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Classification of stationary neuronal activity

according to its information rate

Abstract

We propose a measure of the information rate of a single stationary neuronal activity

with respect to the state of null information. The measure is based on the Kullback-

Leibler distance between two interspike interval distributions. The selected activity

is compared with the Poisson model with the same mean firing frequency. We show

that the approach is related to the notion of specific information and that the method

allows us to judge the relative encoding efficiency. Two classes of neuronal activity

models are classified according to their information rate: the renewal process models

and the first-order Markov chain models. It has been proven that information can

be transmitted changing neither the spike rate nor the coefficient of variation and

that the increase in serial correlation does not necessarily increase the information

gain. We employ the simple, but powerful, Vasicek’s estimator of differential entropy

to illustrate an application on the experimental data coming from olfactory sensory

neurons of rats.

1 Introduction

It is generally accepted that the information in neuronal systems is transferred using

the series of action potentials – the spike trains. There are two main hypotheses that

attempt to classify possible ways in which the spike train may carry information:

the frequency (rate) codes and the temporal spike codes (Gerstner and Kistler, 2002;

Theunissen and Miller, 1995). Both hypotheses rely on the important assumption

that single spikes are mutually indistinguishable. Therefore the spike trains can be
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considered as a time series of point events. This is a widely accepted simplification

that allows further analysis, especially from the information-theoretic point of view.

The idea of frequency coding was proposed by Adrian (1928). He showed that

the number of spikes per some time window (spike frequency) non-linearly increases

with the increase of the stimulus intensity. The idea of temporal spike coding (Perkel

and Bullock, 1968; Theunissen and Miller, 1995), on the other hand, employs the

timing of the spikes or their particular temporal pattern. This is a consequence of

the fact that there are situations where time averaging is not possible. Also the

high time variability in neuronal discharge, particularly within the cortex, see, e.g.,

Buracas and Albright (1999), may play some role and cannot be simply ’averaged

out’. The extreme case, which gives an upper bound on the possible amount of

information encoded (Zador, 1998), follows from the hypothesis that the precise

value of each successive interspike interval (ISI) carries the information (in other

words the information gain is maximized if there is no noise in the transmission).

Though frequency codes and temporal spike codes are shown to be compatible in

many cases (Gerstner and Kistler, 2002), it is clear that infinitely many different

spike records may have the same frequency.

If the the neuronal firing is stationary the mean spike frequency (the inverse

of the mean ISI, Lánský et al. (2004)) carries the information from the frequency

coding hypothesis point of view. However, as has been shown by Bialek et al.

(1991) (see overview in Theunissen and Miller (1995)), the frequency codes in single

neurons carry information about dynamic stimuli, which results in a non-stationary

neuronal signal. The temporal coding, on the other hand, has been shown to occur

almost exclusively under steady-state stimulus conditions (Fuller and Looft, 1984;

Middlebrooks et al., 1994).

At the first approximation, neuronal firing under steady-state conditions is

often described as a renewal process. This is justified by the observation that the



emitted spike resets the membrane potential of the neuron’s body independently

of the preceding synaptic processes (Abeles, 1982). In this case ISIs are described

as independent realizations of a positive random variable T . The corresponding

probability density function f(t) is thus the complete descriptor of such neuronal

activity with the expected value of T (the mean ISI) denoted by E(T ).

Most of the time, however, though the neuronal firing is stationary there is

a dependency structure between the observed ISIs (Chacron et al., 2001; Longtin

and Racicot, 1996). The dependence may arise due to incomplete resetting of the

membrane potential after the spike is emitted, which is experimentally observed

especially in the distal parts of the neuron (Abeles, 1982). Such a type of neuronal

firing is not a renewal process. The successive ISIs {Ti} are then statistically

dependent with an expected value E(T ) = E(Ti). The activity is fully described by

the joint probability density function f(t1, t2, . . . ), see, e.g., Cox and Lewis (1966)

for details. The importance of the dependence in the ISI structure is also reflected in

recent efforts to include the effect of serial correlation into neuronal models (Lindner,

2004; Lánský and Rodriguez, 1999; Sakai et al., 1999). Despite this effort we are

not aware of any models where analytical results are available, except those vaguely

mentioned in Lawrance (1972, p.215) for the model developed by Lampard (1968).

In this article we will try to quantify the information encoded by the temporal

coding scheme, i.e., under the assumption of stationary stimuli conditions. The

information theory, introduced by Shannon (1948) provides the mathematical basis

for the task.

2 Theory and methods

Without loss of generality, information may be defined as a decrease in uncertainty

(Shannon, 1948). For discrete random variables, the entropy, H, measures the
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uncertainty and is thus closely related to the notion of information. The quantity

that measures the uncertainty of a continuous random variable T with a probability

density function f(t) is called differential entropy h(f), also denoted h(T ), (Cover

and Thomas, 1991):

h(f) = −
∞

∫

−∞

f(t) ln f(t) dt. (1)

Differential entropy h(f) does not share the same properties and intuitive interpre-

tation as the entropy H (Shannon, 1948). Namely, it can be negative and its value

changes with coordinate transforms. Thus it cannot be used as an absolute measure

of the information content. Nevertheless, the most ’random’ distribution is still the

one that maximizes h under the given constraints. No discrete random variable

appears in this article and for simplicity the term ”entropy” is used for h(f).

