VARIANCE OF PERIODIC MEASURE OF BOUNDED SET
WITH RANDOM POSITION

JIRI JANACEK

ABsTrACT. The principal term in the asymptotic expansion of the variance of
the periodic measure of ball in R? under uniform random shift is proportional
to the (d+ 1)st power of the grid scaling factor. This result remains valid
for a bounded set in R? with sufficiently smooth isotropic covariogram under
an uniform random shift and an isotropic rotation, and the asymptotic term
is proportional also to a (d — 1)-dimensional measure of the object boundary.
The related coefficients are calculated for various periodic grids constructed
from affine sets.

1. INTRODUCTION

The area of a planar figure can be estimated by superposing randomly rotated
and shifted grid of regularly spaced dots on the image, counting the dots inside
the figure and multiplying the number of dots by the grid point specific area. The
number of object intersecting grid points is an example of a 2-periodic measure in
R? . Similarly the volume of bounded objects in Euclidean space of an arbitrary
dimension can be estimated using any d-periodic measure. The situation can be
reversed, namely the grid is fixed and the object moves. The variance of measure
of a bounded object shifted and rotated at random can be used to calculate the
estimator variance.

The variance of the d-periodic measure of random ball will be calculated and
it will be proved, that the conclusion concerning the asymptotic behaviour of the
variance of the periodic measure remains valid also for bounded sets with sufficiently
smooth isotropic covariograms. The principal term in its asymptotic expansion is
proportional to the surface measure of the set with a coefficient depending on
the grid. The coefficients of various grids of points, lines or hypersurfaces can be
calculated using multidimensional zeta functions.

2. DEFINITIONS AND RESULTS ON BALL

Definition 2.1. Let T be a discrete subgroup of translations in the d-dimensional
Euclidean space R%. T can be defined by the regular matrix A € R¥*? as T (A4) =
AZ? where Z? is set of all points in R? with integral co-ordinates. T has the
fundamental region Fr = A0, 1) of volume A? (Fr) = det A, where A? is the
Lebesgue measure; hence the spatial intensity of T is o = (det A)_l.

The group dual to the group T (A) is T* =T (A71).

A T-periodic measure g in R? is a non-negative Borel o-finite measure such
that p (K + ) is a T-periodic function of = for any measurable set K C R?. The
intensity of uis A = ap (Fr).
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The Fourier coefficient of a T-periodic measure p with index £ € T is
(2.1) fie=a [ exp(~2ming)du (o).
Fr

where « is the intensity of T.

Fourier transform of a function f € L! (Rd) is

(2.2) Fe) = / (@) exp (~2mia) dX* (v).

If f is moreover spherically symmetric then 741 f (r) € L! (R*) and Fourier
transform of f can be expressed as the Haenkel transform

o~

(2.3) Fioy=2mpt4 [ rhay mpr £ (1) ar
0
where Ja_, is the Bessel function of the first kind.

Notation 2.2. The symbols E and Var denote the expected value and the variance,
respectively. The convolution of a o-finite Borel measure p on R¢ with a function
fell (R‘i) with a bounded support is

(2.4) frup(z)= » [z —y)du(y).

Theorem 2.3. Let pu be a T-periodic measure and let K be a bounded measurable
set in RY. Then

(2.5) E (Ix *p) = / (I * p) ad)\? = \\4 (K) ,
Fr
and
£#£0 .
@6)  Var(lcxw = [ (Tcxn= BT adx! = Y (el [T )]
FT £ET*

where o is the spatial density of T and X is the intensity of 1.

Proof. Equality (2.5) can be proved by standard aguments. We have from (2.4)
and periodicity of p

/ / I (z —y)dp (y) ad\? (x / / ZIK+Z x —y)dp (y) ad\? ().
Fr JRd Fr JFr

zeT
By changing the integration order using Fubini theorem we get

a/ / > I (@ —y)dA (x) dp(y) = au(FT)/ Igd\d = M\ (K).
FrJFr er R4

Equality (2.6) follows from the Parseval theorem, because I x pu € L? (Fr) and
the functions exp (—2wiz€), ¢ € T*, form an orthonormal base in L? (FT, ou\‘i). (|

Definition 2.4. Covariogram of a bounded measurable set K is the function yx =
2

I xI_g. Tt follows from the properties of Fourier transforms that g = ’f;;
is a nonnegative function. The isotropic covariogram is Jx (|u|) = Envymk ()
where M K is the set K rotated by M € SO, and the mean Ej; is calculated by
integration using the invariant probabilistic measure on SOy, the group of rotations
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in R an equivalent definition is Jx (v) = E, juj=»7x (u). The Haenkel transform

o~

of the isotropic covariogram is Jx.

