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Variability and randomness in stationary

neuronal activity

Abstract

The patterns of neuronal activity can be different even if the mean firing rate is fixed.

Investigating the variability of the firing may not be sufficient and we suggest to take

into account the notion of randomness. The randomness is related to the entropy of

the firing, which is bounded from above by the entropy of the Poisson process (given

the mean interspike interval). Thus, we propose the Kullback-Leibler distance with

respect to the Poisson process as a measure of randomness in a stationary neuronal

activity. Under the condition of equal mean values the KL distance does not depend

on the time scale and therefore can be compared to the coefficient of variation

employed to measure the variability. Furthermore, this measure can be extended

to account for correlated neuronal firing. Finally, we analyze the variability and

randomness for three common ISI distributions in detail: gamma, lognormal and

inverse Gaussian.

Keywords: variability, randomness, entropy, Kullback-Leibler, coefficient of

variation

1 Introduction

The discharge activity of neurons is composed of the series of events called action

potentials or spikes. It is generally accepted that the information in neuronal systems

is transferred by the time series of spikes – the spike trains. There are two main

hypotheses that attempt to classify possible ways in which the spike trains may

2



carry information: the frequency (rate) codes and the temporal codes (Gerstner

and Kistler, 2002; Theunissen and Miller, 1995). The classical results in early

neuroscience (Adrian, 1928) show that the number of spikes per a time period (the

firing rate) is related to the stimulus intensity, i.e., the firing rate increases with

increasing stimulus intensity. The idea of temporal spike coding (Perkel and Bullock,

1968; Theunissen and Miller, 1995), on the other hand, employs the timing of the

spikes or the particular ordering of interspike intervals. Whereas frequency code

has quite specific meaning, the temporal code denotes all alternatives not classified

as the former one. Therefore, the temporal coding involves on one hand precise

patterns of spikes and on the other hand, for example, variability differences in the

firing. Searching and comparing variability of different spike trains is a traditional

tool in neuroscience studies. It holds for experimental as well as model spike trains

and the most common way is by calculating the coefficient of variation (CV ) of

interspike intervals (ISI).

The frequency codes in single neurons may carry information about both dynamic

and stationary stimuli, see overview in Theunissen and Miller (1995). If the the

neuronal firing is stationary then the mean spike frequency (the inverse of the

mean ISI, Lánský et al. (2004)) carries the information from the frequency coding

hypothesis point of view. The temporal coding, on the other hand, has been shown

to occur almost exclusively under steady-state stimulus conditions (Fuller and Looft,

1984; Middlebrooks et al., 1994). Therefore to classify the spike trains solely from

the temporal coding scheme point of view, one needs to describe differences between

various stationary firing regimes with equal mean ISI.

The aim of this paper is to characterize the stationary neuronal firing. The

method is based on a measure of randomness and we compare it with a measure

of variability. The examples are restricted on the renewal spiking activity despite

the fact that a general theory is available. The reason is that for the renewal model
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analytical results can be obtained, while there are no descriptions of correlated

neuronal activity both realistic and mathematically suitable for our purpose.

2 Methods

2.1 Variability

Neuronal firing under stable conditions is often described as a renewal process of

ISIs. In such a case the ISIs are mutually independent realizations of a positive

random variable T and are fully characterized by the probability density function

f(t), where f(t) dt = Prob(T ∈ [t, t + dt)) (Cox and Lewis, 1966). The renewal

character of the ISIs implies stationarity of the neuronal activity. Often, though the

neuronal firing is stationary, there is a dependency structure among the observed

ISIs (Chacron et al., 2001; Longtin and Racicot, 1996). The dependence may arise

due to the incomplete resetting of the membrane potential after the spike is emitted,

which is experimentally observed especially in the distal parts of the neuron (Abeles,

1982). The other source of dependency may be a time structure in the input of the

neuron. The successive ISIs {Ti} are then statistically dependent, but due to the

stationarity the expected value E(T ) = E(Ti) exists. The activity is fully described

by the joint probability density function f(t1, t2, . . . ), see, e.g., Cox and Lewis (1966)

for details.