The measure of deviation of two probability density functions f(t) and g(t) that

is related to the concept of entropy is the Kullback-Leibler (KL) distance (also

relative entropy, Cover and Thomas (1991))

KL(f, g) =

∞
∫

−∞

f(t) ln
f(t)

g(t)
dt. (2)

The KL distance defined by formula (2) is not symmetric and does not satisfy the

triangle inequality. Further, if there exists an interval such that g(t) = 0 while

f(t) 6= 0 then KL(f, g) = ∞. On the other hand the KL distance is independent

of coordinate transforms and KL(f, g) ≥ 0 with equality if, and only if, f(t) =

g(t). These properties make the KL distance suitable for measuring the information

content described by the probability density f(t) relative to the reference probability

density g(t), which maximizes uncertainty. The interpretation of KL distance as a

measure of the information content was pioneered by Tarantola and Valette (1982)

in the general theory of inverse problems. The reference state g(t) is often described
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as the state of null information or ’the state of total ignorance’ (Tarantola, 1994).

If the interpretation in terms of information is not needed, the KL distance can be

still used as a tool to compare ISI distributions.

The above mentioned definitions can be extended into more dimensions, see

Cover and Thomas (1991) for details. Let {T1, . . . , Tn} be a set of n random variables

described by the joint probability density function f(t1, . . . , tn). Then the (joint)

entropy h(T1, . . . , Tn), sometimes also denoted as h(f), is defined by

h(T1, . . . , Tn) = −
∞

∫

−∞

· · ·
∞

∫

−∞

f(t1, . . . , tn) ln f(t1, . . . , tn) dt1 . . . dtn. (3)

The joint entropy can be expressed as a sum of conditional entropies:

h(T1, . . . , Tn) =
n

∑

i=1

h(Ti|Ti−1, . . . , T1), (4)

where h(Ti|Ti−1, . . . , T1) = −
∫

∞

−∞
· · ·

∫

∞

−∞
f(t1, . . . , ti) ln f(ti|ti−1, . . . , t1) dt1 . . . dti.

The independence bound for the joint entropy states that (Cover and Thomas,

1991, p. 232)

h(T1, . . . , Tn) ≤
n

∑

i=1

h(Ti) (5)

with equality if, and only if, the variables Ti are independent, i.e., when the

conditional densities are equal to the marginal ones f(ti|ti−1, . . . , t1) = f(ti) for

each i. Furthermore, it is possible (Cover and Thomas, 1991, p. 273) to define the

’entropy per variable’, or, the entropy rate h̄ of a stochastic process {Ti}∞i=1 as

h̄(f) = lim
n→∞

1

n
h(T1, . . . , Tn). (6)

The existence of the limit is guaranteed if the sequence {Ti}∞i=1 is stationary.

Similarly to formula (3), the KL distance of two joint probability density
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functions f(t1, . . . , tn) and g(t1, . . . , tn) is

KL(f, g) =

∞
∫

−∞

· · ·
∞

∫

−∞

f(t1, . . . , tn) ln
f(t1, . . . , tn)

g(t1, . . . , tn)
dt1 . . . dtn. (7)

In agreement with equation (6) we formally define the rate R of the KL distance as:

R = lim
n→∞

1

n
KL(f(t1, . . . , tn), g(t1, . . . , tn)). (8)

Expanding R employing formulas (3) and (6) gives

R = − lim
n→∞





1

n

∞
∫

−∞

· · ·
∞

∫

−∞

f(t1, . . . , tn) ln g(t1, . . . , tn) dt1 . . . dtn



 − h̄(f) (9)

In light of the KL distance as a measure of information we interpret R as

the ’information rate’ of a stochastic process described by the joint probability

density function f(t1, t2, . . . ) relative to the state of null information described

by g(t1, t2, . . . ). This concept of information differs from the standard notion of

mutual information introduced by Shannon (1948), though under special conditions

a relation between the two can be found, as we demonstrate later. We will employ

this definition to classify the available information content in several particular

models of neuronal activity.

3 Results and discussion

3.1 The spike train as a renewal process

We apply formula (9) to find the information rate R of a renewal process describing

the ISI generation. First, however, we have to determine uniquely the appropriate

state of null information. The least informative state is in other words the most
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random one, i.e. it bounds the entropy rate h̄ of all other possible processes from

above. Formula (5) implies, that such sequence of random variables must consist

of independent and identically distributed variables maximizing the entropy h. The

maximum entropy distribution on (0,∞) with fixed expected value is the exponential

one described by the probability density function

g(t) = a exp(−at), (10)

where a > 0 and the expected value equals to 1/a. The entropy of the exponential

distribution is h(g) = 1− ln a. The state of null information is thus described by the

Poisson process which holds a prominent position in the neuronal modeling (Gerstner

and Kistler, 2002). The Poisson-like firing has been experimentally observed in many

situations, particularly in the cortical neurons, see Abeles (1982) for details. From

formulas (4) and (6) it follows, that the entropy rate of a renewal process is equal

to the entropy of the probability density. Thus the equation (9) reduces to

R = aE(T ) − ln a − h(f). (11)

As we quantify the information gained beyond the hypothesis of frequency coding, we

let distributions f(t) and g(t) have the same mean values, E(T ) = 1/a. Formula (11)

finally results in

R = 1 + ln E(T ) − h(f). (12)

As mentioned, the entropy h(T ) of a random variable T changes with the transfor-

mation T → sT (with a ’scaling’ constant s > 0) as h(sT ) = h(T )+ ln s (Cover and

Thomas, 1991, p. 233). Due to this ’scaling property’ the rate R in the formula (12)

does not depend on the actual E(T ), which also follows from the fact that the rate

is defined ’per ISI’. We see that the information rate of the renewal process gained
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beyond frequency coding relative to the state of null information is reduced to the

calculation (estimation) of h(f).