Remark 2.5. It follows from the definition that vk is bounded and, as Y% > 0, the
function 7% is integrable in R%(see [3] Theorem 9.). Further, pd717QK (p) > 0is
integrable in R™ by Fubini theorem. v is then the inverse Fourier transform 2.2 of
7% ([3] Theorem 8.) and 7% is the (inverse) Haenkel transform 2.3 of 7 (p). By the
variance decomposition Lemma [9] (the variance is the variance of the conditional
mean plus the mean of conditional variance) we have from (2.6)

§#0

Eneso, Var (Ink * p) = Z e |* ¥ (€1)
€T

as the variance of the conditional mean is zero here.

The variance of the estimate of volume of the ball by a periodic measure can be
calculated using Bessel functions of the first kind. D. G. Kendall and R. A. Rankin
in [5], [6] used this approach to study the variance of the area estimate of ovals in
plane and of volume estimate of ball by point grids in an arbitrary dimension. A
straightforward generalization of their results to periodic measures is given in what
follows.

(27) Rd =

is the volume of the unit ball B, (1) in R%.

Lemma 2.6. The Fourier transform of the characteristic function of the ball By (R)
with diameter R > 0 in R? is

d
2

o€ = (i) 4 CaRleD.

where J, is the Bessel function of the first kind. For (R|¢]) — +00

2 1 R4-!

o) (6) = oz (14 cos (47 Rl = (@+1) T ) +0(1) .

2

Proof. The first equation follows from the Poisson integral [13] 3.3(3)

)y e,

/|I<T exp (2miz€) d\¢ (z) = (é

The second equation follows from the first one and from the asymptotic ex-
pansion of Bessel function of the first kind for z — oo [13] 7.21(1): J,(2) =

\/gcos(z—W)ﬁ—O(z’%). 0

Now we can proceed to the asymptotic expansion of the variance of the volume
estimator using homothetic image of the periodic measure with scale factor u —
0+. The following notation is introduced to simplify the statements of the related
theorems.
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Notation 2.7. Let p be a T-periodic measure in R%, u € RT, K C R? measurable.
Then the u-scaled measure i, (K) = u?p (u™'K) is uT-periodic.

Theorem 2.8. Let u be a T-periodic measure, u € RY. Then
(2.8) E (I, (r) * ttu) = MeaR?,

d
Var (I, (n) * i) = Si2q lliel* (2 ) 72 (2mRutf¢) =
d—1 0 Tie 12 _
= B (S (i) @ (Ru=) e,
where © defined by the above equality fulfills
limg oo = [ @ (2) dz =1, 0< ®, limsup, ., P (z) < 2.

Proof. Tt follows from Theorem 2.3 and Lemma 2.6. See also [6] O

(2.9)

Notation 2.9. Equality (2.9) can be expressed using the surface measure of the ball,
H%=' (8B4 (R)), and the constant C},

Var (I, () * fu) = C,YHd_1 (0Bq (R)) ® (Ru™t) udtt,
OV = Ly, |l
1T 2Pdrg LeEETH |g[dFT
Matérn studied in [7] numerically the variance of estimate of various figures in
plane by grids of points or lines and proposed the validity of the above formula
for a large class of figures. Matheron formulated in his transitive theory [8] as-
ymptotic results for orthogonal point grids in an arbitrary dimension and found an
approximation of the relevant coefficients. The rest of the article is devoted to the

generalization of (2.10) for some other bounded objects and to the calculation of
the coeflicients C/Y for various grids.

