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Abstract. The principal term in the asymptotic expansion of the variance of
the periodic measure of ball in Rd under uniform random shift is proportional
to the (d + 1)st power of the grid scaling factor. This result remains valid
for a bounded set in Rd with su�ciently smooth isotropic covariogram under
an uniform random shift and an isotropic rotation, and the asymptotic term
is proportional also to a (d− 1)-dimensional measure of the object boundary.
The related coe�cients are calculated for various periodic grids constructed
from a�ne sets.

1. Introduction
The area of a planar �gure can be estimated by superposing randomly rotated

and shifted grid of regularly spaced dots on the image, counting the dots inside
the �gure and multiplying the number of dots by the grid point speci�c area. The
number of object intersecting grid points is an example of a 2-periodic measure in
R2 . Similarly the volume of bounded objects in Euclidean space of an arbitrary
dimension can be estimated using any d -periodic measure. The situation can be
reversed, namely the grid is �xed and the object moves. The variance of measure
of a bounded object shifted and rotated at random can be used to calculate the
estimator variance.

The variance of the d -periodic measure of random ball will be calculated and
it will be proved, that the conclusion concerning the asymptotic behaviour of the
variance of the periodic measure remains valid also for bounded sets with su�ciently
smooth isotropic covariograms. The principal term in its asymptotic expansion is
proportional to the surface measure of the set with a coe�cient depending on
the grid. The coe�cients of various grids of points, lines or hypersurfaces can be
calculated using multidimensional zeta functions.

2. Definitions and Results on Ball
De�nition 2.1. Let T be a discrete subgroup of translations in the d-dimensional
Euclidean space Rd. T can be de�ned by the regular matrix A ∈ Rd×d as T (A) =
AZd, where Zd is set of all points in Rd with integral co-ordinates. T has the
fundamental region FT = A [0, 1)d of volume λd (FT) = det A, where λd is the
Lebesgue measure; hence the spatial intensity of T is α = (det A)−1.

The group dual to the group T (A) is T∗ = T
(
A−1

)
.

A T-periodic measure µ in Rd is a non-negative Borel σ-�nite measure such
that µ (K + x) is a T-periodic function of x for any measurable set K ⊆ Rd. The
intensity of µ is λ = αµ (FT).

Key words and phrases. periodic measure, variance.
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The Fourier coe�cient of a T-periodic measure µ with index ξ ∈ T∗ is

(2.1) µ̃ξ = α

∫

FT

exp (−2πixξ) dµ (x) ,

where α is the intensity of T.
Fourier transform of a function f ∈ L1

(
Rd

)
is

(2.2) f̂ (ξ) =
∫

Rd

f (x) exp (−2πixξ) dλd (x) .

If f is moreover spherically symmetric then rd−1f (r) ∈ L1 (R+) and Fourier
transform of f can be expressed as the Haenkel transform

(2.3) f̂ (ρ) = 2πρ1− d
2

∫ ∞

0

r
d
2 J d

2−1 (2πρr) f (r) dr,

where J d
2−1 is the Bessel function of the �rst kind.

Notation 2.2. The symbols E and Var denote the expected value and the variance,
respectively. The convolution of a σ-�nite Borel measure µ on Rd with a function
f ∈ L1

(
Rd

)
with a bounded support is

(2.4) f ? µ (x) =
∫

Rd

f (x− y) dµ (y) .

Theorem 2.3. Let µ be a T-periodic measure and let K be a bounded measurable
set in Rd. Then

(2.5) E (IK ? µ) ≡
∫

FT

(IK ? µ) αdλd = λλd (K) ,

and

(2.6) Var (IK ? µ) ≡
∫

FT

(IK ? µ−E (IK ? µ))2 αdλd =
ξ 6=0∑

ξ∈T∗
|µ̃ξ|2

∣∣∣ÎK (ξ)
∣∣∣
2

,

where α is the spatial density of T and λ is the intensity of µ.
Proof. Equality (2.5) can be proved by standard aguments. We have from (2.4)
and periodicity of µ∫

FT

∫

Rd

IK (x− y) dµ (y) αdλd (x) =
∫

FT

∫

FT

∑

z∈T

IK+z (x− y) dµ (y)αdλd (x) .

By changing the integration order using Fubini theorem we get

α

∫

FT

∫

FT

∑

z∈T

IK+z (x− y) dλd (x) dµ (y) = αµ (FT)
∫

Rd

IKdλd = λλd (K) .