In the following we compare the information rates R of several ISI distribution

models described by probability density functions f(t) with two parameters. The

rate R is parameterized by the coefficient of variation CV – the ratio of standard

deviation to E(T ). While the advantage of CV is that for exponential distribution

holds CV = 1 (independently of E(T )), the condition CV = 1 does not in general

imply exponentiality of the distribution. This feature was explored in greater detail

with respect to experimental data in Kostal and Lansky (2006).

3.1.1 Gamma Model

The gamma distribution is one of the most frequent statistical descriptor of ISI

(Levine, 1991; Mandl, 1992; Rieke et al., 1997). Its probability density function f(t)

is defined by

f(t) =
bata−1 exp(−bt)

Γ(a)
, (13)

with parameters a > 0, b > 0 and Γ(z) =
∫

∞

0
tz−1e−t dt the gamma function. It holds

for equation (13): E(T ) = a/b and CV = 1/
√

a. Using formula (12) we obtain the

information rate R(CV )

R(CV ) = 1 − ln CV 2 − ln Γ
(

1/CV 2
)

+
Ψ(1/CV 2) − 1

CV 2
− Ψ(1/CV 2), (14)

where Ψ(z) = d
dz

ln Γ(z) is the digamma function.

The rate R(CV ) from equation (14) is plotted in Fig. 1A. It is useful to view the

dependence R(CV ) for every possible value of CV and R. To do this we employ a
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conformal mapping (CV, R) → (ĈV , R̂) described by

ĈV = arctan CV,

R̂ = arctan R.
(15)

Due to this transformation, the whole quadrant (0,∞) × (0,∞) is mapped onto

section (0, π/2) × (0, π/2) and the points ĈV = π/2, resp. R̂ = π/2 are identified

with CV = ∞, resp. R = ∞. For convenience labels on Fig. 1A. correspond to the

original scale (CV, R).

The gamma density f(t) in equation (13) is exponential for a = 1, implying

R(CV = 1) = 0. The information rate R tends to infinity for CV → 0. This

is a general property which can be seen directly from formula (12): for CV = 0

the variable T is described by a δ-function and the entropy is thus h(f) = −∞,

see Cover and Thomas (1991, p. 229) for details. On the other hand, the limit

R(CV → ∞) = ∞ is true for the gamma distribution, but does not hold in general.

3.1.2 Inverse Gaussian model

The inverse Gaussian distribution of ISI can be obtained from the integrate-and-fire

class of neuronal models and is also often fitted to experimental data (Gerstein and

Mandelbrot, 1964; Levine, 1991). Its probability density is

f(t) =

√

a

2πbt3
exp

[

− 1

2b

(t − a)2

at

]

, (16)

with parameters a > 0 and b > 0. In this case CV =
√

b, E(T ) = a and using the

same technique as in the case of the gamma model the information rate R(CV ) is

obtained in the form

R(CV ) =
1

2
ln

e

2π
− ln CV +

3√
2π

exp(1/CV 2)

CV
K

(1,0)
1/2 (1/CV 2), (17)
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where K
(1,0)
ν (z) is the derivative of the modified Bessel function of the second kind

K
(1,0)
ν (z) = ∂

∂ν
Kν(z) (Abramowitz and Stegun, 1972).

The resulting dependence R(CV ) from equation (17) is plotted in Fig. 1A. using

the transformation rules (15). The inverse Gaussian distribution is not exponential

for CV = 1 thus always R(CV ) > 0. Furthermore the minimal rate (and thus

the maximum similarity with the exponential model) does not occur at CV = 1

11



Fig. 1: Information rates R of renewal processes in dependence on

the CV (A). For CV = 1 the rate of gamma model is zero, implying that at

this point its distribution becomes exponential. The inverse Gaussian model

is never exponential (R > 0) and its minimal distance is at CV ≈ 1.17. The

Pareto model is also never exponential, but contrary to the gamma and

inverse Gaussian cases its rate decreases with increasing CV, reaching the

limit R(CV → ∞) ≈ 0.89. The information rate of inverse Gaussian grows

slowly compared to that of the gamma distribution. The rates of gamma and

inverse Gaussian are equivalent for CV ≈ 1.31. For CV � 1 the gamma and

inverse Gaussian rates are hardly distinguishable, though this fact cannot be

used to judge the degree of their mutual similarity, see (B), where the three

corresponding probability density functions with E(T ) = 1 s are plotted for

selected values of CV .

but at CV ≈ 1.17. The rates of gamma and inverse Gaussian models become

equivalent at CV ≈ 1.31. In comparison with gamma model we see that though

R(CV → ∞) = ∞ for both cases the gamma model approaches infinite information

rate R(CV ) much faster than the inverse Gaussian. On the other hand, for very

small values of CV both rates are undistinguishable.