(2.10)

3. ASYMPTOTIC EXPANSION OF VARIANCE OF PERIODIC MEASURE OF
RANDOMLY PLACED BOUNDED SET

Definition 3.1. A function f is in BV* (R1), s > 0, iff there is a finite signed
measure ¢ on R* such that f is a fractional integral of the Weyl type:

o) =iy [ W de)

for x € RT, ie. iff f(®) the (generalized) derivative of the order s, has a bounded
variation. A function is in BV (R*) iff it is in BV*® (R") and has a bounded
support.

Remark 3.2. a) s > 1: fisin BV®(RT) iff f’ is in BV*~1 (RT). b) The covari-
dt1
ogram of the ball is in BV.? (RT).

Proof. a) follows from the differentiation of ﬁ [.° (y — 2)* do (y) under the in-

d—1 _ _

tegral. b) ¥5' (r) = ka1 (1—12) 7 = f(r)(1—7) =, where f = g1 (147)F
— d—1

is smooth in RT and (1 — )% isin BV.? (R). O

Lemma 3.3. Ifﬁ>a—% and o +v >0, then for x — 400

b -1 _ 27T (5(a+v))
/0 et (1 — )77V g, (at) dt = Tt )

" %4+o0 (:13_0‘) .
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Proof. From
1 T
B-1
xa/ =1 (1= )71 g, (at) dt = / yol (1 - g) J, (y) dy
0 0 33

by integration per partes using [ 2¥J,_1 (z) dz = 2¥J, () and taking into account
Weber integral [13] 13.24(1)

* o 207 (5 (u+v)
/ v, (y) dy = . )
0 F(1—3(u—"r)
with 4 < 2 and p+ v > 0. See also [11] 10.86 . O

Notation 3.4. Var (u,, K) is the variance of the periodic measure p,, of a uniformly
randomly shifted and isotropically rotated set K.

Remark 3.5. If K is a bounded full-dimensional locally finite union of sets of finite
reach (eg. polyhedron, set with piecewise C? smooth boundary or finite union of
full-dimensional convex sets), then —7z'* (0) = =L H~! (9K) [10].

Theorem 3.6. Let 1 be a T-periodic measure, u € RT, K a bounded measurable
set such that finite y'" (0) exists and ® a function on RT defined by equation

AR (0) (el
Var (p,, K) = ————= Z ' ® (ut) uttt,

d
2m2Kq_4 der [€] +
Then v
i) if Y is in BV.? (RT) then
1 xT
(3.1) lim f/ O (z) dx =1,
z—00 T J
i) if Y is in BVC (R"’) then
(3.2) lim @ (x)=1.
Proof. By 2.5 we have
§#0 )~
Var (j, K) = Eyeso, Var (Inx + ) = Y |ie]” 7 (u™' [€]) -
£eT

We shall prove first that the auxiliary function ¥ defined by the equation
A (0) W (2) = 272 kg1 R (2)
has the property (3.1) or (3.2). Tt is easy to see that the function

0
ZEZT* ce¥([¢|2) _ el
popia N N N

O (z) =

has then the same property too.

ad i) Let 7, be in BV (R*). Then Remark 2.5 and the change of integration
order yield
IR =

o

1 (7 o 4
= lim K (1) = / 47T3/$d,1p%+2r%17471 (2mrp) dpdr
R—oo [ R 0 2
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and the subsequent integration by parts followed by [a"J,_1 (z)dx = 2" J, ()
gives

d4q 4
r2

1?1111(1)0 ; & ( R/ 2m2kg_1p2 T r2Jg (27rp) dpdr =

:Rh_r}noo ; —'yK (r)mﬁd,lRM'z J%+1 (27rR) dr

dt1
From the assumption that Fx is in BV.? (R™) follows the existence of a signed

. — -1 roo d—1
measure ¢ with bounded support such that 7' (r) =T (&) [ (t—r) 2 do (t)
and by changing the integration order we obtain

d+1 -t . a [ d-1l d_4
—mkg—1T —5 lim R2/ /(t—r) Zr2 ey (2mrR)drdo ().