Equality (2.6) follows from the Parseval theorem, because IK ? µ ∈ L2 (FT) and
the functions exp (−2πixξ), ξ ∈ T∗, form an orthonormal base in L2

(
FT, αλd

)
. ¤

De�nition 2.4. Covariogram of a bounded measurable set K is the function γK =

IK ? I−K . It follows from the properties of Fourier transforms that γ̂K =
∣∣∣ÎK

∣∣∣
2

is a nonnegative function. The isotropic covariogram is γK (|u|) = EMγMK (u)
where MK is the set K rotated by M ∈ SOd and the mean EM is calculated by
integration using the invariant probabilistic measure on SOd, the group of rotations
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in Rd; an equivalent de�nition is γK (υ) = Eu,|u|=υγK (u). The Haenkel transform
of the isotropic covariogram is γ̂K .

Remark 2.5. It follows from the de�nition that γK is bounded and, as γ̂K ≥ 0, the
function γ̂K is integrable in Rd(see [3] Theorem 9.). Further, ρd−1γ̂K (ρ) ≥ 0 is
integrable in R+ by Fubini theorem. γK is then the inverse Fourier transform 2.2 of
γ̂K ([3] Theorem 8.) and γK is the (inverse) Haenkel transform 2.3 of γ̂K (ρ). By the
variance decomposition Lemma [9] (the variance is the variance of the conditional
mean plus the mean of conditional variance) we have from (2.6)

EM∈SOd
Var (IMK ? µ) =

ξ 6=0∑

ξ∈T∗
|µ̃ξ|2 γ̂K (|ξ|)

as the variance of the conditional mean is zero here.

The variance of the estimate of volume of the ball by a periodic measure can be
calculated using Bessel functions of the �rst kind. D. G. Kendall and R. A. Rankin
in [5], [6] used this approach to study the variance of the area estimate of ovals in
plane and of volume estimate of ball by point grids in an arbitrary dimension. A
straightforward generalization of their results to periodic measures is given in what
follows.

(2.7) κd =
π

d
2

Γ
(

d
2 + 1

)

is the volume of the unit ball Bd (1) in Rd.

Lemma 2.6. The Fourier transform of the characteristic function of the ball Bd (R)
with diameter R > 0 in Rd is

ÎBd(R) (ξ) =
(

R

|ξ|
) d

2

J d
2

(2πR |ξ|) ,

where Jν is the Bessel function of the �rst kind. For (R |ξ|) → +∞

ÎBd(R)

2
(ξ) =

1
2π2

Rd−1

|ξ|d+1

(
1 + cos

(
4πR |ξ| − (d + 1)

π

2

)
+ o (1)

)
.

Proof. The �rst equation follows from the Poisson integral [13] 3.3(3)
∫

|x|<r

exp (2πixξ) dλd (x) =
(

r

|ξ|
) d

2

J d
2

(2πr |ξ|) .

The second equation follows from the �rst one and from the asymptotic ex-
pansion of Bessel function of the �rst kind for z → ∞ [13] 7.21(1): Jν (z) =√

2
πz cos

(
z − (2ν+1)π

4

)
+ O

(
z−

3
2

)
. ¤

Now we can proceed to the asymptotic expansion of the variance of the volume
estimator using homothetic image of the periodic measure with scale factor u →
0+. The following notation is introduced to simplify the statements of the related
theorems.
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Notation 2.7. Let µ be a T-periodic measure in Rd, u ∈ R+, K ⊆ Rd measurable.
Then the u-scaled measure µu (K) = udµ

(
u−1K

)
is uT-periodic.

Theorem 2.8. Let µ be a T-periodic measure, u ∈ R+. Then
(2.8) E

(
IBd(R) ? µu

)
= λκdR

d,

(2.9)
Var

(
IBd(R) ? µu

)
=

∑ξ 6=0
ξ∈T∗ |µ̃ξ|2

(
R

u−1|ξ|
)d

J2
d
2

(
2πRu−1 |ξ|) =

= Rd−1

2π2

(∑ξ 6=0
ξ∈T∗

|µ̃ξ|2
|ξ|d+1

)
Φ

(
Ru−1

)
ud+1,

where Φ de�ned by the above equality ful�lls
limx→∞ 1

x

∫ x

0
Φ(x) dx = 1, 0 ≤ Φ, lim supx→∞ Φ(x) ≤ 2.