3.1.3 Pareto model

The Pareto distribution is not resulting from any theoretic neuronal model and we

are not aware of any attempt to fit it to experimentally observed ISIs. We present it

here to show a different kind of behavior than that of the above mentioned models.
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The probability density function f(t) of the Pareto distribution is

f(t) =











0, t ∈ (0, b)

abat−a−1, t ∈ [b,∞)
(18)

with parameters a > 2 and b > 0. In this case CV = 1/
√

(a2 − 2a) and E(T ) =

ab/(a − 1). Using formula (12), we arrive at the equation for the information rate

R(CV ) of the Pareto model in the form

R(CV ) = CV 2 − CV
√

1 + CV 2 + ln

(

2 +
1 + 2CV 2

CV
√

1 + CV 2

)

, (19)

for illustration see Fig. 1A. The Pareto model is never exponential and we can see

that for increasing values of CV the rate R(CV ) is slowly decreasing with the limit

(which is also the minimal value of R(CV )): R(CV → ∞) = ln 4 − 1/2 ≈ 0.886.

The information rates of Pareto and gamma models are equal for CV ≈ 1.86, while

for gamma and inverse Gaussian models it is equal for CV ≈ 1.26. Nevertheless this

fact cannot cannot be used to judge the degree of similarity between the gamma

and either the Pareto or inverse Gaussian models. The comparison of probability

density functions f(t) of the inverse Gaussian, gamma and Pareto models can be

seen in Fig. 1B for E(T ) = 1 s and CV ≈ 1.86.

3.2 R and specific information

Mutual information I(S;R) (Cover and Thomas, 1991) determines the dependence

between stimuli S and responses R (Borst and Theunissen, 1999). The information

gained from a particular stimulus is known once the variability of responses across

the whole set of stimuli is determined. I(S;R) has no informative value if only

one stimulus is presented. The coding efficiency of chosen stimulus can be judged
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according to the deviation of the response from the spontaneous activity (Chacron

et al., 2001), i.e., the most informative stimuli cause the largest difference. The

information rate R provides a natural measure for this difference. Furthermore in

the following we show that under certain conditions a link between R and I(S;R)

may be established.

The set of stimuli S = {si}n
i=1 is discrete and the set of responses is realized

by ISIs which can take any positive value. Mutual information can be formally

expressed as I(S;R) =
∑

i p(si) i(R|si), where i(R|si) is called the specific

information due to the stimulus si. Analogously to DeWeese and Meister (1999)

we express i(R|si) as

i(R|si) = h(R) − h(R|si). (20)

From formula (20) it follows that the specific information is large for those stimuli

that have only a few different responses associated with them because h(R|si) is

the uncertainty in response given stimulus si. If the stimulus si evokes only single

possible response then it holds h(R|si) = −∞, because the probability density

function of responses is realized by δ-function.

We have restricted ourselves to the case in which the ISIs are described by a

renewal process with probability density function f and the stimuli conditions are

stationary in time. Under these two assumptions we can assign ISI distribution with

density f to the stimulus si and the uncertainty in response becomes h(f) = h(R|si).

The remaining term h(R) in formula (20) depends on the distribution of stimuli.

It is possible to view h(R) as the entropy of the spontaneous neuronal activity

h(Spon). The difference i(Spon|si) = h(Spon)− h(R|si) does not add up to mutual

information in the Shannon’s sense. Nevertheless, the information rate computed

employing the spontaneous activity differs only by a constant from the true mutual

information rate and therefore the two measures behave similarly, see Chacron et
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al. (2001) and Chacron et al. (2003) for details.

If the spontaneous activity is described by the Poisson process, then formula (20)

corresponds to the expression for the information rate (12) and R coincides with

specific information. If the spontaneous activity differs from the Poisson firing, then

i(Spon|si) can be obtained from formula

i(Spon|si) = R(f) − R(Spon) = h(Spon) − h(f), (21)

where R(Spon) resp. R(f) are the information rates of the spontaneous activity

and the activity in question. Note that we cannot directly employ a general (non-

Poisson) spontaneous activity as the state of null information (which is required

to maximize the entropy) because we would lose the interpretation in terms of

information.

3.3 The spike train as a Markov chain

First we employ formula (9) to find the information rate R of a general stationary

ISI model. Using the same reasoning as in the case of renewal process we find the

state of null information to be the Poisson process. Simplifying equation (9) in this

situation yields an expression similar to formula (11)

R = aE(T ) − ln a − h̄(f) (22)

and putting the mean ISI of the stochastic process described by f(t1, t2, . . . ) and

that of the state of null information equal, it yields

R = 1 + ln E(T ) − h̄(f). (23)
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The available information rate of the general stationary stochastic process (gained

beyond the idea of frequency coding) relative to the state of null information is

again reduced to the calculation (estimation) of the entropy rate. (Obviously

the relationship between R and the specific information holds also in the general

stationary case.)