The patterns of stationary neuronal activity may be strikingly different even

if the mean firing rate, or equivalently the mean ISI, is fixed. The variability is

probably the first issue to consider. It is often measured by employing the variance,

V ar(T ), or the coefficient of variation, CV , which relates variance to mean value,

CV =
√

V ar(T )/E(T ). The main advantage of CV over V ar(T ) – and the reason

why it is used in data analysis – is that CV does not depend on the ’scaling’,
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CV (aT ) = CV (T ). In other words, CV is dimensionless and can be used to compare

variability of spike trains with different mean ISI. For the Poisson process holds

CV = 1 independently of E(T ). The differences in variability for several firing

regimes are shown in Fig. 1A–C.

Even if the mean firing rate and variability of the neuronal firing are the same,

the resulting spike trains may still have very different properties, compare Fig. 1A, D

and E. The spike train in Fig. 1D is realized by the renewal process with Bernoulli

distribution of ISIs and parameters chosen so that CV = 1 just as in the case of the

Poisson process in Fig. 1A. In other words, though Poisson process implies CV = 1

the reverse implication does not hold. The example in Fig. 1E shows a spike train

with CV = 1 again, but with properties significantly different from that of the

Poisson firing (though the ISI densities of Fig. 1A and Fig. 1E are the same). The

successive ISIs in Fig. 1E are not independent and the first-order serial correlation is

% = 0.86. Thus, such a neuronal firing is not described by the renewal process. We

may conclude by comparing spiking activities in Fig. 1A, D and E, that even though

the variability is the same, the randomness of the firing can be different. We take

this fact as an indication that the classification of stationary firing may be based

also on different qualities than variability. In the following text we will precise the

notion of randomness (or uncertainty) in neuronal activity.

Next we introduce three ”standard” renewal-process models of neuronal firing.

These are gamma, inverse Gaussian and lognormal ISI distributions and we analyze

their properties with respect to variability and randomness. The three mentioned

distributions are fully determined by two parameters. We choose CV as a paremeter

in order to employ variability directly. The CV ranges from zero to infinity for

all three mentioned models. We let the remaining parameter be the mean ISI,

µ = E(T ), which makes comparing distributions with equal E(T ) easier.

Gamma distribution is one of the most frequent statistical descriptors of ISIs
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 0  10  20  30  40  50  60  70

t [s]

A.   Poisson, CV=1

B.   Regular, CV=0

C.   Overdispersed, CV=2

D.   Two-valued, CV=1

E.   Correlated, CV=1, ρ=0.86

Fig. 1: Simulated spike trains illustrating the variability in stationary

neuronal firing with E(T ) = 1 s and different CV . (A) Poisson process, CV =

1. (B) regular firing, CV = 0. (C) bursting neuronal activity (overdispersed

firing), CV > 1. (D) renewal process with Bernoulli distribution of ISIs,

CV = 1. (E) activity ’derived’ from the Poisson process (ISI densities are

the same, thus CV = 1). The ISIs are ordered so that the serial correlation

% between two successive ISIs is % = 0.86.

(Hentall, 2000; Levine, 1991; McKeegan, 2002; Mandl, 1992; Reeke and Coop, 2004).

Its probability density function is

f(t) =

(

1

C2
V µ

)1/C2

V

Γ(1/C2
V ) t1/C2

V
−1 exp

(

− t

C2
V µ

)

, (1)

where Γ(z) =
∫

∞

0
tz−1 exp(−t) dt is the gamma function. For CV = 1 it becomes

exponential.