Proof. It follows from Theorem 2.3 and Lemma 2.6. See also [6] ¤
Notation 2.9. Equality (2.9) can be expressed using the surface measure of the ball,
Hd−1 (∂Bd (R)), and the constant CV

µ

(2.10)
Var

(
IBd(R) ? µu

)
= CV

µ Hd−1 (∂Bd (R))Φ
(
Ru−1

)
ud+1,

CV
µ = 1

2π2dκd

∑ξ 6=0
ξ∈T∗

|µ̃ξ|2
|ξ|d+1 .

Matérn studied in [7] numerically the variance of estimate of various �gures in
plane by grids of points or lines and proposed the validity of the above formula
for a large class of �gures. Matheron formulated in his transitive theory [8] as-
ymptotic results for orthogonal point grids in an arbitrary dimension and found an
approximation of the relevant coe�cients. The rest of the article is devoted to the
generalization of (2.10) for some other bounded objects and to the calculation of
the coe�cients CV

µ for various grids.

3. Asymptotic Expansion of Variance of Periodic Measure of
Randomly Placed Bounded Set

De�nition 3.1. A function f is in BVs (R+), s ≥ 0, i� there is a �nite signed
measure σ on R+ such that f is a fractional integral of the Weyl type:

f (x) =
1

Γ (s + 1)

∫ ∞

x

(y − x)s
dσ (y)

for x ∈ R+, i.e. i� f (s), the (generalized) derivative of the order s, has a bounded
variation. A function is in BVs

c (R+) i� it is in BVs (R+) and has a bounded
support.
Remark 3.2. a) s ≥ 1 : f is in BVs (R+) i� f ′ is in BVs−1 (R+). b) The covari-
ogram of the ball is in BV

d+1
2

c (R+).
Proof. a) follows from the di�erentiation of 1

Γ(s+1)

∫∞
x

(y − x)s
dσ (y) under the in-

tegral. b) γB
′ (r) = κd−1

(
1− r2

) d−1
2 = f (r) (1− r)

d−1
2 , where f = κd−1 (1 + r)

d−1
2

is smooth in R+ and (1− r)
d−1
2 is in BV

d−1
2

c (R+). ¤
Lemma 3.3. If β > α− 1

2 and α + ν > 0, then for x → +∞
∫ 1

0

tα−1 (1− t)β−1
Jν (xt) dt =

2α−1Γ
(

1
2 (α + ν)

)

Γ
(
1− 1

2 (α− ν)
) x−α + o

(
x−α

)
.
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Proof. From

xα

∫ 1

0

tα−1 (1− t)β−1
Jν (xt) dt =

∫ x

0

yα−1
(
1− y

x

)β−1

Jν (y) dy

by integration per partes using
∫

xνJν−1 (x) dx = xνJν (x) and taking into account
Weber integral [13] 13.24(1)

∫ ∞

0

yµ−1Jν (y) dy =
2µ−1Γ

(
1
2 (µ + ν)

)

Γ
(
1− 1

2 (µ− ν)
)

with µ < 3
2 and µ + ν > 0. See also [11] 10.86 . ¤

Notation 3.4. Var (µu,K) is the variance of the periodic measure µu of a uniformly
randomly shifted and isotropically rotated set K.
Remark 3.5. If K is a bounded full-dimensional locally �nite union of sets of �nite
reach (eg. polyhedron, set with piecewise C2 smooth boundary or �nite union of
full-dimensional convex sets), then −γK

′+ (0) = κd−1
dκd

Hd−1 (∂K) [10].

Theorem 3.6. Let µ be a T-periodic measure, u ∈ R+, K a bounded measurable
set such that �nite γK

′+ (0) exists and Φ a function on R+ de�ned by equation

Var (µu,K) =
−γK

′+ (0)
2π2κd−1




ξ 6=0∑

ξ∈T∗

|µ̃ξ|2
|ξ|d+1


 Φ

(
u−1

)
ud+1.

Then
i) if γK is in BV

d+1
2

c (R+) then

(3.1) lim
x→∞

1
x

∫ x

0

Φ(x) dx = 1,

ii) if γK is in BV
d+3
2

c (R+) then
(3.2) lim

x→∞
Φ (x) = 1.