The computation of the entropy rate is however hardly possible in the general

case (Cover and Thomas, 1991). Even though the limit is theoretically guaranteed

to exist the convergence may be arbitrarily slow with increasing dimension of the

joint probability density function. In the following we restrict ourselves to the class

of stationary stochastic processes satisfying the first-order Markov property (Cox

and Lewis, 1966)

Prob{Tn ≤ tn|Tn−1 = tn−1, . . . , T1 = t1} = Prob{Tn ≤ tn|Tn−1 = tn−1}. (24)

In other words, each ISI depends only on the immediately preceding one and is

conditionally independent of all other preceeding ISIs. The Markov chain is therefore

fully described by the joint probability density function f(t1, t2) of the two adjacent

ISIs. Condition (24) simplifies the expression for the entropy rate and analogously

to Cover and Thomas (1991, p. 66) we write

h̄(f) = h(T2|T1) = −
∞

∫

0

∞
∫

0

f(t1, t2) ln f(t2|t1) dt1 dt2. (25)

(To avoid indexing we denote T1 ≡ X and T2 ≡ Y .)

Formula (23) for the information rate R of the first-order Markov chain becomes

R = 1 + lnE(Y ) − h(Y |X). (26)
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Equation (26) can be rewritten using the mutual information I(X; Y ), the symmetric

quantity that measures dependence between two random variables X, Y (Cover and

Thomas, 1991)

I(X; Y ) = h(Y ) − h(Y |X). (27)

Combining equations (26) and (27) separates the total information rate R into two

parts

R = R1 + I(X; Y ), (28)

where R1 = h(g) − h(Y ) is the information rate of the renewal process described

by the marginal probability density function corresponding to the given Markov

chain. The important property of mutual information is that I(X; Y ) = 0 if, and

only if, the variables X and Y are independent, i.e., the Markov chain is reduced

to the renewal process. Note that the above derived results can be extended to

the kth-order class of Markov chains (conditional dependence on the k preceeding

states).

In the following we compare the information rates R of several Markov

chain ISI models described by the probability density functions f(x, y). We

parameterize the rate R in dependence on the serial correlation % = [E(XY ) −

E(X)E(Y )]/[
√

V ar(X)
√

V ar(Y )], which is frequently used to measure the

dependence between variables X and Y . The resulting rate R is again independent

of the expected value of the ISI.
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3.3.1 Lawrance and Lewis model

The model introduced by Lawrance and Lewis (L-L) is described by the joint

probability density function (Lawrance and Lewis, 1977)

f(x, y) =
a2b

1 − b + b2

{

U(bx − y)
1 − b

b2
exp

[

−ab(x + y) − ay

b2

]

+ exp

[

−a(x + by)

b

]

+ U(y − bx)
(b − 1)2

b
exp [−a(x − bx + y)]

}

(29)

with parameters a > 0, b ∈ (0, 1) and U(x) the Heaviside unit step-function: U(x <

0) = 0 and U(x ≥ 0) = 1. The (first-order) serial correlation % is

% = b(1 − b), (30)

from which the limitation of the L-L model follows: serial correlation is confined in

interval (0, 1/4). The marginal distribution of the L-L model is exponential with

parameter a, see formula (10).

We investigate the information rate of the L-L model using formula (28). The

term R1 is zero and thus the total rate R is equivalent to the mutual information,

R = I(X; Y ). Two values of parameter b lead to the same value of the serial

correlation in equation (30), thus we have to consider two solutions of R depending

on which value of b was used

b ∈ (0, 1/2) : 1
2
− 1

2

√
1 − 4%,

b ∈ (1/2, 1) : 1
2

+ 1
2

√
1 − 4%.

The resulting R(%) was carried out numerically and is plotted in Fig. 2. For

b ∈ (1/2, 1) the rate increases monotonically from zero (R(% = 0) = 0, the ISIs

are independent) to its maximum value R(% = 1/4) ≈ 0.12. A more interesting

result comes from examining the behavior of R for b ∈ (0, 1/2). The maximum
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value R ≈ 0.17 does not correspond to the maximum value of serial correlation,

but is located at % ≈ 0.17. From this value with increasing serial correlation we

observe a decreasing rate, while the marginal distribution is still exponential. This

seemingly paradoxical result comes from the fact that the value of serial correlation

as a measure of dependency cannot be used to judge the degree of difference from

the state of null information.

We can judge the qualitative behavior of the L-L model from the joint probability

density plots shown in Fig. 3A and B. Though serial correlation is often found

in experimental data, two-dimensional histograms corresponding to Fig. 3 are not

presented. The length of the ’immediately preceeding’ ISI is given on the x-axis,

the length of the current ISI is on the y-axis and the probability of their joint

occurrence is indicated by the shade (a darker tone corresponds to a higher value,

absolute numbers are not important). The positive serial correlation of the ISIs can

be seen immediately for b = 0.23 (A): short ISIs tend to be followed by short ones

(the dark region for x < 0.5 s and y < 0.5 s), longer ISIs by comparatively long

ones. Note especially the narrow dark band of highly probable (x, y) pairs in the

lower part of the plot. This feature makes the existence of certain (short) sequences

of ISIs more probable than others, i.e. it can be regarded as a simple mechanism

of temporal pattern formation. Unfortunately, the serial correlation in this case is

not large enough to make the effect visually pronounced (see also Fig. 4). Below

the band of high probability one can see a triangle of nearly zero probability, e.g.,

x > 1.5 s can hardly be followed by y < 0.25 s. The behavior of the L-L model

for b = 0.77 (B) differs in many aspects, though the value of serial correlation is

the same as for b = 0.23. The sharp band of high probability is missing and the

joint probability density is more diffused. Very short ISIs are often followed by even

shorter ones than in the previous case (compare with Fig. 4D), but the preference

for long ISIs following the longer ones (x > 1 s) is not pronounced (note the darker
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triangle below the diagonal). The difference between the two cases is captured in

different values of the information rates R.
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L-L:  b∈(0, 1/2)
L-L:  b∈(1/2, 1)

Morgenstern

Fig. 2: The information rates R in dependence on the serial correlation

% of the Lawrance and Lewis (L-L) and Morgenstern ISI models. For b ∈

(1/2, 2) (the L-L model) the rate increases monotonically to its maximum

R(% = 1/4) ≈ 0.12. For b ∈ (0, 1/2) the rate reaches its maximum at

R(% ≈ 0.17) ≈ 0.17 and then decreases. The Morgenstern model exhibits

simpler behavior: its rate is smaller compared to that of the L-L model at

the corresponding value of %.