The inverse Gaussian distribution (Chhikhara and Folks, 1989) is often used
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to describe neural activity (Iynegar and Liao, 1997) and fitted to experimentally

observed ISIs (Berger et al., 1990; Berger and Pribram, 1992; Gerstein and

Mandelbrot, 1964; Levine, 1991). This distribution results from the Wiener process

with positive drift (the depolarization has a linear trend to the threshold) and

describes the spiking activity of non-leaky integrate-and-fire stochastic neuronal

model (Ricciardi and Lansky, 2003). The probability density of the inverse Gaussian

distribution can be expressed as

f(t) =

√

µ

2πC2
V t3

exp

[

− 1

2C2
V µ

(t − µ)2

t

]

. (2)

The lognormal distribution of ISI, with some exceptions (Bershadskii et al.,

2001), is rarely presented as a result of a neuronal model. However, it represents

quite a common descriptor in ISI data analysis (Levine, 1991), e.g., a mixture of two

lognormal distributions has been used recently (Bhumbra et al., 2004). It is given

by the probability density function

f(t) =
1

t
√

2π ln(1 + C2
V )

exp

{

−1

8

[ln(1 + C2
V ) + 2 ln(t/µ)]

2

ln(1 + C2
V )

}

. (3)

Neither the inverse Gaussian nor the lognormal distribution is exponential for

CV = 1.

2.2 Randomness

The randomness of the renewal process with probability density function f(t) can

be judged by using the hazard rate r(t),

r(t) =
f(t)

1 − F (t)
, (4)
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where F (t) is the cumulative distribution function F (t) =
∫ t

0
f(z) dz. The hazard

rate determines the probability of spike occurrence in interval [t, t + dt) under the

condition that there was no firing in [0, t). The most random firing is such that

with elapsed time from the previous spike the probability of the next one does not

change. It is well known that this holds for the renewal process with exponential

distribution of ISIs. We denote the exponential probability density function as g(t),

g(t) =
1

µ
e−t/µ, (5)

retaining the condition E(T ) = µ. The hazard rate for density (5) is then r(t) = 1/µ.

Function r(t) reflects the randomness of the renewal process but if we wish to

relate it to the single value of CV , we need to find a single-valued counterpart. The

question how to measure the randomness of any renewal process with probability

density f(t) is answered by the concept of (differential) entropy, h(f),

h(f) = −
∞

∫

0

f(t) ln f(t) dt. (6)

The entropy h(f) does not share the same properties and intuitive interpretation as

the entropy H of a discrete probability mass function (Cover and Thomas, 1991).

Namely, it can be negative and its value changes with a coordinate transform.

Nevertheless, the most ’random’ distribution is still the one that maximizes h(f).

The Poisson process thus represents the ’zero point’ on the scale measuring the

randomness of neuronal firing and we will relate it to any other stationary neuronal

activity. It is not reasonable to choose regular spiking as the ’zero point’ because

the entropy h of the Dirac δ-distribution is h = −∞ (Cover and Thomas, 1991). A

measure D(f, g) relating a renewal process with ISI probability density f(t) to the

Poisson process with the same mean value µ = E(T ) is realized by the difference of
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the respective entropies,

D(f, g) = h(g) − h(f). (7)

From equations (5) and (6) follows that h(g) = 1 + ln µ and then

D(f, g) = 1 + ln µ − h(f). (8)

The proposed measure of randomnes thus gives increasing values with decreasing

randomness.

Formula (7) is related to the more general notion of Kullback-Leibler (KL)

distance (relative entropy) of two probability density functions defined as

KL(f, g) =

∞
∫

0

f(t) ln
f(t)

g(t)
dt, (9)

(Cover and Thomas, 1991). Calculation shows immediately that if the mean values

of f(t) and g(t) in formula (9) are the same and g(t) is exponential then

KL(f, g) = D(f, g). (10)

Thus, the KL distance of a probability density function f(t) from the exponential

density under the condition of equal mean values can be used as a measure of

randomness of a renewal neuronal activity.