Proof. By 2.5 we have

Var (µu, K) = EM∈SOd
Var (IMK ? µu) =

ξ 6=0∑

ξ∈T∗
|µ̃ξ|2 γ̂K

(
u−1 |ξ|) .

We shall prove �rst that the auxiliary function Ψ de�ned by the equation
−γK

′+ (0)Ψ (x) = 2π2κd−1x
d+1γ̂K (x)

has the property (3.1) or (3.2). It is easy to see that the function

Φ(x) =
∑ξ 6=0

ξ∈T∗ cξΨ(|ξ|x)
∑ξ 6=0

ξ∈T∗ cξ
, cξ = |µ̃ξ|2

|ξ|d+1 ,

has then the same property too.
ad i) Let γK be in BV

d+1
2

c (R+). Then Remark 2.5 and the change of integration
order yield

lim
R→∞

1
R

∫ R

0

2π2κd−1ρ
d+1γ̂K (ρ) dρ =

= lim
R→∞

∫ ∞

0

γK (r)
1
R

∫ R

0

4π3κd−1ρ
d
2 +2r

d
2 J d

2−1 (2πrρ) dρdr
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and the subsequent integration by parts followed by
∫

xνJν−1 (x) dx = xνJν (x)
gives

lim
R→∞

∫ ∞

0

−γK
′ (r)

1
R

∫ R

0

2π2κd−1ρ
d
2 +1r

d
2 J d

2
(2πrρ) dρdr =

= lim
R→∞

∫ ∞

0

−γK
′ (r) πκd−1R

d
2 r

d
2−1J d

2 +1 (2πrR) dr.

From the assumption that γK is in BV
d+1
2

c (R+) follows the existence of a signed
measure σ with bounded support such that γK

′ (r) = Γ
(

d+1
2

)−1 ∫∞
r

(t− r)
d−1
2 dσ (t)

and by changing the integration order we obtain

−πκd−1Γ
(

d + 1
2

)−1

lim
R→∞

R
d
2

∫ ∞

0

∫ t

0

(t− r)
d−1
2 r

d
2−1J d

2 +1 (2πrR) drdσ (t) .

Finally, the substitution r = ty and Lemma 3.3 give

−Γ
(

d + 1
2

)−1 ∫ ∞

0

t
d−1
2 dσ (t) = −γK

′+ (0) .

ad ii) Let γK be in BV
d+3
2

c (R+). Remark 2.5 and the change of the integration
order yield

lim
R→∞

2π2κd−1R
d+1γ̂K (R) =

= lim
R→∞

∫ ∞

0

γK (r) 4π3κd−1R
d
2 +2r

d
2 J d

2−1 (2πrR) dr.

By integration by parts and using
∫

xνJν−1 (x) dx = xνJν (x) we get

lim
R→∞

∫ ∞

0

−γK
′ (r) 2π2κd−1R

d
2 +1r

d
2 J d

2
(2πrR) dr.

From the assumption that γK is in BV
d+3
2

c (R+) follows the existence of a signed
measure σ with bounded support such that γK

′ (r) = Γ
(

d+3
2

)−1 ∫∞
r

(t− r)
d+1
2 dσ (t)

and by changing the integration order we obtain

−2π2κd−1Γ
(

d + 3
2

)−1

lim
R→∞

R
d
2 +1

∫ ∞

0

∫ t

0

(t− r)
d+1
2 r

d
2 J d

2
(2πrR) drdσ (t) .

Finally, by substitution r = ty and using Lemma 3.3 we get

= −Γ
(

d + 3
2

)−1 ∫ ∞

0

t
d+1
2 dσ (t) = −γK

′+ (0) .

¤

Corollary 3.7. From Theorem 3.6 and Remark 3.5 it follows that

Var (µu, K) = CV
µ Hd−1 (∂K)Φ

(
u−1

)
ud+1

with coe�cients CV
µ de�ned in (2.10) and Φ ful�lls either (3.1) or (3.2) according

to the regularity of isotropic covariogram of K.
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4. Evaluation of Coefficients of Grids of Affine Sets
If µ is the counting measure on d−periodic grid of points AZd the coe�cients

CV
µ introduced in Notation 2.9 and Corollary 3.7,

CV
µ =

1
2π2dκd

n6=0∑

n∈Zd

∣∣A−1n
∣∣−d−1

,

can be calculated using Epstein zeta function

Z
(
A−1, s

)
=

n6=0∑

n∈Zd

∣∣A−1n
∣∣−s

.

