substrate, caused a concentration-
dependent relaxation response on carbachol-constricted
isolated mouse bladder tissues. In the present study,
inhibition of L-cysteine-induced relaxation responses in
the presence of PAG and AOAA confirms that these
relaxations are caused by endogenous H>S. Also, these
findings functionally demonstrate the role of CSE and
CBS enzymes in endogenous H»S synthesis in mouse
bladder tissue. Similar to our findings, Fusco et al.
showed that

significantly reduced in the presence of PAG and AOAA

L-cysteine-induced relaxations were
in isolated human bladder tissue [27]. Also, expressions
of CSE, CBS, and 3-MST enzymes and L-cysteine-
mediated H»>S production were shown in mouse, rat,
guinea  pig, and  human  bladder tissues
[24-26,39,43]. Consistent with studies, we recently
reported the presence of endogenous H,S-generating
enzymes in mouse bladder tissue [29]. To determine the
possible contribution of CaSRs to endogenous H,S
the effect of Calhex-231 on

L-cysteine-induced relaxant responses were investigated.

relaxation responses,

In the presence of Calhex-231, a significant decrease in
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Also,
responses

the mechanism of CaSRs-mediated relaxant
in part, CSE and
CBS-generated H>S in mouse bladder. There may be
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CaCl, increasing H>S production
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