The neuronal activity described by the L-L model is simulated in Fig. 4D

for E(Y ) = 1 s and serial correlation % = 0.17 (b = 0.23). Another realization

corresponding to Fig. 3B is shown in Fig. 4E. Note that the simulations were always

done with the same initial value of random seed. The relatively small differences from

the Poisson case (Fig. 4A) are captured in comparatively small values of information

rate R ≈ 0.17.
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Fig. 3: Density plots of the joint probability density functions f(x, y) of

the Markov chain ISI models with E(Y ) = 1 s, darker tones correspond to

higher values (absolute numbers are not important). The Lawrance and

Lewis (L-L) model (A+B) is plotted for two different values of parameter

b. Though the serial correlation % is the same in both situations the shapes

of f(x, y) are different. This difference is captured by different values of the

rate R. The Morgenstern model (C+D) is plotted for both extremal values

of the serial correlation % = ±1/4 with equal values of R ≈ 0.6.
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A.   Poisson,  ρ=0, R=0

B.   Inv. Gaussian,  R=0.12

C.   Pareto,  R=1.00

D.   L-L,  ρ=0.17, R=0.17

E.   L-L,  ρ=0.17, R=0.04

F.   Morgenstern,  ρ=0.25, R=0.06

G.   Morgenstern,  ρ=-0.25, R=0.06

H.   Lampard,  ρ=0.5, R=0.12

I.   Lampard,  ρ=0.9, R=0.74

Fig. 4.: (Caption on the following page.)

3.3.2 Morgenstern model

The next model is constructed using the bivariate joint probability density function

f(x, y) first described by Morgenstern (1956)

f(x, y) = a2e−2a(x+y)
[

ea(x+y) + 4%(eax − 2)(eay − 2)
]

, (31)

with parameters a > 0 and % ∈ (−1/4, 1, 4). The function f(x, y) is symmetric in

its arguments f(x, y) = f(y, x). The marginal distribution of this model is again
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Fig. 4: Simulated spike trains for renewal models with CV = 1 and Markov

models with exponential marginal distributions in both cases E(T ) = 1.

The values of serial correlation % and information rate R are given. (A) The

Poisson process. The inverse Gaussian model (B) is similar to (A) but

lacking the extremely short ISIs (see the probability density plot in Fig. 1B).

The Pareto model (C) differs strikingly from the Poisson process, with

the main distinction being the ’dead time’ (approx. 0.58 s). The values

of serial correlation % in the cases of the Lawrance and Lewis (D+E),

Morgenstern (F+G) and Lampard models (H+I) are relatively too small

to produce apparent change in comparison with the Poisson process – the

effect is only slightly more pronounced for negative % (G) and for % = 0.5 (H).

The spike train generated according to Lampard model (I) with % = 0.9 can

be distinguished on the first sight.

exponential with parameter a. The serial correlation is equal to the parameter % in

formula (31). The maximum serial correlation is again |%| = 1/4, but contrary to

the previous case of L-L model it can also be negative.

We use the same approach in applying formula (26) as in the case of L-L model.

The result was carried out numerically and is plotted for comparison with the L-L

model in Fig. 2. The behavior of the Morgenstern model appears simple compared

to that of the L-L model. The information rate is symmetric R(%) = R(−%) and

R(% = 0) = 0 implying that for zero serial correlation the ISIs are independent, as

can be seen directly from formula (31). An interesting observation is that for the

same value of % the rates R(%) of the Morgenstern and L-L models differ and that

for any % ∈ (0, 1/4) the rates of the Morgenstern model are smaller.

Fig. 3C and D shows the f(x, y) for both extreme values of serial correlation.

The behavior of the model is simpler compared to the L-L model, there are no
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sharp regions of special interest and the probability density is smooth and symmetric

around x = y. The positive correlation (C) is seen for ISIs smaller than 1 s, and

then for large ISIs (x ≈ 2 s) which are usually not followed by very short ones. The

reverse statements hold for the negative serial correlation (D). Very short ISIs are

not followed by comparatively short ones (the light region for small x, y) and very

long ISIs (x > 2 s) are preferably followed by shorter ones (y < 1 s). Because the

information rate is the same in both cases, we cannot distinguish between negative

and positive serial correlation just by observing the value of R.

Neuronal firing that behaves according to the Morgenstern model is simulated

in Fig. 4F and G. Due to the small values of serial correlation only small differences

can be seen compared to the Poisson process (A). This is confirmed by a very small

value of the information rate R ≈ 0.06.