Only grids of intensity α = 1 will be studied as it makes possible a straightfor-
ward comparison of the e�ciency of the related volume estimators and the results
for general grids can be obtained by scaling.

For hypercubic grids of points in Rd A = Id, where Id is the identity matrix. For
(self-dual) triangular grid of points in R2

A = A2 =
√

2
4
√

3

( √
3

2 0
1
2 1

)
.

Face centered cubic grid and body centered cubic grid of points in R3 are mutu-
ally dual with matrices A = D3 and A = D∗

3 , respectively:

D3 = 1
3
√

2




0 1 1
1 0 1
1 1 0


, D∗

3 = 1
3
√

4



−1 +1 +1
+1 −1 +1
+1 +1 −1


.

The lattices of the closest packings of spheres in dimensions d = 4, 8, 24 are D4,
E8, Λ24 [12].

Using the Mellin transform and the Poisson summation
∑

n∈Zd
exp−π

∣∣A−1n
∣∣2 t = det At−

d
2

∑

n∈Zd
exp−π |An|2 t−1

we obtain the Riemann expansion

(4.1)
Γ

(
s
2

)
π−

s
2 Z

(
A−1, s

)
= 2det A

s−d − 2
s +

∑n 6=0
n∈Zd Γ

(
s
2 , π

∣∣A−1n
∣∣2

)(
π

∣∣A−1n
∣∣2

)− s
2

+

+det A
∑n 6=0

n∈Zd Γ
(

d−s
2 , π |An|2

)(
π |An|2

) s−d
2

,

where Γ (a, x) =
∫∞

x
ta−1e−tdt is an incomplete gamma function. The function

Z
(
A−1, s

)
can be evaluated with the precision of the order of e−πL2 by summing

all terms with |An| < L,
∣∣A−1n

∣∣ < L [3].
Various identities valid between special Epstein zeta functions, the Riemann zeta

function ζ and Dirichlet function Lp

ζ (s) =
∑∞

n=1 n−s , Lp (s) =
∑∞

n=0 (p|n)n−s

(where (p|n) is Kronecker symbol from number theory) can also be used for calcu-
lation of the Epstein zeta functions:

Z (I2, s) = 4ζ
(

s
2

)
L−4

(
s
2

)
[5],
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Z (A2, s) = 21+ s
2 31− s

4 ζ
(

s
2

)
L−3

(
s
2

)
[6],

Z (I4, s) = 8
(
1− 22−s

)
ζ

(
s
2

)
ζ

(
s
2 − 1

)
[2],

Z (D4, s) = 24
(
1− 21− s

2
)
2−

s
4 ζ

(
s
2

)
ζ

(
s
2 − 1

)
from theta function in [12],

Z (I6, s) = 16ζ
(

s
2

)
L−4

(
s
2 − 2

)− 4ζ
(

s
2 − 2

)
L−4

(
s
2

)
[2],

Z (I8, s) = 16
(
1− 21− s

2 + 24−s
)
ζ

(
s
2

)
ζ

(
s
2 − 3

)
[2],

Z (E8, s) = 240 · 2− s
2 ζ

(
s
2

)
ζ

(
s
2 − 3

)
from theta function in [12],

Z (I24, s) = 16
691

(
1− 21− s

2 + 212−s
)
ζ

(
s
2

)
ζ

(
s
2 − 11

)
+

+ 128
691

(
259 + 745 · 24− s

2 + 259 · 212−s
)
g24

(
s
2

)
[2],

Z (Λ24, s) = 65520
691

(
ζ

(
s
2

)
ζ

(
s
2 − 11

)− g24

(
s
2

))
from theta function in [12], where

g24 (t) =
∑∞

n=1 τ (n)n−t is Ramanujan - Dirichlet function and
∑∞

i=0 τ (n) qn =
q
∏∞

i=1

(
1− qi

)24
. Unfortunately, no similar relation is known for any three-dimensional

grid.
Grids of parallel a�ne sets of the dimension k can be calculated using the zeta

functions of point grids in the dimension d− k.
The coe�cients of grids of parallel lines in R3 intersecting a perpendicular plane

in a square or a triangular grid of points are calculated from the zeta functions
Z (I2, 4) or Z (A2, 4), respectively.

