
d−dimensional array

February 17, 2012

All symbols stand for nonnegative integers.
Let (n1, n2, . . . , nd) be the dimensions of the array, size of the array is N =

n1n2 . . . nd elements.
An element of the array has index (i1, i2, . . . , id), 0 ≤ ik < nk, 1 ≤ k ≤ d.
Elements of the array are stored in the memory in the lexicographic order:

(i1, i2, ..., id) ≤ (j1, j2, ..., jd) if and only if ik ≤ jk for some k, 1 ≤ k ≤ d and
il = jl for l > k, and the position of the element with index (i1, i2, . . . , id) is
m (i1, i2, ..., id) = i1 + n1 (i2 + n2 (i3 . . . nd−1id) . . .).

Let 0 ≤ k ≤ d: i) the set of the elements with indices (i1, i2, . . . , id) such
that 0 ≤ ik < nk, il fixed for l ̸= k, is called row. ii) the set of the elements with
indices (i1, i2, . . . , id) such that ik fixed, 0 ≤ il < nl for l ̸= k, is called slice.

Hence row is a 1−dimensional orthogonal section of the array, slice is a
d− 1−dimensional orthogonal section of the array.

How to traverse row: for(i = 0; i < num; i++)
// process element with position first+ i · step
where
first = m (i1, i2, ..., id) with ik = 0, step = n1n2 . . . nk−1, num = nk

How to traverse slice: for(ind = first; ind < totnum; ind+ = step)
// process contiguous interval of elements of length runlen starting at posi-

tion ind
where
first = n1n2 . . . nk−1ik, runlen = n1n2 . . . nk−1, step = n1n2 . . . nk, num =

n1n2 . . . nk−1nk+1 . . . nd, totnum = num · step

Traversing all rows in the kth−direction: iterate first in the row traversal
algorithm over slice with ik = 0.

Traversing all rows in all directions: iterate k over all dimensions.

1