Finally, the substitution r = ty and Lemma 3.3 give
d+1\"" % a4
F( =N > / 15 do (1) = =7 (0).
0

d+3
ad ii) Let ¥ be in BV.? (R'1). Remark 2.5 and the change of the integration
order yield

lim 27%k4_1 R7T'9% (R) =

R—o0

= Rlim Vi (7) 4W3nd,1R%+2r%J%71 (2mrR) dr
By integration by parts and using [ "J,_1 (z) dz = 2" J, (z) we get

. d
lim 7% (1) 2m2kg_ 1 R2 Tl
R—o0 0

d
2

Ja (27rR) dr

vl

From the assumption that 7, is in BV (R*) follows the ex1stence of 2 81gned

measure o with bounded support such that 75’ (r) =T (%) [ — r) o (t (t)
and by changing the integration order we obtain

-1 e} t
22k T <M> lim R%“/ / (t—1)F r8J, (20rR) drdo (t) .
2 R—oo 0 0 2

Finally, by substitution r = ty and using Lemma 3.3 we get

1 %)
=T (d;?’) / £ do (1) = =& (0).
0

Corollary 3.7. From Theorem 3.6 and Remark 3.5 it follows that
Var (p,, K) = C’/YHd_1 (OK)® (u™') utt?

with coefficients CY defined in (2.10) and ® fulfills either (3.1) or (3.2) according
to the reqularity of isotropic covariogram of K.



VARIANCE OF PERIODIC MEASURE OF BOUNDED SET WITH RANDOM POSITION 7

4. EvALUATION OF COEFFICIENTS OF GRIDS OF AFFINE SETS

If p is the counting measure on d—periodic grid of points AZ? the coefficients
C)/ introduced in Notation 2.9 and Corollary 3.7,

1 iy d—
—d-1
cy = A7!
® 27T2dl<cd Z } ’
Zd
can be calculated using Epstein zeta functlon

n#0
=3 At
nezd
Only grids of intensity a = 1 will be studied as it makes possible a straightfor-
ward comparison of the efficiency of the related volume estimators and the results
for general grids can be obtained by scaling.
For hypercubic grids of points in R? A = I;, where I, is the identity matrix. For
(self-dual) triangular grid of points in R?
A=Ay = V2 ( 20 ) .
/3 1
Face centered cubic grid and body centered cubic grid of points in R3 are mutu-
ally dual with matrices A = D3 and A = D3, respectively:

0 1 1 -1 41 +1
D3 =% 1 01 |,D5=51 +1 -1 +1
2 ’ 34
v 1 10 v +1 +1 -1
The lattices of the closest packings of spheres in dimensions d = 4, 8,24 are Dy,

ES, A24 [12]
Using the Mellin transform and the Poisson summation

Z exp —m |A_1n}2t = det At~ 2 Z exp —m |An|* t =
nezd nezd

we obtain the Riemann expansion

s

D)8z (At s) = 2ed 2 L5 (5 fatnf) (m|atnf?) T4
+det AYZ0,T <d5577r|14n|2> (W|An‘2> 22d |

where T (a, ) f t~le~tdt is an incomplete gamma function. The function

Z (A1) can be evaluated with the precision of the order of =™ by summing
all terms with [An| < L, |A=*n| < L [3].

Various identities valid between special Epstein zeta functions, the Riemann zeta
function ¢ and Dirichlet function L,

C(s)= Z:Lozl n=,  Ly(s)= ZZO:O (pln)n=*
(where (p|n) is Kronecker symbol from number theory) can also be used for calcu-
lation of the Epstein zeta functions:

Z (I, 8) =4C (3) L-a (3) [5],
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2)27% — 1) from theta function in [12],
=16 (5) L-a (5 —2) —4C (5 —2) L (5) 2],
1 21 ¢(3)¢ (5 -3) 21
from theta function in [12],
(21, 9) = g% (1275 25 C(3)¢ (5 1) +
428 (259 + 745 - 2473 + 259 - 2127) g5y (5) [2],
(Aog, s) = 65520 (C (7) ¢ (7 - 11) goa ( )) from theta function in [12], where

691 2
g2a (t) = 3.2, 7(n)n~" is Ramanujan - Dirichlet function and > ;7 (n)¢" =

qlle, (1— qi)24 . Unfortunately, no similar relation is known for any three-dimensional

Grids of parallel affine sets of the dimension k can be calculated using the zeta
functions of point grids in the dimension d — k.