3.3.3 Lampard Model

The last example of the stationary Markov chain we employ as the ISI distribution

model was first described by Lampard (1968). It describes a counter system whose

inputs are a pair of independent Poisson processes. The advantage of this model

over the previous two lies in its possible interpretation from the neurophysiological

point of view (Lawrance, 1972).

The joint probability density function f(x, y) is defined by

f(x, y) =
(1/% − 1)ξ

xyΓ(ξ)

(

aξ2√xy%

|% − 1|

)1+ξ

exp

[

aξ(x + y)

% − 1

]

Iξ−1

(

2aξ
√

xy%

1 − %

)

, (32)

where % ∈ (0, 1) is the first-order serial correlation, parameters ξ > 0, a > 0 and

Iν(z) is the modified Bessel function of the first kind (Abramowitz and Stegun,

1972). The marginal distribution of the model is the gamma distribution (compare

with equation (13)): f(y) = (aξ)ξyξ−1 exp(−aξy)/Γ(ξ), from which follows that
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parameter ξ is related to the CV by CV 2 = 1/ξ, and a describes the mean value

of the ISI E(T ) = 1/a. For ξ = 1, which implies CV = 1, the joint density

f(x, y) is reduced to the Downton bivariate exponential density (Downton, 1970)

with exponential marginal distributions:

f(x, y) =
a2

1 − %
exp

[

a(x + y)

% − 1

]

I0

(

2a
√

xy%

1 − %

)

(33)

To obtain the information rate R of the Lampard model we apply formula (28),

because the term R1 is already given in the closed form by formula (14). Therefore

the mutual information I = I(X; Y ) remains to be calculated. We parameterize the

mutual information I(%) with the serial correlation (in agreement with the previous

reasoning) and investigate its possible dependence on the CV through the remaining

parameter ξ. The Bessel function Iν(z) can be expressed in a simple form for two

particular values of parameter ν (Abramowitz and Stegun, 1972)

I1/2(z) =

√

2

π

sinh z√
z

,

I
−1/2(z) =

√

2

π

cosh z√
z

.

The solution for the first condition ξ − 1 = 1/2 is CV =
√

2/3 ≈ 0.816 and for the

second ξ−1 = −1/2 is CV =
√

2 ≈ 1.414. The joint density f(x, y) of the Lampard

model then reduces to much simpler forms

CV =

√

2

3
: f(x, y) = − 9a2

2π
√

(1 − %)%
exp

[

3

2

a(x + y)

% − 1

]

sinh

(

3a
√

xy%

% − 1

)

,(34)

CV =
√

2 : f(x, y) =
a

2π
√

xy(1 − %)
exp

[

1

2

a(x + y)

% − 1

]

cosh

(

a
√

xy%

% − 1

)

. (35)

The reduced forms given by formulas (33) (for CV = 1), (34) and (35) make

the analytical integration of at least some parts in I(%) possible. The remaining
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integration can thus be carried out numerically with much better precision than

using the general and rather complicated form (32).

The resulting mutual information I(%) is plotted in Fig. 5 for the three above

mentioned values of CV . The total information rate R can be computed using

formula (28). For CV = 1 and % = 0 the Lampard model reduces to the Poisson

process, thus both R1 = 0 and I(X; Y ) = 0. For CV = 1 and % > 0 holds R1 = 0 and

the mutual information corresponds to the total information rate R of the Lampard

(=Downton) model. Similarly if CV 6= 1 and % = 0, then I(X; Y ) = 0 and the

Lampard model reduces to the renewal process with gamma ISI distribution. Using

formula (28) for the term R1 gives: R1(CV =
√

2/3) ≈ 0.044 and R1(CV =
√

2) ≈

0.216. The shapes of the curves I(%) are very similar, starting from I(% = 0) = 0 and

continuing with monotonous increase I(% → 1) → ∞. Mutual information increases

dramatically for % > 0.8, where an arbitrarily small change in % has a strong effect

on the information rate, while the changes in the serial correlation value for % < 0.5

may be neglected. The dependence of I(%) on the value of CV is relatively small,

nevertheless, it cannot be attributed to numerical errors. For CV more deviated

from one the effect is slightly more pronounced. Again we have a situation where

the serial correlation % is not a sufficient measure of the true dependence between

two random variables, contrary to I(X; Y ).

A sample of neuronal firing behaving according to the Lampard model is shown

in Fig. 4 for % = 0.5 (H) and % = 0.9 (I). At such a high value of serial correlation

(especially in Fig. 4I) the pattern of spikes can be immediately distinguished from

the other cases presented in the figure, though the marginal distribution (estimated,

e.g., by histograms) of all the presented cases is exponential with equal parameters.
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Fig. 5: The mutual information I = I(X; Y ) of the Lampard model in

dependence on serial correlation % for three values of CV . The shapes of

the curves are very similar but not identical, which means that % does not

measure the ISI dependence completely. A very sharp increase in I for

% > 0.5 suggests that low values of % have only marginal effect, while a small

increase in % for % > 0.8 can change R dramatically.

3.4 Experimental data

Formula (26) for the information rate R of the Markov chain can be expressed

alternatively, substituting from the chain rule (4)

R = h(g) + h(X) − H(X, Y ). (36)

We see that the computation of R from experimental data for the renewal process

and Markov chain is reduced to the estimation of entropy from one- and two-

dimensional probability density functions. This makes equations (12) and (36)
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applicable in experimental data analysis as the problem of entropy from data

estimation is well exploited in literature, see, e.g., Beirlant et al. (1997); Tsybakov

and Meulen (1996) for an overview of available techniques.