Formula (10) can be extended to include any non-renewal stationary neuronal

activity (see example in Fig. 1E). In such a case the activity is fully described by

the joint probability density function f(t1, t2, . . . ). The Kullback-Leibler distance

9



per ISI then takes form

KL(f, g) = lim
n→∞

1

n

∞
∫

0

· · ·
∞

∫

0

f(t1, . . . , tn) ln
f(t1, . . . , tn)

g(t1, . . . , tn)
dt1 . . . dtn, (11)

see Cover and Thomas (1991) for details. Formula (11) corresponds to the

original definition (9) for the renewal process. Conditioning reduces entropy (Cover

and Thomas, 1991) and thus the Poisson process maximizes entropy even in the

generalized case. Letting g(t1, . . . , tn) = (1/µ)n exp (−
∑n

i=1 ti/µ) in formula (11)

and setting the mean values of f(t1, t2, . . . ) and g(t1, t2, . . . ) equal to E(T ) (this is

possible because both activities are stationary) yields

KL(f, g) = h(g) − h̄(f), (12)

where

h̄(f) = − lim
n→∞

1

n

∞
∫

0

· · ·
∞

∫

0

f(t1, . . . , tn) ln f(t1, . . . , tn) dt1 . . . dtn. (13)

Note that by taking the difference of two entropies in formula (7) instead of

employing h(f) directly, and by relating the result to the concept of the KL distance,

several important issues are solved and some new properties emerge:

• D(f, g) does not depend on coordinate transforms because in formula (11)

both nominator and denominator are multiplied by the same factors.

• D(f, g) ≥ 0 with equality if and only if f(t) is exponential because g(t)

maximizes the entropy.

• D(f, g) does not depend on E(T ) due to the invariance of KL distance to

coordinate transforms. The logarithm of a time unit (ln E(T )) ”cancels out”
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as can be seen from the general formula (11).

3 Results

In this section we illustrate the application of formula (10) on the neuronal firing

models given by equations (1)–(3). Using formula (6), the entropy of gamma

distribution (1) is

h(f) =
1

C2
V

+ ln

(

1

µC2
V

)

+ ln Γ

(

1

C2
V

)

+

(

1 − 1

C2
V

)

Ψ

(

1

C2
V

)

, (14)

where Ψ(z) = d
dz

ln Γ(z) is the digamma function. Combining equations (8) and (14)

we find the KL distance of the gamma distribution from the exponential one,

KL(CV ) = ln
e

CV 2
− ln Γ

(

1/C2
V

)

+
Ψ(1/C2

V ) − 1

C2
V

− Ψ(1/C2
V ). (15)

This result is illustrated in Fig. 2. Note that formula (15) does indeed not depend

on E(T ) as mentioned before. The density f given by formula (1) is exponential

for CV = 1 and therefore KL(CV = 1) = 0. The KL distance tends to infinity for

CV → 0 and CV → ∞. We can see from Fig. 2 that KL(CV ) increases rapidly

for CV > 1, especially if compared to the other models presented here. For CV <

0.25 (approximately) the KL distances of gamma, lognormal and inverse Gaussian

distributions become the same. The exponentiality of the gamma distribution for

CV = 1 and its difference from the Poisson process at CV = 2 is illustrated using

the hazard rates and probability density functions in Fig. 3.

The identical approach as in the previous case reveals that the KL distance of

the inverse Gaussian distribution (2) from the exponential one is

KL(CV ) =
1

2
ln

e

2πC2
V

+
3 e1/C2

V

√

2πC2
V

K
(1,0)
1

2

(1/C2
V ), (16)
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Fig. 2: The Kullback-Leibler (KL) distance as a function of CV for three

models of neuronal activity. The KL distance of the gamma distribution

is zero for CV = 1, implying that at this point it becomes exponential.