The coefficients of grids of parallel lines in R? intersecting a perpendicular plane
in a square or a triangular grid of points are calculated from the zeta functions
Z (I2,4) or Z (As,4), respectively.

For grids of parallel hyper-surfaces in R? the Z (I;,d + 1) = 2¢ (d + 1) where
C (s) is the Riemann zeta function.

Fourier coefficients of shifted grids and combinations of grids can be obtained by
linear operations with the Fourier coefficients of the grids.

Let the multiple grids of lines in R® be expressed parametrically as T; = o; +
fvi+gh;,+ad;, :=0...n, f and g are integers, « is real and o;, v;, h;, d; are
vectors from R3.

The grid of unit density with square cross-section in R3 [4] is composed of three
orthogonal sets of parallel lines, d; = e;, i = 1,2,3, vi = V3es, vo = v = V/3ey,
h; = hy = V3ey, hy = /3es, the sum in 2.10 is 37 (I, 4) + 12¢ (4) for self-

intersecting grid o; = 0, i = 1.3 and 3Z (I,4) — 2}((4) for grid optimized by
mutually shifting the collections 01 = 0, 02 = feg, 03 = ‘f (e1 + eq).

For a quadruple of sets of parallel lines with trlangular cross-section and di-
rections of diagonals of the cube d; = e; +e; +e3, do = e; + e —e3, d3 =
e} — ez + e3, d4 — ey —ex —e3, V; = 24\/§62, hz = 24\/563, 1= 1,2,3,4, the
sum in 2.10 is 47 (Ag,4) + 18¢ (4) for self-intersecting grid o; = 0, i = 1,2,3,4,
and 47 (Az,4) — % (4) for optimized grid o; = *v/3 (e1 + €2), 02 = *V/3 (e1 + e3),
03 = O, 04 = 4\/3(62 + eg).

The values of the constant CL/ for various grids with unit spatial density of the
corresponding Hausdorff measure are in tables 1 and 2, where d is the dimension of
embedding space and k is the dimension of the affine sets. The values of Z (A_l7 s)
were calculated by 4.1 and from the above identities for Zeta functions. The pro-
cedure 4.1 could be applied for lattices up to Ig, the values of Z (Es,9), Z (I24,25),
Z (Aa4,25) were evaluated from the identities only. The triangular grid and the
body centered cubic grid have the smallest observed coefficients of grids of points
in d = 2,3 and are the duals to the grids of the closest sphere packings. As such a
relation may be more general, the coeflicients of duals of the closest sphere packings
in d = 4,8, 24 were also evaluated.



VARIANCE OF PERIODIC MEASURE OF BOUNDED SET WITH RANDOM POSITION 9

[d]k] Grid o
110 I 0.083333333
210 square Iy 0.072837040
210 triangular Ag 0.071701169
2|1 parallel lines I 0.019384090
310 cubic I3 0.066649070
310 body centered cubic D3 0.064350404
310 face centered cubic D3 0.064389706
3|1 parallel lines, I cross-section 0.024296742
301 parallel lines, Ay cross-section 0.023315276
3|1 lines, I» cross-section, triple 0.125250104
3|1 lines, I> cross-section, optimal triple 0.027075333
3|1 lines, Ay cross-section, quadruple 0.171800922
3 | 1 | lines, Ay cross-section, optimal quadruple | 0.024538766
3|2 parallel planes 0.008726646

Table 1. Coefficients of grids of affine sets of dimension k in R¢, d < 3.

d | Grid | cy |
4 | I, |0.062959415
4 | D4 |0.058670401
5 | Is [0.061045829
6 | Is |0.060656899
7
8
8

17 | 0.061828449
Iz | 0.064852630
Eg | 0.045596961
24| Iy | 52.76720063
24 | Aos | 0.028950578

Table 2. Coefficients of grids of points in R.

5. CONCLUSIONS

The asymptotic expansion of the variance of the estimators of volume of bounded
objects (Corollary 3.7) have been used for a long time in stereological studies. Sup-
posing some smoothness of the covariograms of the objects, the expansion follows
from integral geometric identities. Such smoothness is proved for balls and can be
conjectured for bounded objects with smooth boundary. The coefficients of periodic
grids of affine sets can be calculated using multidimensional zeta function.
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