For one dimension (the renewal process) the simple and well researched Vasicek’s

estimator (Vasicek, 1976) gives reasonably good results on a wide range of data

(Ebrahimi et al., 1992; Miller and Fisher III, 2003). Furthermore our own experience

with simulated data shows that for sample sizes n = 500 (the average size in the

experimental data we used) the standard deviation is relatively small (σ < 0.07) and

a possible positive bias with respect to true values is negligible. It is also preferable

to avoid estimations based purely on histograms because the choice of binwidth

affects the results greatly. The support of ISI distributions is always positive which

makes the application of kernel estimators problematic due to possible overlapping

into negative values.

In this section we illustrate the use of information rate on experimental data in

the case of renewal process. The data come from extracellular recordings made from

olfactory receptor neurons of freely breathing and tracheotomized rats. Single-unit

action potentials were recorded and more details on the data acquisition is described

in Duchamp-Viret et al. (2003). The sample sizes range from (circa) n = 100 to

n = 2000 ISIs and all records have been tested for stationarity and ISI independence

(the Wald-Wolfowitz test, serial correlation, periodogram).

Given the n ranked ISIs {t[1] < t[2] < · · · < t[n]} we used the entropy estimator

proposed by Vasicek (1976)

h(data) =
1

n

n
∑

i=1

ln
[ n

2m

(

t[i+m] − t[i−m]

)

]

. (37)

The positive integer parameter m < n/2 is set prior to computation and the two

following conditions hold: t[i−m] = t[1] for (i−m) < 1 and x[i+m] = x[n] for (i+m) > n.
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The particular values of m corresponding to various values of n were determined by

Ebrahimi et al. (1992).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

η 
 [

bi
t/s

]

CV

’Freely breathing’
’Tracheotomized’

Fig. 6: The information rate flow η in bits per second estimated from

the experimental data in dependence on the CV . The stationary renewal

activity of olfactory neurons in rats is compared for freely breathing (N)

(in the absence of any particular stimulus) and tracheotomized (×) animals.

Except for two cases the η of tracheotomized animals is lower than in freely

breathing ones. The results show that the activity in tracheotomized rats is

closer to the state of null information (Poisson process) and that CV is not

well related to the Poisson character of the process.

The information rate R represents the average information gained per ISI and

does not depend on E(T ), i.e, the firing rate. To include the effect of faster vs.

slower neuronal firing we examine the average distribution of information rate in
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time. We define the information rate flow η by

η =
1

ln 2

R

E(T )
. (38)

The factor 1/ ln 2 is used to change the logarithm base in equation (9) to 2, so the

quantity η represents the average information gained (relative to the state of null

information) in bits per second.

The estimated information rate flow η for the already mentioned two categories

of data is plotted in Fig. 6. We see that the η in the tracheotomized case (×) is

in most of the cases lower than that of the freely breathing (N). This is verified

independently by other methods in Duchamp-Viret et al. (2005), where also some

further inferences from the data are made. Due to the properties of R low values of

η indicate that the firing is close to the state of null information, therefore justifying

the hypothesis that spontaneous firing is not informative.

4 Conclusions

The information rate R based on the Kullback-Leibler distance between two ISI

models was proposed for a general case of stationary neuronal activity. If the

reference state maximizes the entropy of the ISI probability distribution and if

the mean values of both distributions are equal, then R measures the information

rate per ISI due to the temporal coding scheme. Beside the introduction of R we

proposed a related quantity, the information flow: η = R/E(T ), which measures the

information gain per time unit. This quantity takes the firing rate of the neuron

into account, thus even relatively small values of R must be taken into consideration

when comparing the η of fast-firing neurons to the slower ones. The determination of

R (and η) requires the computation (estimation) of differential entropy which makes
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the quantity applicable on suitable experimental or simulated data, as illustrated

in the final section of this article. We showed that R is related to the mutual

information and corresponds to the information due to specific stimulus.

We analyzed in detail several examples from two categories: the renewal process

and the first-order Markov chain ISI models. The case of the renewal processes

shows that even if neither spike frequency nor CV changes there still may be a gain

of information. The chosen models behave differently for CV > 1, while for CV � 1

their information rates R are very similar. On the other hand, the case of Markov

chains indicates that if R is examined only due to the dependency among ISIs,

small values of serial correlation % imply small values of R. Moreover the increase

in the serial correlation of ISIs does not necessarily increase the information rate.

Though the Markov chain ISI models discussed here are not resulting from realistic

neuronal models, it is nevertheless clear that the relation of serial correlation to

the information rate is not simple. As the entropy rates h̄ were computed directly

from the joint probability densities these Markov chain models serve well for testing

purposes and further development of multi-dimensional entropy estimators. These

estimators in turn may be used to estimate R in realistic models, where the joint

probability density of ISIs is not available (including experimental data).

Theoretically the information rate R may tend to infinity. This is due to the fact

that a continuous random variable generally carries an infinite amount of information

(van der Lubbe, 1997, p. 171). Nevertheless this fact can be considered as merely

formal and without consequences, in practice we are always working with finite

precision on a finite time scale. Notably the cases CV → 0 or % → ±1 would require

an infinite timing precision of the neuronal firing.
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