For grids of parallel hyper-surfaces in Rd the Z (I1, d + 1) = 2ζ (d + 1) where
ζ (s) is the Riemann zeta function.

Fourier coe�cients of shifted grids and combinations of grids can be obtained by
linear operations with the Fourier coe�cients of the grids.

Let the multiple grids of lines in R3 be expressed parametrically as Ti = oi +
fvi + ghi + αdi, i = 0 . . . n, f and g are integers, α is real and oi, vi, hi, di are
vectors from R3.

The grid of unit density with square cross-section in R3 [4] is composed of three
orthogonal sets of parallel lines, di = ei, i = 1, 2, 3, v1 =

√
3e3, v2 = v3 =

√
3e1,

h1 = h3 =
√

3e2, h2 =
√

3e3, the sum in 2.10 is 3Z (I2, 4) + 12ζ (4) for self-
intersecting grid oi = 0, i = 1..3 and 3Z (I2, 4) − 21

2 ζ (4) for grid optimized by
mutually shifting the collections o1 = 0, o2 =

√
3

2 e3, o3 =
√

3
2 (e1 + e2).

For a quadruple of sets of parallel lines with triangular cross-section and di-
rections of diagonals of the cube d1 = e1 + e2 + e3, d2 = e1 + e2 − e3, d3 =
e1 − e2 + e3, d4 = e1 − e2 − e3, vi = 24

√
3e2, hi = 24

√
3e3, i = 1, 2, 3, 4, the

sum in 2.10 is 4Z (A2, 4) + 18ζ (4) for self-intersecting grid oi = 0, i = 1, 2, 3, 4,

and 4Z (A2, 4)− 63
4 ζ (4) for optimized grid o1 = 4

√
3 (e1 + e2), o2 = 4

√
3 (e1 + e3),

o3 = 0, o4 = 4
√

3 (e2 + e3).
The values of the constant CV

µ for various grids with unit spatial density of the
corresponding Hausdor� measure are in tables 1 and 2, where d is the dimension of
embedding space and k is the dimension of the a�ne sets. The values of Z

(
A−1, s

)
were calculated by 4.1 and from the above identities for Zeta functions. The pro-
cedure 4.1 could be applied for lattices up to I8, the values of Z (E8, 9), Z (I24, 25),
Z (Λ24, 25) were evaluated from the identities only. The triangular grid and the
body centered cubic grid have the smallest observed coe�cients of grids of points
in d = 2, 3 and are the duals to the grids of the closest sphere packings. As such a
relation may be more general, the coe�cients of duals of the closest sphere packings
in d = 4, 8, 24 were also evaluated.
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d k Grid CV
µ

1 0 I1 0.083333333
2 0 square I2 0.072837040
2 0 triangular A2 0.071701169
2 1 parallel lines I2 0.019384090
3 0 cubic I3 0.066649070
3 0 body centered cubic D∗

3 0.064350404
3 0 face centered cubic D3 0.064389706
3 1 parallel lines, I2 cross-section 0.024296742
3 1 parallel lines, A2 cross-section 0.023315276
3 1 lines, I2 cross-section, triple 0.125250104
3 1 lines, I2 cross-section, optimal triple 0.027075333
3 1 lines, A2 cross-section, quadruple 0.171800922
3 1 lines, A2 cross-section, optimal quadruple 0.024538766
3 2 parallel planes 0.008726646

Table 1. Coe�cients of grids of a�ne sets of dimension k in Rd, d ≤ 3.

d Grid CV
µ

4 I4 0.062959415
4 D4 0.058670401
5 I5 0.061045829
6 I6 0.060656899
7 I7 0.061828449
8 I8 0.064852630
8 E8 0.045596961
24 I24 52.76720063
24 Λ24 0.028950578

Table 2. Coe�cients of grids of points in Rd.

5. Conclusions
The asymptotic expansion of the variance of the estimators of volume of bounded

objects (Corollary 3.7) have been used for a long time in stereological studies. Sup-
posing some smoothness of the covariograms of the objects, the expansion follows
from integral geometric identities. Such smoothness is proved for balls and can be
conjectured for bounded objects with smooth boundary. The coe�cients of periodic
grids of a�ne sets can be calculated using multidimensional zeta function.
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