Near CV = 1 the values of KL distances are generally low. The minimum

for the lognormal resp. inverse Gaussian distribution is located at CV ≈

1.31, resp. CV ≈ 1.17. The distributions never become exponential. For

CV → 0 and for CV → ∞ the KL distances tend to infinity. For CV close

zero the KL distances are initially the same. In general, low variability

implies low randomness in the firing. On the other hand, the KL distances

of the lognormal and inverse Gaussian grow very slowly with increasing CV

compared to the gamma distribution. This means that high variability may

results in high as well as low randomness.

where K
(1,0)
ν (z) is the derivative of the modified Bessel function of the second kind

(Abramowitz and Stegun, 1972), K
(1,0)
ν (z) = ∂

∂ν
Kν(z). The dependence is shown in
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B.  CV=2

Fig. 3: Comparison of hazard rates and probability densities of the tested

models with E(T ) = 1 s for two values of CV . (A) CV = 1. The gamma

distribution reduces to the exponential one. The hazard rates of inverse

Gaussian and lognormal distributions are very similar in shape but none is

constant. The lognormal and inverse Gaussian distributions can be hardly

distinguished based on the hazard rates or densities and it is reflected in

nearly equivalent values of the KL distance, see Fig. 2. (B) CV = 2.

The hazard rates are more different. In analogy with the KL distance, the

lognormal is ’closest’ to the exponential and gamma distribution is the most

different. Similar (only less prominent) observation is yielded by comparing

the probability density functions.

Fig. 2. Due to the fact that the inverse Gaussian is never exponential, KL(CV ) >

0. The minimum of KL(CV ) for the inverse Gaussian distribution is located at
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CV ≈ 1.173. We can see a difference compared to the gamma distribution. It has

been already noted that the condition CV = 1 does not imply exponentiality but in

this case even the minimal distance is not located at CV = 1, but at CV ≈ 1.17.

Finally, the KL distance of lognormal distribution (3) from the exponential one

is

KL(CV ) =
1

2

[

ln
C2

V + 1

ln(C2
V + 1)

+ ln
e

2π

]

(17)

and the minimum is at CV =
√

e − 1 ≈ 1.311. Again, the minimal possible

deviation of lognormal distribution from exponential one is not at CV = 1. It is

interesting that for CV < 1 (approximately) there is no difference in lognormal and

inverse Gaussian distributions from the perspective of the KL distance. The equality

in the KL distance, however, does not imply that these distributions are identical.

4 Conclusions

We demonstrated that variability in stationary neuronal firing is not sufficient

to describe different firing regimes with equal mean ISI and that the notion of

randomness brings an alternate point of view. The Kullback-Leibler (KL) distance

was proposed as a measure of randomness with the exponential distribution being

chosen as a template, because the exponential distribution is the most random one

(maximizes entropy). Under the condition of equal mean values the KL distance

resolves the problems of differential entropy and satisfies additional useful properties.

We concentrated mainly on the neuronal firing described by the renewal process

and we analyzed three common two-parametric distributions using the proposed

method: gamma, lognormal and inverse Gaussian. The following inference can be

made on the basis of the KL distance of ISI distributions:

1. The KL distances for all three investigated distributions is U-shaped with low
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values distributed around CV = 1.

2. While small variability generally implies low randomness, high variability in

the firing may result in both low as well as high randomness.

3. The same level of randomness in the firing can be obtained with different values

of variability. Therefore the notions of randomness and variability represent

different descriptions of the neuronal activity.

4. It is well known that the lognormal and inverse Gaussian distributions never

become exponential but in addition their minimal KL distances to this

distribution are not located at CV = 1.

5. For CV increasing from zero (regular spiking) the KL distances of lognormal,

inverse Gaussian and gamma distributions are initially the same. Then gamma

branches off at CV ≈ 0.25 and the lognormal and inverse Gaussian depart at

CV ≈ 1.

6. For lognormal and inverse Gaussian distributions the KL distance grows very

slowly for CV > 1, compared to the gamma distribution and their distances to

the exponential distribution are practically the same for CV = 1 as for CV < 2.
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